用户名: 密码: 验证码:
Hepc1对扩张型心肌病的调节机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景Hepcl是主要在肝脏表达的一种小分子抗菌肽,是铁代谢的负调节激素。Hepc1在心脏中少量表达,是一种内在的心脏调节激素,它的表达同样受到低氧和炎症的调节,并与心脏局部铁代谢相关,而且铁是一种重要的参与心脏心脏功能调节的离子。
     cTnTR92Q转基因小鼠心脏变大,室壁变厚,心腔变小,心肌细胞排列紊乱,间质纤维化,心肌舒张功能失调,而cTnTR141w转基因小鼠的全心扩大,室壁变薄,间质纤维化,心肌收缩功能失调,分别表现出典型的肥厚型和扩张型心肌病病理表型。两种疾病模型动物心脏全基因表达芯片及逆转录PCR结果显示,Hepc1在两种转基因动物模型的心脏中的表达均下调。
     扩张型心肌病是一种以心腔(左心室和/或右心室)扩张、心肌收缩功能受损为主要特征的原因不明的心肌疾病,是除冠心病和高血压以外导致心力衰竭的主要病因之一,5年内病死率高达15-50%。本研究的目的是建立心脏组织特异的Hepc1转基因小鼠,探究该基因在扩张型心肌病发生发展中的作用。
     方法cTnTa141w与cTnTR92Q全基因表达芯片及逆转录PCR检测Hepc1于扩张型心肌病及肥厚型心肌病模型小鼠中的表达变化。RT-PCR法克隆Hepc1基因,将基因插入a-MHC启动子下游,构建转基因表达载体,通过显微注射法建立Hepc1转基因C57/6J小鼠。PCR法鉴定Hepc1转基因小鼠的基因型,RT-PCR检测基因转录水平,狭缝杂交检测蛋白表达水平,确定高表达首建鼠。Hepc1转基因小鼠与cTnTR141W转基因小鼠杂交建立Hepcl×cTnTR141w杂交小鼠。M型超声心动图检测不同月龄Hepc1、 cTnTR141W及Hepcl×cTnTR141w转基因小鼠心脏的结构形态和功能变化。HE染色和Masson染色观察Hepc1、cTnTR141w及Hepc1×cTnTR141w转基因小鼠心脏组织学改变。透射电镜分析心肌超微结构改变。Western blot检测心脏肥大标记物ATP2A2的表达水平变化;RT-PCR检测Col1al及Acta1的表达。Western blot险测Hepc1、cTnTR141w及Hepcl×cTnTR141w转基因小鼠心脏中p-ERK及ERK表达水平。将Hepc1基因插入CMV启动子下游构建CMV-Hepc1表达载体,脂质体转染法转染H9c2细胞建立过表达CMV-Hepc1稳转细胞系。分别用DFO及FAC对H9c2细胞进行铁剥夺和对CMV-Hepc1稳转细胞系铁增强试验,Western blot检测各细胞系中p-ERK及ERK表达水平变化。
     结果cTnTR141w与cTnTR92Q全基因表达芯片及逆转录PCR显示,Hepc1在两种转基因小鼠心脏中均表达下降。建立了2个心脏特异表达的Hepc1转基因小鼠品系。Hepc1基因在心脏组织的表达水平超过内源性Hepc1的3倍。同时建立了心脏特异表达的Hepc1×cTnTR141w杂交小鼠。M型超声心动图及心脏组织学显示,心脏特异表达的Hepc1转基因小鼠的心室室壁增厚,心腔变小,心功能增强;组织学结果显示,心肌细胞排列发生轻度重塑,其余结构未见异常;电镜超微结构可见,心肌纤维增粗,偶见巨大线粒体。与cTnTR141W转基因小鼠相比,Hepc1×cTnTR141w杂交小鼠心室室壁增厚,心腔变小,心收缩功能明显改善。超微结构可见,Hepc1×cTnTR141w杂交小鼠心肌肌纤维增粗,肌纤维断裂溶解现象得到明显改善。反映心脏功能的钙调节相关蛋白基因ATP2A2在cTnTR141W转基因小鼠心脏中表达下调,而在Hepc1×cTnTR141w杂交小鼠心脏中表达增加。反映心肌间质胶原成分的Colla1及细胞骨架相关蛋白Acta1在皆在Hepc1×cTnTR141w杂交小鼠心脏中表达下调,Hepc1显著逆转了cTnTR141W转基因小鼠心脏中的表达增加。4月龄cTnTR141W转基因小鼠出现早期死亡,至6月龄早期死亡率达16%,Hepc1转基因小鼠未出现早期死亡,而且Hepc1×cTnTR14W转基因小鼠与cTnTR141w转基因小鼠相比,死亡率相对较低。cTnTR141w转基因小鼠心脏中p-ERK水平相对于野生成年小鼠显著下降,而在Hepc1×cTnTR141w杂交小鼠心脏ERK磷酸化水平升高。体外实验表明,铁剥夺时ERK磷酸化水平升高,同时铁剥夺和铁增强时ERK磷酸化水平恢复。
     结论建立了2个心脏特异表达的Hepc1转基因小鼠品系。Hepc1转基因可明显改善cTnTR141W扩张型心肌病病理表型。Hepc1下调心脏组织中的铁浓度,并诱导ERK激活。这些结果说明Hepc1是通过铁的调节改善扩张性心肌病的病理发展。Hepc1有可能成为治疗心肌病的靶基因之一。
     背景两种疾病模型动物心脏基因表达芯片结果显示,Lrp2bp在扩张型心肌病动物模型心肌中mRNA显著上调表达,而在肥厚型心肌症动物模型心肌中表达较少,Lrp2bp可能参与心肌病发生发展。建立了心脏特异表达的低密度脂蛋白受体相关蛋白2结合蛋白(Lrp2bp)转基因小鼠,研究该基因在心肌病发病中的作用。
     方法Western blot检测小鼠Lrp2bp表达谱。克隆鼠源Lrp2bp基因入a-MHC启动子下游构建a-MHC-Lrp2bp表达载体,显微注射法建立Lrp2bp转基因小鼠。PCR鉴定转基因首建鼠的基因型。Western blotting鉴定Lrp2bp在心脏中的表达,心脏超声检测转基因鼠及野生型小鼠心脏功能及几何构型,透射电镜观察心肌细胞的超微结构改变。
     结果Lrp2bp主要在成年小鼠肾脏组织中表达,肝、脾中表达较高,心、肺和脑组织中表达量少,在心脏中的表达不随年龄而改变。得到了4个Lrp2bp转基因品系,其中3个品系心脏Lrp2bp蛋白表达量与同龄野生型鼠相比明显增加。1M龄转基因小鼠与同窝阴性对照小鼠相比,心壁变厚,心腔变大,射血分数和短轴缩短率下降。
     结论成功建立了心脏特异表达的1rp2bp转基因小鼠,为进一步和心肌病小鼠模型杂交,研究该基因在心肌病发病中的作用提供了工具。
Objective Hepcidin is a hormone mainly expressed in the tissues of liver, which is invovled in the signals of Fe2+in cell. Hepcidin expresses in heart tissue and it is possible to regulate the function of Fe2+, which has been indicated invovled the physiological function of heart and pathogenesis of heart disese. The paper reported the establishment of heart specific Hepcl transgenic mice and analysis of the effect of the gene Hepcl on the deveopment of dilated cardiomyopathy in the cTnTR141w transgenic mice.
     Methods The expression of Hepcl gene in both hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) mice were analyzed using gene expression microarray of cTnTR92Q and cTnTR141w myocardium and confirmed by reverse transcriptional polymerase chain reaction (RT-PCR). The transgenic vector was constructed by inserting the mouse Hepc1gene into the downstream of a-MHC promoter. The transgenic mice were created by the method of microinjection. The genotype of transgenic mice of cTnTR141W, Hepc1and Hepc1xcTnTR141w was detected by PCR, the expression level of the Hepc1gene was determined by RT-PCR and slot blotting. Pathologic changes were observed by light microscopy and transmission electronic microscopy. The cardiac structure and function were analyzed with M-mode echocardiography. Survival data of the experimental mice were recorded. The cardiac hypertrophic marker genes were analyzed by RT-PCR and western blotting. The accumulation of p-ERKl/2and ERK1/2were determined by western blotting in wild type, cTnTR141w, Hepcl xcTnTR141w and Hepcl transgenic mice. The expression construct for Hepcl was generated by cloning a PCR-amplified full-length cDNA fragment into pcDNA3.1+vector. H9c2cell line was transfected with Hepc1construct using Lipofectamine2000. The expression level of p-ERK1/2and ERK1/2were also detected in H9c2, DFO-treated H9c2, CMV-Hepcl and FAC-treated CMV-Hepcl cell lines.
     Results Gene expression microarray analysis, RT-PCR and slot blotting revealed that a lower expression of Hepc1in both DCM mice and HCM mice. C57BL/6J transgenic mice carrying the Hepc1, HepclxcTnTR141w and cTnTR141w genes were all established. The heart of Hepc1transgenic mice showed hypertrophic ventricular wall, reduced ventricular chamber, diastolic dysfunction compared with that of wild type. Thicker myofiber and more mitochondrias of the Hepcl transgenic mice were observed under the transmission electronic microscope. All the pathological changes of Hepcl transgenic mice display light left ventricular hypertrophy. The Hepcl×cTnTR141w transgenic mice showed a thicker ventricular wall, smaller ventricular chamber, improved diastolic function, elongated and lysed myofrils when compared with cTnTR141w transgenic mice. The genes of extracellular matrix protein Col1al, the genes of cytoskeletal protein Actal, were significantly decreased in Hepc1and Hepcl xcTnTR141w transgenic mice, which were increased in cTnTR141w transgenic mice. The gene of calcium-regulation protein ATP2A2was shown to be increased in Hepc1and Hepc1×cTnTR141w transgenic mice,which were decreased in cTnTR141w transgenic mice. Immature death occurred after4months of age and the immature death rate was16%before6months of age in the cTnTR141w mice, while HepclxcTnTR141w transgenic mice showed a low immature death compared with that of cTnTR141w transgenic mice, but higher than that of WT mice. An accumulation of p-ERKl/2was seen both DFO-treated H9c2and CMV-Hepcl cell lines compared with H9c2cell line and FAC-treated CMV-Hepc1cell line. ERK1/2phosphorylation was increased in Hepcl and Hepcl×cTnTR141w transgenic mice compared with cTnTR141w transgenic mice.
     Conclusions Two heart specific Hepcl transgenic mice lines were established. The Hepcl transgenic mice exihibited an marked improvement on the pathologic phenotype of the cTnTR141w transgenic mice. Hepcl downregulated the iron level in heart tissue, and induced the activation of ERK1/2. These data indicates Hepc1delays the pathophysiological process by downregulation of iron in the heart tissue and it may be a new target in the treatment of dilated cardiomyopathy.
     Objectives To generate the heart-specific Lrp2bp overexpressing mice, a model for the study of its function and effects on cardiomyopathy.
     Methods The transgenic vector was constructed by inserting the murine Lrp2bp gene into the downstream of a-MHC promoter. The transgenic mice were created by the method of microinjection. The genotype of transgenic line was identified by PCR and the expression level of the gene was determined by Western blotting. The cardiac function and geometry were detected by echocaridiography. The uLtrastructure changes of cardiomyocytes from Lrp2bp tg mice were observed by transmission electron microsopy.
     ResuLts Three lines of C57BL/6J transgenic mice with high level of Lrp2bp expression were identified from four transgenic founders. The heart of1-month-old Lrp2bp transgenic mice showed signficantly increased ventricuLar wall, dilated ventricuLar chamber compared with that of wild type whereas ejection fraction (EF%) and fractionl shortening (FS%) were markedly decreased.
     Conclusions The transgenic mice with cardiac-specific expression of the murine Lrp2bp gene were establised successfuLly and it can be used to crossbreed with the DCM and the HCM models to investigate the function of Lrp2bp gene on the development of caridomyopathy.
引文
[1]Schonberger J, Seidman CE. Many road lead to a broken heart:The genetics of cardiomyopathy[J]. Am J Hum Genet,2001,69:249-260.
    [2]Kamisago M, Sharma SD, Depalma SR, et al. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy[J]. N Engl J Med 2000,343:1688-96.
    [3]Chang AN, Potter JD. Sarcomerie protein mutations in dilated cardiomyopathy [J]. Heart Fail Rev,2005,10:225-235.
    [4]Taylor M, Carniel E, Mestroni L. Cardiomyopathy, familial dilated [J]. Orphanet J Rare Diseases,2006,1:27.
    [5]Olson TM, Michels VV, Thibodeau SN, et al.Actin mutations in dilated cardiomyopathy, a heritable form of heart failure [J]. Science,1998,280:750-752.
    [6]Kamisago M, Sharma SD, Depalma SR, et al. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy [J]. N Engl J Med,2000,343:1688-1696.
    [7]Regitz-Zagrosek V, Daehmlow S, Knueppel T, et al. Novel mutations in theβmyosin heavy chain and myosin binding protein C gene are associated with dilated cardiomyopathy[J]. Circulation,2001,104 Suppl 11:11-572.
    [8]Murphy RT, Mogensen J, Shaw A, et al. Novel mutation in cardiac troponin I in recessive idiopathic dilated cardiomyopathy [J]. Lancet,2004,363:371-372.
    [9]Mogensen J, Murphy RT, Shaw A, et al. Cardiac troponin C, and T mutations in 238 patients with idiopathic dilated cardiomyopathy:Prevalence, clinical features and impact on the troponin complex [J]. Circulation,2003,108.IV-50.
    [10]Olson TM, Kishimoto NY, Whitby FG, et al. Mutations that alter the surface charge of alpha-tropomyosin are associated with dilated cardiomyopathy [J]. J CmOL Cell Cardiol,2001,33:723-732.
    [11]Gerull B, Gramlich M, Athertom J, et al. of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy [J]. Nat Genet,2002,30:201-204.
    [12]Li D, Tapscoft T, Gonzalez O, et al. Desmin mutation responsible for idiopathic dilated cardiomyopathy [J]. Circulation,1999,100:461-464.
    [13]Tsubata S, Bowles KR, Vatta M, et al. Mutations in the human 8-Sarcoglycan gene in familial and sporadic dilated cardiomyopathy [J]. J Clin Invest,2000, 106:655-662.
    [14]Olson TM, Illenberger S, Kishimoto NY, et al. Metavinculin mutations alter actin interaction in dilated cardiomyopathy [J]. Circulation,2002,105:431-437.
    [15]Towbin JA, Hejtmancik JF, Brink P, et al. X-linked dilated cardiomyopathy. Molecular genetic evidence of linkage to the Duchenne muscular dystrophy (dystrophin) gene at the Xp21 locus [J]. Circulation,1993,87:1854-1865.
    [16]D Adamo P, Fassone L, Gedeon A, et al. The X-linked gene G4.5 is responsible for different infantile dilated cardiomyopathies [J]. Am J Hum Genet,1997,61:862-867.
    [17]Fatkin D, Macrae C, Sasaki T, et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction system disease[J]. N Engl J Med,1999,341:1715-1724.
    [18]Fatkin D, Graham RM. Molecular mechanisms of inherited cardiomyopathies [J]. Physiol Rev,2002,82:945-980.
    [19]Fatkin D, Graham RM. Molecular mechanisms of inherited cardiomyopathies [J]. Physiol Rev,2002,82:945-980.
    [20]Aldrin VG, Junor AB, Keita H, et al. Role of troponin T in disease [J]. Molecular and Cellular Biochemistry,2004,263:115-129.
    [21]Palm T, Graboski S, Hitchcock-DeGregori SE, et al. Disease-causing mutations in cardiac troponin T:Identification of a critical tropomyosin-binding region[J]. Biophys J,2001,81:2827-2837.
    [22]Thierfelder L, Watkins H, MacRae C, et al. Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy:A disease of the sarcomere[J]. Cell,1994,77:701-712.
    [23]Matthew RG, Elisa C, Luisa M. Cardiomyopathy, familial dilated[J].Orphanet J Rare Diseases,2006,1:27.
    [24]Fatkin D, Graham RM. Molecular mechanisms of inherited cardiomyopathies [J]. Physiol Rev,2002,82:945-980.
    [25]Stefancsik R, Jha PK, Sarkar S. Identification and mutagenesis of a highly conserved domain in troponin T responsible for troponin I binding:Potential role for coiled coil interaction J]. Proc Natl Acad Sci USA,1998,95:957-962.
    [26]Li D, Czernuszewicz GZ, Gonzalez O, et al. Novel cardiac troponin T mutation as a cause of familial dilated cardiomyopathy [J]. Circulation,2001,104:2188-2193.
    [27]Feng J, Dong W, Quan XZ, et al. The changes of the cardiac structure and function in cTnTR141w transgenic mice[J]. International Jouranl of Cardiology,2008,128, 83-90.
    [28]Fleming R E, Sly W S. Hepcl:a putative iron-reguLatory hormone relevant to hereditary hemochromatosis and the anemia of chronic disease[J].Proc Natl Acad Sci USA,2001,98(15):8160-8162
    [29]Krause A, Neitz S, Magert HJ, et al. LEAP-1, a novel highly disuLfide bonded human peptide exhibits antimicrobial activity[J]. FEBS Lett,2000,480:147-150
    [30]Park CH, Valore EV, Waring AJ, et al. Hepcl,a urinary antimicrobial peptide synthesized in the liver[J]. J Biol Chem,2001,276:7806-7810.
    [31]Hunter HN, FuLton DB, Ganz T, et al.The solution structure of human Hepcl, a peptide hormone with antimicrobial activity that is involved in iron uptake and hereditary hemochromatosis[J]. J Biol Chem,2002,277(40):376597-376603
    [32]Nicolas G, Viatte L, Bennoun M, et al. Hepcl, a new iron reguLatory peptide[J]. Blood cells,MolecuLes, and Diseases,2002,29(3):327-333.
    [33]Pigeon C, llyin G, Courselaud B, et al. A new mouse liver specific gene, encoding a protein homologous to human antimicmbial peptide Hepc1, is over-expressed during iron overload[J]. J Biol Chem,2001,276:7811-7819.
    [34]Lou DQ, Nicolas G, Lesbordes JC, et al. Functional differences between Hepcl 1 and 2 in transgenic mice[J]. Blood,2004,103(7):2816-2821.
    [35]Nicolas G, Bennoun M, Devaux I, et al. Lack of Hepcl gene expression and severe tissue iron overload in upstream stimuLatory factor 2 (USF2) knockout mice[J]. Proc Natl Acad Sci U S A,2001,98(15):8780-8785.
    [36]Nicolas G, Bennoun M, Porteu A, et al. Severe iron deficiency anemia in transgenic mice expressing liver Hepcl [J]. Proc Natl Acad Sci U S A.2002,99(7):4596-4601.
    [37]Roetto A, Papanikolaou G, Politou M, et al. Mutant antimicrobial peptide Hepcl is associated with severe juvenile hemochromatosis[J]. Nat Genet,2003,33(1):21-22.
    [38]Rivera S, Nemeth E, Gabayan V, et al. Synthetic Hepc1 causes rapid dose-dependent hypoferremia and is concentrated in ferroportin-containing organs[J]. Blood,2005, 106(6):2196-2199.
    [39]Weinstein DA, Roy CN, Fleming MD, et al-Inappropriate expression of Hepc1 is associated with iron refractory anemia:implication for the anemia of chronic disease[J]. Blood,2002,100(10):3776-3781.
    [40]Ilyin G, Courselaud B, Troadec MB, et al. Comparative analysis of mouse Hepc1 1 and 2 genes:evidence for different patterns of expression and co-inducibility during iron overload[J]. FEBS Lett,2003,542(1-3):22-6.
    [41]Sousa M, Reimao R, Lacerda R, et al. Iron overload in β2-microglobuLin-deficient mice[J]. Immunology,1994,39(2),105-111.
    [42]Santos M, Clevers H, de Sousa M, et al. Adaptive response of iron absorption to anemia, increased erythropoiesis, iron deficiency, and iron loading in beta2-microglobuLin knockout mice[J]. Blood,1998,91:3059-3065.
    [43]Nicolas G, Chauvet C, Viatte L, et al. The gene encoding the iron reguLatory peptide Hepcl is reguLated by anemia, hypoxia and inflammation[J]. J Clin Invest, 2002,110(7):1037-1044.
    [44]Nemeth E, Valore EV, Territo M, et al. Hepc1, a putative mediator of anemia of inflammation, is a type Ⅱ acute-phase protein[J]. Blood,2003,101(7):2461-2463.
    [45]Anderson GJ, Fraser DM, Wilkins SJ, et al. Relationship between intestinal iron-transporter, hepatic Hepc1 levels and the control of iron absorption[J]. Biochemical Society Transaction,2002,30(4):724-726.
    [46]Hoppe M, Lonnerdal B, Hossain B, et al. Hepcl, interleukin-6 and hematological iron markers in males before and after heart surgery[J]. J Nutr Biochem.,2009, 20(1):11-16.
    [47]Courselaud B, Pigeon C, Inoue Y, et al. C/EBPa reguLates hepatic transcription of hepeidin, an antimicrobial peptide an d reguLator of iron metabolism [J]. Biol Chem,2002,277(43):41163-41170.
    [48]Darshan D, Anderson GJ. Interacting signals in the control of Hepcl expression[J]. Biometals.,2009,22(1):77-87.
    [49]Fraser DM. Anderson GJ. The orchestration of body iron intake:how and where do enterocytes receive their cues? [J]. Blood Cells Mol Dis.,2003,30(3):288-297.
    [50]Bayele HK, McArdle H, Srai SK. Cis and trans reguLation of Hepcl expression by upstream stimuLatory factor[J]. Blood.2006,108(13):4237-45.
    [51]Huang YH, Huang CC, Chuang JH, et al. Upstream stimuLatory factor 2 is implicated in the progression of biliary atresia by reguLation of Hepc1 expression[J].J Pediatr Surg.,2008,43(11):2016-2023.
    [52]Nemeth E, Tuttle MS, Powelson J, et al. Hepcl reguLates celluLar iron efflux by binding to ferroportin and inducing its internalization[J]. Science, 2004,306:2090-2093.
    [53]Knutson MD, Oukka M, Koss LM, et al. Iron release from macrophages after erythrophagocytosis is up-reguLated by ferroportin 1 overexpression and down-reguLated by Hepcl [J]. Proc Natl Acad Sci U S A,2005,102:1324-1328
    [54]Ganz T..Hepcl and its role in reguLating systemic iron metabolism[J]. Hematology, 2006,507(1):29-35.
    [55]Singh PK, Parsek MR, Greenberg EP, et al. A component of innate immunity prevents bacterial biofilm development[J]. Nature,2002,417(6888):552-555.
    [56]Collins HL. The role of iron in infections with intracelluLar bacteria[J]. Immunol Lett,2003,85(2):193-195.
    [57]Means RT Jr. Hepc1 and anaemia[J]. Blood Rev,2004,18(4):219-225.
    [58]Uta M, Evelyn F, Sven GG, et al. The iron reguLatory peptide Hepcl is expressed in the heart and reguLated by hypoxia and inflammation [J]. Endocrinology,2007, 148(6):2663-2668.
    [59]Araujo JA, Romano EL, Brito BE, et al. Iron overload augments the development of atherosclerotic lesions in rabbits. Arterioscler Thromb Vasc Biol,1995,15(8):1172.
    [60]We Jian Zhang,Balz Frei. Intracellular metal ion chelatorors inhibit TNF-induced SP-1 activation and adhention molecule expression in human aortic endothelia cells. Free Radical Biology &Medicine,2003,34 (6):674.
    [61]Ren Minqina, Reshmi Rajendrana. The iron chelator desferrioxamine inhibits atherosclerotic lesion development and dccreases lesion iron concentrations in the cholesterol-fed rabbit. Free Radical Biology & Medicine,2005,38:1206.
    [62]Duffy, Biegelsen. Iron chelation improves endothelial function in patients with coronary artery disease. Circulation,2001,103(23):2799.
    [63]Stephen JD, Elizabeth SB. Iron chelation improves endothelial function in patients with coronary artery disease. Circulation,2001.,103(23):2799.
    [64]Silva ME, Turbino-Ribeiro SM,Chianca DA, et al. Iron overload in hypercholesterolemic rats affects iron homeostasis and serum lipids but not blood pressure.Nutr,2003,133 (1):15.
    [65]Rosenthal ER, Chanderbhan R, Marshall G & Fiskum G. (1992) Prevention of post-ischemic brain lipid conjugated diene production and neurological injury by hydroxyethyl starch-conjugated deferoxamine. Free Radic Biol Med 12:12-33.
    [66]Fiasinoff BB. Dexrazoxane (ICRF-187) protects cardiac myocytes against hypoxia-reoxygenation damage. Cardiovasc Toxicol,2002,2(2):111.
    [67]Davis BA, Porer JB. Long-term outcome of continuous 24-hour deferoxamine Davis BA, Porer JB. Blood,2000,95 (4):1229.
    [68]K.H. Wu,J. S. Chang,Tsai CH, et al. Combined therapy with deferiprone and desferrioxamine successfully regresses severe heart failure in patients with β thalassernia major. Ann Hematol,2004,83 (7):471.
    [69]曹霞,谢秀梅.铁螯合剂与心血管疾病[J].上海医药,2005,26(12):542-544.
    [70]Li D, Czernuszewicz GZ, Gonzalez O, et al. Novel cardiac troponin T mutation as acause of familial dilated cardiomyopathy [J]. Circulation,2001,104:2188-2193
    [71]Moolman JC, Corfield VA, Posen B, et al. Sudden death due to troponin T mutations[J]. J Am Coll Cardiol,1997,29:549-555.
    [72]Fujino N, Shimizu M, Ino H, et al. A novel nutation Lys273Glu in the cardiac troponin T gene shows high degree of penetrance and transition from hypertrophic to dilated cardiomyopathy[J]. Am J Cardiol,2002,89:29-33.
    [73]Mogensen J, Murphy RT, Shaw T, et al. Severe disease expression of cardiac troponin C and T mutations in patients with idiopathic dilated cardiomyopathy[J]. J Am Coll Cardiol,2004,44: 2033-40.
    [74]Kamisago M, Sharma SD, Depalma SR, et al. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy[J]. N Engl J Med,2000,343:1688-1696.
    [75]Szczesna D, Zhang R, Zhao J, et al. Altered regulation of cardiac muscle contraction by troponin T mutations that cause familial hypertrophic cardiomyopathy[J]. J Biol Chem,2000,275:624-630.
    [76]Tobacman LS, Lin D, Butters C, et al. Functional consequences of troponin T mutations found in hypertrophic cardiomyopathy[J]. J Biol Chem,1999,274: 28363-28370.
    [77]Harada K, Takahashi-Yanaga F, Minakami R, et al. Functional consequences of the deletion mutation deltaGlul60 in human cardiac troponin T[J]. J BioChem(Tolyo), 2000,127:263-268.
    [78]Morimoto S, Lu QW, Harada K, et al. Ca(2+)-desensitizeng effect of a deletion mutation Delta K210 in cardiac troponin T that causes familial dilated cardiomyopathy[J]. Proc Natl Acad Sci USA,2002,99:913-918.
    [79]Lu QW, Morimoto S, Harada K, et al. Carciac troponin T mutation R141W found in dilated cardiomyopathy stabilizes the troponin T-tropomyosin interaction and causes a Ca2+ desensitization[J]. J Mol Cell Cardio,2003,35:1421-1427.
    [80]Testa U.Recent developments in the understanding of iron metabolism[J]. Hematol J,2002; 3:63-89.
    [81]Jacolot S, Gac G, Scotet V, et al. HAMP as a modifier gene that increases the phenotypeic expression of the HFEpC282Y homozygous genotype[J]. Blood,2004,103 (7):2835-2840.
    [82]Boetto A, Papanikolaou G, Politou M, et al. Mutant antimicrobial peptide hepcidin is assotiated with severejuvenile hemochromatosis [J]. Nat Genet,2003,33(1):21-22.
    [83]Gan T, The role of hepcidin in iron sequistration during infections and in the pafliogensis of anemia of chrome disease. Hacam,2004,7(2):165-174.
    [84]Polito M, Papanikolnou G Hepcidin:a key iron regulator involved in the parthogenecin of anaemia of chronic disease[J].Hacma,2004,7(2):165-174.
    [85]Ramakrishnan U. Kuklina E, Stein AD. Iron stores and cardiovascular disease risk factors in women of reproductive age in the united states[J]. Am J Clin Nutr,2002; 76:1256-60.
    [86]Kletzmayr J. Horl WH. Iron overload and cardiovascular complications in dialysis patients[J]. Nephrol Dial Transplant,2002; 17(suppl2):25-9.
    [87]Kyosseva SV. Mitogen-activated protein kinase pathways mediated by ERK, JNK and P38 protein kinases[J]. Science,2002,298:1911-2.
    [88]Widmann C, Gibson S, Jarpe MB, et al. Mitogen-activated protein kinase:conversation of a three-kinase modulation from yeast to human[J]. Physiol Rev,1999,79:143-180.
    [89]Sugden PH,Clerk A. Stress-response mitogen-activated protein kinases(c-Jun N terminal kinases and p38 mitogen-activated protein kinases) in the myocardium[J].Circ Res,1998,24:245-352.
    [90]Bueno OF,De Windt LJ,Tymitz KM,et al.The MEK-ERK1/2 signaling pathways promote compensated cardiac hypertrophy in transgenic mice[J]. EMBO J,2000,19:6341-6350.
    [91]CookAS, Sugden PH. Activation of c-JN terminal kinases and P38 mitogen-activated protein kinases in human heart failure secondary to ischaemic heart disease[J]. J Mol Cell Cardiol,1999,31:1429-1434.
    [92]Huang X, Dai J, Huang C, Zhang Q, Bhanot O, Pelle E. Deferoxamine synergistically enhances iron-mediated AP-1 activation:a showcase of the interplay between extracellular-signal-regulated kinase and tyrosine phosphatase[J]. Free Radic Res,200,41(10):1135-42.
    [93]Markel,l Paul R. Crisostomo,l Meijing Wang,l Christine M. Herring,l Tim Lahm,3 Iron chelation acutely stimulates fetal human intestinal cell production of IL-6 and VEGF while decreasing HGF:the roles of p38, ERK, and JNK MAPK signaling[J].Am J Physiol Gastrointest Liver Physiol,2007,292:G958-963.
    [94]Seo GS, Lee SH, Choi SC, et al. Iron chelator induces THP-1 cell differentiation potentially by modulating intracellular glutathione levels. Free Radical Biology & Medicine,2006,40(9):570-749.
    [95]Wallace DF, Summerville L, Crampton EM, Frazer DM, Anderson GJ, Subramaniam VN.Combined deletion of Hfe and transferrin receptor 2 in mice leads to marked dysregulation of hepcidin and iron overload[J]. Hepatology,2009,50(6):1992-2000.
    [96]Pauschinger M, Knopf D, Petschauer S, et al. Dilated cardiomyopathy is associated with significant changes in collagen type Ⅰ/Ⅲ ratio [J]. Circulation,1999,99: 2750-2756.
    [97]Lutucuta S, Tsybouleva N, Ishiyama M, et al. Induction and reversal of cardiac phenotype of human hypertrophic cardiomyopathy mutation cardiac troponinT-Q92 in switch on-switch off bigenic mice[J]. J Am Coll Cardiol; 2004,44:2221-2230.
    [98]Talukder MA, Kalyanasundaram A, Zhao X, et al. Expression of SERCA isoform with faster Ca2+ transport properties improves postischemic cardiac function and Ca2+ handling and decreases myocardial infarction[J]. Am J Physiol Heart Circ Physiol,2007,293:H2418-2428.
    [99]Andino LM, Takeda M, Kasahara H, et al. AAV-mediated knockdown of phospholamban leads to improve contractility and calcium handling in cardiomyocytes[J]. J Gene Med,2008,10:132-142.
    [100]Morita T, Hussain D, Asahi M, et al. Interaction sites among phospholamban, sarcolipin, and the sarco(endo)plasmic reticulum Ca(2+)-ATPase[J]. Biochem Biophys Res Commun,2008,369:188-194.
    [101]Naito Y, Tsujino T, Matsumoto M, Sakoda T,et al. Adaptive response of the heart to long-term anemia induced by iron deficiency [J]. Am J Physiol Heart Circ Physiol, 2009,296(3):H585-93.
    [102]Feng Dong, Xiaochun Zhang, Bruce Culver. Dietary iron deficiency induces ventricular dilation, mitochondrial ultrastructural aberrations and cytochrome c release:involvement of nitric oxide synthase andprotein tyrosine nitration[J]. Clinical Science,2005,109:277-286.
    [103]Nikita Hegde, MD Michael W. Rich, MD Charina Gayomali; MD. The Cardiomyopathy of Iron Deficiency [J]. Tex Heart Inst J,2006,33:340-4.
    [104]Lee DH, Folsom AR, Jacobs DR. Iron, zinc, and alcohol consumption and mortality from cardiovascular diseases:the iowa women's health study [J]. Am J Clin Nutr,2005,81:787-91.
    [105]G. William Dec, M.D.Anemia and Iron Deficiency — New Therapeutic Targets in Heart Failure? The new england journal o f medicine,2009,1-3
    [1]Petersen HH, Hilpert J, Militz D, et al. Functional interaction of megalin with the megalin-binding protein (MegBP), a novel tetratrico peptide repeat-containing adaptor molecule[J]. J Cell Sci,2003,116 (3):453-461.
    [2]董伟,冯娟,全雄志,等.cTnTR92Q转基因小鼠肥厚型心肌病模型的建立[J].中国比较医学杂志,2008,18(5):5-8.
    [3]Feng J, Dong W, Quan XZ, et al. The changes of the cardiac structure and function in cTnTR141W transgenic mice[J], Int J Cardiol,2008,128(1):83-90.
    [4]冯娟,董伟,全雄志,等.cTnTR141W转基因小鼠扩张型心肌病模型的建立[J].中国比较医学杂志,2007,17(10):563-567.
    [5]Gordan JW, Ruddle FH. Integration and stable germline transmission of genes injected into mouse pronuclei [J]. Science,1981,214 (4526):1244-1246.
    [6]Truett GE, Heeger P, Mynatt RL, et al. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT) [J]. Biotechniques,2000, 29(1):52-54.
    [7]Zhou YQ, Foster FS, Nieman BJ, et al. Comprehensive transthoracic cardiac imaging in mice using ultrasound biomicroscopy with an atomical confirmation by magnetic resonance imaging [J]. Physiol Genomics,2004,18:232-244.
    [8]Li J, Ji C, Zheng H, et al. Molecular cloning and characterization of a novel human gene containing 4 ankyrin repeat domains[J]. Cell Molec Biol Lett,2005, 10:185-193.
    [9]The RIKEN Genome Exploration Research Group. Functional annotation of a full-length mouse cDNA collection[J]. Nature,2001,409:685-690.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700