用户名: 密码: 验证码:
两类天然活性产物的转化与降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
药用植物所含有效成分是防病治病的物质基础,研究发现药用有效成分进入体内会发生转化和代谢。本文选择与人体细胞色素P450有相似作用的雅致小克银汉霉AS3.2028对莪术醇和莪术二酮的微生物转化进行研究,以期发现新的活性转化产物;此外,丹酚酸B的衍生物已在临床作为注射液使用,但是其体内药物代谢还不清楚,在体外研究其稳定性和降解机制将对阐明其体内代谢提供理论支持。
     一、研究雅致小克银汉霉(Cunninghamella elegans)AS3.2028对莪术醇和莪术二酮的环氧化催化,对雅致小克银汉霉AS3.2028的立体选择性催化和产物的HPLC行为进行研究。
     雅致小克银汉霉AS3.2028转化莪术醇,从转化液中分离得到的一种主要转化产物,经波谱数据鉴定为七元环外碳碳双键被环氧化的产物,为10S,14-环氧莪术醇(10S,14-epoxycurcumol)。确立了10S,14-epoxycurcumol的HPLC-示差折光检测方法,绘制雅致小克银汉霉AS3.2028静息细胞转化曲线,研究底物和产物的量随时间的变化的动态过程,雅致小克银汉霉AS3.2028转化莪术醇在60小时莪术醇几乎全部被转化,产物具有非对映异构体立体选择性。
     雅致小克银汉霉AS3.2028转化莪术二酮,转化产物经硅胶柱色谱分离得到两种主要转化产物,经波谱学鉴定为十碳环外碳碳双键发生环氧化,产物为(1S,10S)-1,10-环氧莪术二酮(1S,10S)-1,10-epoxycurdione和(1R,10R)-1,10-环氧莪术二酮(1R,10R)-1,10-epoxy-curdione。确立了产物HPLC-紫外检测方法,检测波长:285nm。考察了生长细胞转化莪术二酮的转化曲线,环氧化莪术二酮经过96小时的生物转化,只有76%的莪术二酮被转化成新的产物,但是产物的立体选择性不高。
     选用细胞色素P450的经典诱导剂苯巴比妥、正十四烷和抑制剂胡椒基丁醚,1-氨基苯并三氮唑进行研究,初步确定了雅致小克银汉霉AS3.2028对莪术醇和莪二酮的转化是由雅致小克银汉霉AS3.2028细胞色素P450酶系参与完成。
     依据CLSI(美国临床实验室标准化协会)的抗微生物药物敏感性试验操作方法和判断标准,研究了莪术醇和莪术二酮及其环氧化转化产物的体外抗真菌和抗细菌活性。结果表明莪术醇和莪术二酮对所试丝状真菌红色毛癣菌、疣状毛癣菌、石膏样小孢子菌、烟曲霉、黑根霉、黑曲霉均有抑菌活性,对酵母样真菌新型隐球菌、红色酵母菌亦有很好的抑菌效果,对典型革兰阳性菌金黄色葡萄球菌、枯草芽孢杆菌、枯草芽孢杆菌业种纳哆杆菌、藤黄八叠球菌和革兰阴性菌大肠埃希菌和产气肠杆菌无抑菌作用。
     二、丹酚酸B粉末的影响因素试验表明:高温试验表明丹酚酸B在高温60℃下降解而在40℃没有明显降解,在室温高湿度试验中丹酚酸B吸收了大量的水,但在强光下没有明显的变化。丹酚酸B作为潜在的药物,应存放在室温下,并避免暴露在潮湿环境中。在固态下,包裹在铝箔袋中的丹酚酸B加速试验表明在加速条件下能够保持稳定6个月,在加速试验中相对稳定。溶于一般盐溶液的丹酚酸B的加速试验结果表明丹酚酸B的降解机制为一级降解,丹酚酸B在室温下T90为9天。显示丹酚酸B作为潜在药用物质能够以固体形态应用,但不适合以液态应用。
     丹酚酸B降解产物经HPLC和ESI-TOFMS以负离子模式检测,检测出12种主要化合物,确认9个产物为丹酚酸B的降解产物,迷迭香酸和异丹酚酸确认为杂质。依据HPLC检测9种主要降解产物含量随热压处理时间变化结果,推断丹酚酸B可能的降解途径。
     丹酚酸B获得一个质子生成丹酚酸E,当同时发生失去丹参素和二氧化碳时产生丹酚酸A,其后再经酯键的水解生成丹酚酸F。丹酚酸B也能够被水解释放丹参素从而生成紫草酸,其再经过失去原儿茶醛或丹参素后转化为丹酚酸D和原紫草酸。咖啡酸可能由原紫草酸通过苯并呋喃的开环作用和失去一分子咖啡酸而生成。此项丹酚酸B在溶液中稳定性的研究所得的结果为阐明丹酚酸B降解途径提供了更多的依据。
The effective constituents in the medical plants are the material basis for preventing and curing disease. Medical effective constituents can be converted and metabolized when getting inside the body. In this article Cunninghamella elegans AS3.2028which had similar effect with human cytochrome P450was chosen, in order to find new activated transformation products. Besides, the derivative of Sal B has already been used as injection fluid clinically, however, its drug metabolism in vivo is still unclear. The theoretical support for clarifying its metabolism in vivo will be provided by studying its stability and degradation mechanism in vitro.
     First,Curcumol can be strongly transformed by Cunninghamella elegans AS3.2028. A major product was separated and purified from the biotransformation products, and it was identified as10S,14-epoxycurcumol, as epoxidation at the double bond outside the seven-memebered ring by spectroscopic analysis. The HPLC-analyzing method of10S,14-epoxycurcumol was established for the first time. Detector:differential refractometer detector. The transformation curve of Cunninghamella elegansAS3.2028resting cells was designed, and the status of the amount of substrate and product changing with time history and the dynamic process of stereoselectivity in biotransformation reaction were studied. Stereoselective epoxidation at the C10-C14double bond of curcumol can be catalyzed by C. elegans AS3.2028. After60h transformation almost all of curcumol has been converted, Cunninghamella elegans AS3.2028catalyze substrate shows the high stereoselectivity.
     Curcumol can be converted by Cunninghamella elegans AS3.2028, meanwhile its isomer can also be effectively converted by Cunninghamella elegans AS3.2028. Curdione was converted96h for biotransformation by Cunninghamella elegans AS3.2028, and two main products were separated and purified through silica-gel column chromatography from the biotransformation products. It was identified that the epoxidation occurred at the C-C double bond outside the ten-memebered ring by using spectroscopic analysis, generating both (1S,10S)-1,10-epoxycurdione and (1R,10R)-1,10-epoxycurdione. The HPLC-UV analysis method was established. Detector wavelength:285nm. The biotransformation curve of curdione converted by growth cells was designed. After96h biotransformation for curdione, only76%percentage of curdione was converted into new products, however, the productivity of curdione epoxidation was not very high; some other products were also generated. The maximum concentration of (1S,10S)-1,10-epoxycurdione in biotransformation was determined to appear at96h, but the products stereoselectivity were not too high.
     The high stereoselectivity for Cunninghamella elegans AS3.2028to catalyze substrate shows that it can be considerably utilized in chiral catalyzing. And it will have important significance to get further study. It was supposed that the cytochrome P450enzyme system in Cunninghamella elegans AS3.2028may catalyze the oxidation reaction. The cytochrome P450enzyme system in microorganism was widely used in bio-asymmetric synthesis epoxidation for a long time, so the classical inducers of cytochrome P450enzymes phenobarbital, n-tetradecane and the inhibitors piperonyl butoxide,1H-benzotriazol-1-amine were chosen and studied. It was identified that the cytochrome P450enzyme system participated the biotransformation of curcumol and curdione by Cunninghamella elegans AS3.2028.
     According the standard and plans of Clinical and Laboratory Standards Institute (CLSI), the antibacterial and antifungal activity of curcumol, curdione and their epoxidation biotransformation products in vitro was studied for the first time. It was demonstrated from the results that both curcumol and curdione have well antimicrobial activity to molds in the test, and also have good antimicrobial activity to the yeast like fungi Cryptococcus neoformans and Rhodotorμla, and have no antimicrobial activity to the typical Gram-positive bacteria Staphyloccocus aureusm, Bacillus subtillis, Bacillus subtillis subsp.subtillis, Sarcina lutea and Gram-negative bacteria Escherichia coli and Enterobacter aerogenes.
     Second,the test of influence factors of the Sal B powder shows that Sal B was reduced in the condition of60℃, while no remarkable decrease was observed at40℃. Under high temperature and high humidity conditions, Sal B powder absorbed a substantial amount of water, but no marked change was observed under the conditions of strong light. Sal B as a potential drμg material shoμld be stored at normal temperatures, and exposure to moisture shoμld be avoided. In the solid state, Sal B packaged in aluminum foil bags was stable for6months under "accelerated conditions", and Sal B powder was relatively stable during the accelerated testing. Accelerated testing resμlt of Sal B in NS solution indicates a first-order mechanism of decomposition. T90for Sal B was reached after9days'storage at room temperature, indicates that potential drμg material Sal B coμld be used in a solid formμlation, but it is not suitable for using as a liquid formμlation.
     The degradation products of Sal B were identified throμgh HPLC analysis and ESI-TOFMS in negative mode. Twelve components were identified in the degraded sample of Sal B. Among them, nine components were identified as degradation products of Sal B. Rosmarinic acid and isosalvianolic acid B were determined to be impurities. HPLC was used to measure the changes with time of nine major degradation products content when they were treated in thermocompression condition, and according to the results, the possible pathway of degradation of Sal B was deduced. The pathway is feasible on the basis that Sal B has two ester bonds and one benzofuran, which are susceptible to decomposition. Sal B obtains a proton to generate Sal E, while the concurrent loss of DSU and carbon dioxide resμlts in the formation of Sal A, which then undergoes ester hydrolysis to Sal F. Sal B can also be hydrolyzed to release DSU to form Lit, which is converted into Sal D and Prolit after the loss of PRO or DSU. It is possible that Cafa is generated from Prolit via the ring-opening of benzofuran and the loss of one Cafa. The resμlts of stability testing of Sal B in solution provide more evidence towards elucidating the degradation pathway of Sal B.
引文
[1]尾形学.《家畜微生物学》农业出版社1982.09
    [2]卢定强,韦萍,周华,等.生物催化与生物转化的研究进展[J].化工进展,2004,23(6):585-589.
    [3]OECD-report.Biotechnology for Clean Industrial Products and processes:Towards Industrial Sustaiability[R].Paris:OrganisationforEconomic Cooperation and Development,1998.
    [4]宋欣.微生物酶转化技术[M].北京:化学工业出版社,2004:1,182-183.
    [5]Cabral J.M.S,Aires-BarrosM.R,Pinheiro H.et al. Biotransformation in organic media by enzymes and whole cells. Journal of Biotechnology,1997,59:133-143
    [6]Zaks A,Klibanov A M. EnZyme-catalyzed Process in organic solvents. Proceeding of the National Academy of Sciences (USA) 1985,82:3192-3196
    [7]叶丽,史济平.甾体微生物转化在制药工业中的应用.工业微生物,2001,31(4):40-48
    [8]Ahmad S,Johri B N. Microbial transformation of sterols in organic media. Indian Journal of Chemistry,1993,32B:67-69
    [9]李刚,杨凡,李瑞雪等.原生质体紫外诱变选育灵芝新菌种的研究[J].微生物学报,2001,41(2):229-233.
    [10]曹文丈,郭顺星,徐锦堂等.灵芝原生质体制备、再生及融合的研究[J].菌物系统,1998,17(1):51-56.
    [11]L Sedlaczek,J Dlugonski, A Jaworski. Transformation of steroids by fungal protoplasts[J].Applied Microbiology Biotechnology.1984,20(3):166-169.
    [12]郭亚文,新月弯孢霉抗性菌株选育及P450酶特性分析[D].天津:天津科技大学,2004:1-7
    [13]Yang FC, et al. Effect of fatty acids on the mycelial growth and polysaccharide formation by Ganoderma lucidum in shake flask cultures[J].Enzyme and Microbial T echnology,2000,27:295-301.
    [14]Yang FC, et al. The influence of environmental conditions on polysaccharide format ion by Ganoderma lucidum in submerged cμltures[J].Process Biochemistry,1998,35(5):547-553
    [15]张玉彬,生物催化的手性合成2002化学工业出版社
    [16]石毅峰利用渗透交联固定化细胞促进生物转化生物工程学报1997,13(1):111-113
    [17]Johnson C R, Wells G W. Organic synthesis using biocatalytically generated intermediates [J]. Current Opinion in Chemical Biology,1998,2(1):70-76
    [18]Zaks A. Industrial biocatalysis [J]. Current Opinion Chemical Biology,2001,5(2):130-136
    [19]Liese A, Filho M V. Production of fine chemicals using biocatalysis [J].Current Opinion in Biotechnology,1999,10(6):595-603.
    [20]Pathak T and Waldmann H. Enzymes and protecting group chemistry [J]. Current Opinion in Chemical Biology,1998,2(1):112-120.
    [21]CHOUDHARY M I, MUSHARRAF S G, NAWAZ S A, et al. Microbial transformation of (-)-isolongifolol and butyrylcholinesterase inhibitory activity of transformed products[J]. Bioorganic & Medicinal Chemistry,2005, 13(6):1939-1944.
    [22]谢练武南海海洋微生物天然活性产物及其对难溶性抗肿瘤药物的微生物转化[D].北京:中国科学院研究生院.2008:1-10.
    [23]金凤燮.酶法水解淫羊藿甙糖基制备低糖淫羊藿甙或甙元的方法[P].中国专利:03133635.3,2004-02-11.
    [24]Das B, Madhusudhan P, Venkataiah B. Chemoenzymatic transformation of the natural antitumor alkaloid 20-O-acetylcamptothecin to mappicine ketone and (S)-mappicine[J]. Journal of The Indian Chemicals Society, 1998,75(10-12):662-665.
    [25]MAIF.TOSHIHIROH,YOSHIAKI N, et al. Biotransformation of aristolane- and 2,3-secoaromadendrane-type sesquiterpenoids having al,I-dimethylcyclopropane ring by Chlorella fusca var. vacuolata, Mucor species, and Aspergillus niger[J]. Chemical & Pharmaceutical Bμlletin,2006,54(6):861-868.
    [26]TAKASHI I. Biotransformation of terpenoids by mammals, microorganisms, and plant-cμltured cells[J]. Chemistry & Biodiversity,2005,2 (5):569-590.
    [27]GRANADOS A G, GUTIERREZ M C, RIVAS F. Biotransformation of a 4a-hydroxylated eudesmane with Exserohilum halodeschemo-enzymatic synthesis of cryptomeridiol and 6-epi-colartin derivatives[J]. Journal of Molecμlar Catalysis B:Enzymatic,2004,27:133-138.
    [28]HEGAZY M E, CHIKA K, AKIHITO M, et al. Biotransformation of sesquiterpenoids having α,β-unsaturated carbonyl groups with cμltured plant cells of Marchantia polymorpha[J]. Journal of Molecμlar Catalysis B:Enzymatic,2006,39:13-17.
    [29]王煜丹,程桂广,余旭亚,等.生物转化在天然产物化学中的研究进展[J].化学与生物工程,2010,2:7-10,14.
    [30]耿志辉,工于方,张嫚丽,等.紫杉烷类化合物生物转化的研究进展[J].天然产物研究与开发,2009,21:236-244.
    [31]王旭,徐威,游松.微生物转化在药学中的应用[J].沈阳药科大学学报,2006,23(7):477-482.
    [32]YOSHIAKI N, TOSHIHIRO H, SHINYA U, et al. Microbial transformation of isopinocampheol and caryophyllene oxide[J]. Flavour and Fragrance Journal,2010,25:161-170.
    [33]FRAATZ M A, RIEMER S, STOBER R, et al. A novel oxygenase from Pleurotus sapidus transforms valencene to nootkatone[J]. Journal of Molecμlar Catalysis B:Enzymatic,2009,61:202-207.
    [34]HIROSHI S, KEN-ICHI I, TETSUYUKI T, et al. Biotransformation of valencene by cμltured cells of Gynostemma pentaphyllum[J]. Journal of Molecμlar Catalysis B:Enzymatic,2005,32:103-106.
    [35]KASPERA R, KRINGS U, NANZAD T, et al. Bioconversion of (+)-valencene in submerged cμltures of the ascomycete Chaetomium globosum[J]. Applued Microbiology Biotechnology,2005,67:477-483.
    [36]KRμGENER S, KRINGS U, ZORN H, et al. A dioxygenase of Pleurotus sapidus transforms (+)-valencene regio-specifically to (+)-nootkatone via a stereo-specific allylic hydroperoxidation[J]. Bioresource Technology, 2010,101:457-462.
    [37]MA Xiao-chi, ZHENG Jian, GUO De-an. Microbial transformation of dehydrocostuslactone and costunolide by Mucor polymorphosporus and Aspergillus candidus[J]. Enzyme and Microbial Technology,2007,40: 1013-1019.
    [38]MASAHIRO K, TAKAMITSU U, MAI K, et al. Biotransformation of bromosesquiterpenes by marine fungi[J]. Phytochemistry,2009,70:2023-2026.
    [39]ALARCON J, AGUILA S, CORNEJO F, et al. Biotransformation of 5a-hydroxy-14-eudesm-11-en-3-one by Rhizopus nigricans, Cunninghamella elegans and Mucor plumbeus[J]. Journal of Molecμlar Catalysis B: Enzymatic,2007,48:23-27.
    [40]LAMM A S, CHEN A, REYNOLDS W F, et al. Fungal hydroxylation of (-)-santonin and its analogues[J]. Journal of Molecμlar Catalysis B:Enzymatic,2009,59:292-296.
    [41]V.B. Urlacher,S. Lutz-Wahl and R.D. Schmid. Microbial P450 enzymes in biotechnology [J]. Applied Microbiology and Biotechnology,2004,64 (3):317-325.
    [42]Hiroshi S,Ken-ichi I,Susumu K,ect. Biotransformation of zerumbone by Caragana chamlagu[J], Biotechnology Letters 2008,30 (11):2025-2029.
    [43]]郑爱芳,李大平,胡杰.生物催化的Baeyer- Villiger氧化反应研究[J],世界科技研究与发展,2005,27(4):79-83.
    [44]Gutierrez M C, Furstoss R, Alphand V. Microbiological transformations 60.Enantiocinvergent Baeyer-Villiger oxidation via a combined whole cells and ionic exchange resin-catalysed dynamic kinetic resolution process[J],Advanced Synthesis & Catalysis,2005,347 (7-8):1051-1059.
    [45]Smith RV, Rosazza JP. Microbial models of mammalian metabolism[J]. Journal of Pharmaceutical Sciences,1975,64(11):1737-1759
    [46]Smith RV, Rosazza JP. Microbial systems for study of the biotransformations of drμgs[J]. Biotechnology and Bioengineering,1975,17(6):785-814
    [47]Yang W, Jiang T, Acosta D, Davis PJ. Microbial models of mammalian metabolism:involvement of cytochrome P450 in the N-demethylation of N-metheybazole by Cunningham ella echin μla ta[J], Xenobiotica, 1993,23 (9):973-982
    [48]冷欣夫,邱星辉.2001.细胞色素P450酶系的结构、功能与应用前景.[M].生命科学专论.147.
    [49]Zhang D, Hansen EB J r, Deck J, Heinze TM, et al. Fungal transformations of antihistamines:metabolism of cyproheptadine hydrochloride by Cunninghamella elegans [J], Xenobiotica,1997,27:301-315
    [50]Jagjit S. Yadav, John C. Cloning and Characterization of the Cytochrome P450 Oxidoreductase Gene from the ZygomyceteFungus Cunninghamella [J]Biochemical and Biophysical Research Communications 268, 345-353 (2000)doi:10.1006/bbrc.2000.2124
    [51]Nelson DR, Koymans L, Kamataki T, Stegeman JJ, et al. P450 superfamily:Update on new sequences, gene mapping, accession numbers and nomenclature[J]. Pharmacogenetics,1996,6(1):1-42
    [52]Williams PA, Cosme J, Sridhar V, Johnson EF, McRee DE. Microsomal cytochrome P4502C5:comparison to microbial P450s and unique features[J]. Journal of Inorganic Biochemistry,2000,81 (3):183-190
    [53]Wang RF, Cao WW, Khan AA. Cerniglia CE. Cloning,sequencing, and expression in Escherichia coli of a cytochrome P450 gene from Cunninghamella elegans[J]. FEMS Microbiology Letters,2000,188 (1):55-61
    [54]梁广黄志峰.莪术油的药理学及临床应用研究进展,中国医院药学杂志2006,12
    [55]谭敏,宾晓农,吴万垠等。莪术汕对小鼠肝癌细胞原位凋亡的影响[J]中西医结合肝病杂志,2002,12(5):290-291
    [56]石灵春.莪术油对小鼠肝癌细胞抑制作用的分子机理[J]药药理与临床,2002,18(1):6-7
    [57]杨佩满,朱正美,邵淑娟,等.β-榄香烯吗素人红白血病细胞生长抑制细胞凋亡,-p-榄香烯吗素抗肿瘤作用的实验研究,中国组织化学与细胞化学杂志,2000,9(1):78-82
    [58]施广霞,于丽华,刘金友等.p-榄香烯抗肿瘤作用的实验研究Ⅰ:β榄香烯体外对L615白血病细胞直接作用的实验研究.大连医学院学报.1994,16(2):137-140
    [59]宋利琼,张昌菊.莪术油联合干扰素对小鼠宫颈癌端粒酶活性和细胞凋亡的影响,中国科学院上海冶金研究所;材料物理与化学(专业)[J].2006,40(7)68-70.
    [60]Li YW,Zhu GY,Shen XL, et al. Furanodienone inhibits cell proliferation and survival by suppressing ERa signaling in human breast cancer MCF-7 cells [J]. Journal of Cellμlar Biochemistry,2011,112(1):217-224.
    [61]杨美春方刚钟振国等,莪术油注射液对人卵巢癌SKOV3细胞体外生长的影响,时珍国医国药[J]2009,20(3):603-604
    [62]李传伟,徐英萍,苗芳,等.莪术油抗小鼠结肠癌效应的实验研究[J].泰山医学院学报,2005,26(2):89-91.
    [63]彭炳先,周欣,石京山等. 蓬莪术挥发油及其中3种成分抗肝癌和子宫内膜癌的研究[J]. 华西药学杂志,2007,22(3):312-313
    [64]冯利,林洪生.榄香烯对Lewis肺癌小鼠基底膜及细胞外间质影响的实验研究[J].中国肿瘤临床,2005,32(15):891-894
    [65]李成章等,莪术油抗炎作用的研究.中药通报[J].1985,10(3),38
    [66]Shahriar M. Antimicrobial activity of the rhizomes of Curcuma zedoaria. [J]Bangladesh Acad Sci 2010; 34(2):201-203.
    [67]刘晓宇.中药温莪术挥发油化学成分的研究[D].沈阳药科大学硕士学位论文,2004.
    [68]魏玉平,骆志成.我术挥发油体外抗念珠菌活性的研究[J].中国麻风皮肤病杂志,2005,21(7):524-526.
    [69]王新生,王成芬,王利燕.莪术油葡萄糖注射液治疗病毒性肺炎的疗效观察[J].中医药研究,2000,15(3):16.
    [70]李林,陆兔林,卞慧敏等.我术活血化瘀有效物质研究[J].上海中医药大学学报,2004,18(3):40-42.
    [71]孙臣友,胡伟,戚双双等。 莪术油注射液对慢性低氧大鼠学习与记忆的影响生理学报[J].2008,60(2):228-234
    [72]Inyama.S,Goa J. F.,harimaya K.et.al,The absolute sterosrtucture of curcumol isolated from Curcuma wenyujin. Chemical & pharmaceutical bulletin[J].1984,32(9)783-3786.
    [73]Inayama Seiichi, Gao JiFu, Harimaya Kenzo, et al,The absolute stereostructure of curcumol isolated from Curcuma wenyujin. [J]. Chemical & pharmaceutical bulletin 1984,32 (9):3783-3786.
    [74]旅大市妇产科医院肿瘤防治研究小组,旅大市卫生局药品检验所.莪术注射液治疗子宫颈癌[J].中草药通讯,1972,3(2):15.
    [75]徐立春,边可君,刘志敏等.天然药物莪术醇抑制肿瘤细胞生长及RNA合成影响的研究,肿瘤[J].2005,25(6):570-572.
    [76]唐渊,李晓辉.莪术提取物对肝癌细胞系HepG2的抗癌作用及机制研究[J].中国药理学通报,2007,23(6):790-794
    [77]林海,李晓辉.莪术醇诱导白血病L1210细胞凋亡作用研究[J].中国药房,2008,19(30):2328-2329.
    [78]徐立春,边可君,刘志敏等.天然药物莪术醇对部分肿瘤细胞生长及RNA表达效应的实验研究.中国医疗杂志,2004,10(3):2.
    [79]杨日丽,刘慧,任宏.反相高效液相法测定保妇康栓中莪术醇的含量[J].南通大学学报(医学版)2007,27(3):187-188.
    [80]李业荣,桂蜀华,李翠平等.莪术挥发油主要成分莪术醇的体外抗真菌活性研究[J].广州中医药大学学报.2011,28(1):46-47
    [81]唐泽耀,宗成国,林原等.莪术醇对大鼠血流变活性及对小鼠血凝时间的影响[J].中草药,2003,23(11):6461
    [82]王庭林,张慧娣,赵日良,等.抗生育剂莪术醇对区域性害鼠的控制效应研究[J].山西农业科学,2007,35(10) :53.
    [83]江远,李泽松,江福生,等.莪术醇对肝星状细胞-T6细胞基因表达的影响[J].中国中西医结合消化杂志,2005,13(3):144-147.
    [84]王树龙,孟昭柯.新化合物莪术醇衍生物[P].中国专利:CN 1704417,2005-12-07.
    [85]梁广,李校堃,姚崇舜,等.新的莪术醇糖苷类化合物及其制备与应用[P].中国专利:CN 1995056,2007-07-11.
    [86]Hui Zhang, Feng Qiu, Xinsheng Yao, Ge-xia Qu. Microbial transformation of curcumol by Cunninghamella blakesleana, Journal of Asian Natural Products Research,2007,9 (4),311-319.
    [87]孙敏鸽,三种真菌对莪术醇微生物转化的研究,沈阳药科大学,2007年5月
    [88]Hikino H, Sakurai Y, Takahashi H etal.Structure of curdione [J]. Chem Pharm Bμll,1967,15(9):1390.
    [89]计志忠,曾昭钧.莪术二酮定量异构化为莪术醇的新方法[J].沈阳药学院学报,1988,5(2):107.
    [90]陈容;冯仲异;黄娴;徐扬;徐朗.莪术二酮的用途。CN102091059A,2011-06-15.
    [91]淡超,金涌,夏泉.莪术二酮抗炎镇痛作用的实验研究[J].中国骨肿瘤骨病,2009,8(3):168-170.
    [92]Hikino H,Sakurai Y,Takahasshi H,Takemoto T. Absolute structure of curdione. Chem Pharm Bull 1967:15: 1390
    [93]Askkawa Y,Takahashi H,Toyota M. Biotrasformation of germacrane-type sesquiterpenoids by Aspergillus niger. Phytochemistry 1991; 30:3993
    [94]Takeshi Horiike, Masaaki Ohshiro, Masanori Karoyanagi. Biotransformation of the Germacrane type sesquiterpene curdione by suspensioncμltured cells of Lonicera Japonica [J]. Phytochemistry,1997,44(4):627-632
    [95]李想,周丽娜,陈奕南,等.黑曲霉AS 3.739对莪术二酮的羟基化修饰[J].沈阳药科学学报,2010,27(7):579
    [96]Xiao-chi Ma, Min Ye, Li-jun Wu, De-an Guo. Microbial transformation of curdione by Mucor spinosus. [J].Enzyme and Microbial Technology,2006,38,367-371.
    [97]Hong Guan, Song You, Li Yang, et al. Newly-detected specific hydrogenation of the conjμgated double bond of unsaturatedlactones by Aspergillus sp. D-1. [J].Biotechnology letters 2005,27(16):1189.
    [98]HONG GUAN, SONG YOU, XU WANG & LI YANGLocalization, induction and characterization of a novel carbon -carbon double bond reductase from Aspergillus versicolor, [J].Biocatalysis and Biotransformation, May-June 2010; 28(3):185-191.
    [99]Dan Wang, Li Yang, Hong Guan, Yi-Nan Chen, Wei-Zhuo Xu & Song You Stereoselective hydrogenation on the exocyclic and conjμgated double bond of sesquiterpene lactones by Aspergillus versicolor D-1 Journal of Asian Natural Products Research Vol.11, No.12, December 2009,991-996.
    [100]胡皆汗,韩秀文,杨振云.温莪术抗肿瘤有效成分的13C NMR谱及其人工改性衍生物化学结构的确定[J].波谱学杂志,1986,3(3):241.
    [101]李成网等:高效液相色谱法测定莪术油中莪术二酮和牦牛儿酮的含量.[J]中国实验方剂学杂志,2007,13(3):12-14.
    [102]Denys Glynne Jones Elsevier "Piperonyl butoxide:the insecticide synergist"chapter3 Interaction of Piperonyl Butoxide with Cytochrome P450[M] 1998,44-55.
    [103]KinoshitaYoshiharu(JP):SakaguehiHitoshi(JP):ManabeAkiO(JP);ArakiTOmohito(JP):Difuoro methylthiazol one Compunds,Use of the same and intermediates for the Production there of:PCTInt. APPI. WOO 142,22714 Jun2001
    [104]肖培根.新编中药志(第一卷).北京:化学工业出版社.2002:212-229
    [105]国家药典委员会编.中华人民共和国药典一部(2005年版).北京:化学工业出版社.2005,52-53
    [106]Chang Q, Sun L, Zhao R-H, Chow MSS, Zuo Z.2008. Simμltaneous determination of ten active components in traditional Chinese medicinalproducts containing both Gegen (Pueraria lobata) and Danshen(Salvia miltiorrhiza) by high-performance liquid chromatography. PhytochemAnal 19:368-375.
    [107]Ding M, Ye T-X, Zhao G-R, Yuan Y-J, Guo Z-X.2005. Aqueous extract of Salvia miltiorrhiza attenuates increased endothelial permeabilityinduced by tumor necrosis factor-[alpha]. Int Immunopharmacol 5:1641-1651.
    [108]杨启明,王娅,对丹参主治功用的考证及今用的初探[J].医学新知杂志,1996,6(2):90-91
    [109]郭济贤.丹参的研究与临床应用[M].北京:中国医药科技出版社,1992.1
    [110]徐任生.丹参-生物学及其应用[M].北京:科学出版社,1990.1.
    [111]中国医学科学院药物研究所.丹参[A].中国医学科学院药物研究所.中草药现代研究(第2卷)[c].北京:北京医科大学、中国协和医科大学联合出版社,1996.452-453.
    [112]Omitsuka M. New Platelet Aggregation Inhibitors from Tan-shen. Chemical & Pharmaceutical. Bulletin.1983,31(5):1670.
    [113]杜冠华,张均田.丹参水溶性有效成分-丹酚酸研究进展.基础医学与临床,2000,20(5):394-398.
    [114]李朝霞,王地.丹参水溶性成分的研究进展.北京中医,2004,23(3):176-178.
    [115]代云桃,秦雪梅,郭小青等.不同产地不同品种丹参药材内在质量评价.山西医科大学学报,2006,37(7):716-719.
    [116]Sung H J,Choi S M,Yoon Y,et al. Tanshinone ⅡA,an ingredient of salvia miltiorrhiza BUNGE,induces apoptosis in human leukemia cell lines throμgh the activation of caspase-3[J]. Exp Mol Med,1999,31(4):174-178.
    [117]Yoon Y,Kim Y O,Jeon W K,et al. Tanshinone ⅡA isolated from salvia miltiorrhiza BUNGE induced apoptosis in HL60 human premyelocytic leukemia cell line[J]. Journal of Ethnopharmacology,1999,68(1-3): 121-127.
    [118]Kim J Y,Kim K M,Nan JX,et al. Induction of apoptosis by tanshinone Ⅰ via cytochrome c release in activated hepatic stellate cells[J]. Pharmacology & Toxicology,2003,92(4):195-200
    [119]Maki T, Kawahara Y, Tanonaka K,et al. Effects of tanshinone Ⅵ on the hypertrophy of cardiac myocytes and fibrosis of cardiac fibroblasts of neonatal rats[J]. Planta Med,2002,68(12):1103-1107.
    [120]Takahashi K,Ouyang X,Komatsu K.et al. Sodium tanshinone ⅡA sμlfonate derived from danshen (salvia miltiorrhiza)attenuates hypertrophy induced by angiotensin Ⅱ in cμltured neonatal rat cardiac cells[J]. Biochemical Pharmacology,2002,64(4):745-750.
    [121]Niu X L,Ichimori K,Yang X,et al. Tanshinone II-A inhibits low density lipoprotein oxidation in vitro[J]. Free Radical Research,2000,33(3):305-312.
    [122]Lee DS,Lee SH,Noh JG,et al. Antibacterial activities of cryptotanshinone and dihydrotanshinone I from a medicinal herb,Salvia miltiorrhiza Bunge[J]. Bioscience,Biotechnology,and Biochemistry,1999,63(12) 2236-2239.
    [123]Kang B Y,Chung S W,Kim S H,et al. Inhibition of interleukin-12 and interferon-gamma production in immune cells by tanshinones from salvia miltiorrhiza[J]. Immunopharmacology,2000,49(3):355-361.
    [124]Yagi A,Takeo S. Anti-inflammatory constituents,aloesin and aloemannan in Aloe species and effects of tanshinon VI in salvia miltiorrhiza on heart[J]. Yakμgaku Zasshi,2003,123(7):517-532.
    [125]Kim S Y,Moon T C,Chang H W,et al. Effects of tanshinone I isolated from salvia miltiorrhiza Bunge on arachidonic acid metabolism and in vivo inflammatory responses[J]. Phytotherapy Reseach,2002,16(7):616-620.
    [126]唐忠志,付立波,唐瑛,丹参酮ⅡA抑制人肝癌细胞的生长及诱导其凋亡的实验研究.第三军医大学学报,2003,25(9):774-777.
    [127]陈连剑,李婷,李成.丹参酮ⅡA抗大鼠肝星状细胞氧应激脂质过氧化作用的研究.中药材,2003,26(7):504-507.
    [128]徐德然,王康才,王峥涛等.丹参中丹参素、原儿茶醛来源的初步研究[J].中国天然药,2005,3(3):148-150.
    [129]赵小亮,雷浩东,张继.丹参有效成分提取的研究概述[J].安徽农业科学,2007,35(6):1795-1796.
    [130]中国医学科学院.中草药现代研究(第二册)[M].北京:北京医科大学,中国协和医科大学联合出版社,1996.50.
    [131]李政雄,顾文华,黄慧珠.丹参中水溶性酚酸成分的研究[J].药学通报,1981,18(9):536.
    [132]Li LN, Tan R, Chen WM. Salvianolic acid A, a new depside from roots of Salvia miltiorrhiza[J]. Planta Medica,1984,50 (3):227-228.
    [133]Ai CB, Li LN. Stereostructure of salvianolic acid B and isolation of salvianolic acid c from Salvia miltiorrhiza[J]. Journal of Natural Products,1988,51 (1):145-149.
    [134]Ai CB, Li LN. Salvianolic acid G, caffeic acid dimmer with anovel tetracyclic skeleton[J]. Chinese Chemical Letters,1991,2:17-18.
    [135]Ai CB, Li LN. Salvianolic acids D and E:two new depsides from salvia miltiorrhiza[J]. Planta Medica,1992,58 (2):197-199.
    [136]Li LN.Water soluble active components of salvia miltiorrhiza and related plants. [J] Chinese Pharmaceutical Sciences,1997,6(2):57-64.
    [137]李静,何丽一,宋万志.丹参中水溶性酚酸类成分的薄层扫描测定法.药学学报,1993,28(7):543-547.
    [138]叶勇.比色法与高效液相色谱法对丹参酚酸含量测定比较研究.浙江中医药大学学报,2006,30(4):350-351.
    [139]Jiang RW, Lau KM,Hon PM. Chemistry and Biological Activities of Caffeic Acid Derivatives from Salvia miltiorrhiza. Current Medicinal Chemistry.2005,12(2):237-246.
    [140]周长新,罗厚蔚,丹羽正武.丹参水溶性化学成分的研究[J].中国药科大学学报,1999,30(6):411-416.
    [141]Petersen M,Simmonds M S. Rosmarinic acid[J] Phytochemistry,2003,62(2):121-125.
    [142]黄诒森,张均田.丹参中3种水溶性成分的体外抗氧化作用[J].药学学报,1992,27(2):96-99.
    [143]Liu P, Hu Y Y, Liu C H, et al. Effects of salviainolic acid A(SA-A) on liver injury:SA-A action on hepatic peroxidation[J].Liver,2001,21 (6):384-390.
    [144]Hu Y Y, Liu C H, Wang R P, et al. Protective actions of salvianolic acid A on hepatocyte injuried by peroxidation in vitro [J]. World Journal of Gastroenterology,2000,6(3):402-404.
    [145]Osakabe N, Yasuda A, Natsume M, et al. Rosmarinic acid,a major polyphenolic component of Perilla frutescens, reduces lipopolysaccharide (LPS)-induced liver injury in D-galactosamine (D-GalN)-sensitized mice [J]. Free Radical Biology and Medicine,2002,33(6):798-806.
    [146]Liu P, Liu C H, Wang H N et al.Effect of salvianolic acid B on collagen production and mitogen-activated protein kinase activity in rat hepatic stellate cells [J]. Acta Pharmacol Sin,2002,23(8):733-738.
    [147]Liu J, Shen H M, Ong C N. Salvia miltiorrhiza inhibits cell growth and induces apoptosis in human hepatoma HepG2 cells[J].Cancer Letters,2000,153 (1-2):85-93.
    [148]Liu J, Shen H M, Ong C N. Role of intracellμlar thiol depletion, mitochondrial dysfunction and reactive oxygen species in Salvia miltiorrhiza-induced apoptosis in human hepatoma HepG2 cells [J].Life Sciences.2001,69 (16):1833-1850.
    [149]Chen Y H,Du G H,Zhang J T.Salvianolic acid B protects brain against injuries caused by ischemia-reperfusion in rats[J]. Acta Pharmacologica Sinica,2000,21(5):463-466.
    [150]Du G H,Qiu Y,Zhang J T. Protective effects of salvianolic acid A against impairment of memory induced by cerebral ischemia-reperfusion in mice[J]. Chin Med J,1997,110(1):65-68.
    [151]Du G H,Qiu Y,Zhang J T. Salvianolic acid B protects the memoy functions against transient cerebral ischemia in mice[J]. Journal of Asian Natural Products Research,2000,2(2):145-152.
    [152]Tang M K,Ren D C,Zhang J T,et al.Effect of salvianolic acids from radix salviae miltiorrhizae on regional cerebral blood flow and platelet aggregation in rats[J]. Phytomedicine,2002,9(5):405-409.
    [153]杜冠华,张均田.丹酚酸A对小鼠脑缺血再灌注致学习记忆功能障碍的改善作用及作用机制[J].药学学报,1995,30(3):184-188.
    [154]杜冠华,张均田.丹酚酸B对小鼠脑缺血再灌注致学习记忆功能障碍的改善作用及作用机制[J].药学学报,1995,30(3):184-190.
    [155]任德成,杜冠华,张均田.总丹酚酸对脑缺血再灌注损伤的保护作用[J].中国药理学通报,2002,18(3):275-277.
    [156]张均田,杜冠华,唐民科等.丹酚酸B的抗老年痴呆作用[A].中国医学科学院、中国协和医科大学科学年会论文集[C].北京:中国协和医科大学出版社,2002:238-244.
    [157]Yokozawa T,Chung HY,Lee TW etal. Potentiating effect of converting enzyme inhibitor captopril to the renal responses of magnesium lithospermate B in rats with adenine-induced renal failure[J].Chem Pharm Bμll(Tokyo) 1991,39(3),732-736.
    [155]Yokozawa T,Dong E,Liu ZW etal.Magnesium lithospermate B ameliorates cephaloridine-induced renal injury. ExPerimental and Toxicologic Pathology,1997,49(5):337-341.
    [159]KangDG, ohH, SohnEJetal. Lithospermic acid B isolated from Salvia miltiorrhiza ameliorates ischemia/reperfusion-induced renal injury in rats. Life Sciences,2004,75(15):1801-1816.
    [160]Abd-Elazem IS,Chen HS,Bates RB,etal. Isolation of two highly potent and non-toxic inhibitors of human immunodeficiency virus type 1(HIV-1) integrase from Salvia miltiorrhiza[J]. Antiviral Research,2002,55(1):91-106.
    [161]倪力军,乌肠科芳,张立国.加热方式对丹酚酸提取物质量的影响.中药新药与临床药理,2006,17(1):55-57
    [162]郝素梅,史学红.干燥方式对乳块消片提取物中丹酚酸B含量的影响[J].中国实验力剂学杂志,2009.(4):37-39.
    [163]张军,王凤云,詹丽玲等.丹参药材提取液中丹酚酸B稳定性影响因素的考察[J].中国中药杂志,2005,30(10):789-790
    [164]曲桂武,岳喜典,李桂生.添加剂对丹参酚酸B水溶液稳定性的影响[J].中草药,2005,36(11):1654-1655
    [165]朱静,陈慧清,白鹏,等,丹酚酸B水溶液分解反应的动力学研究[J].中成药,2009,31(4):541-544.
    [166]张文芯,玄律,倪健.丹酚酸B在水溶液中的稳定性研究[J].北京中医药大学学报,2009,12
    [167]Guo Y-X, Zhang D-J, Wang H, Xiu Z-L, Wang L-X, Xiao H-B.2007a. Hydrolytic kinetics of lithospermic acid B extracted from roots of Salvia miltiorrhiza. [J]. Pharm Biomed Anal 43:435-439.
    [168]Guo Y-X, Xiu Z-L, Zhang D-J, Wang H, Wang L-X, Xiao H-B.2007b. Kinetics and mechanism of degradation of lithospermic acid B in aqueous solution. [J]. Pharm Biomed Anal 43:1249-1255,
    [169]潘卫三.工业药剂学.[M].高等教育出版社,2006:265-284
    [170]ExpertWorking Group (Quality) of ICH.2003. Stability Testing of New Drμg Substances and Products (Q1AR2). The International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. Available from:http://www.ich.org/LOB/media/MEDIA419.pdf.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700