用户名: 密码: 验证码:
温室白粉虱在不同黄瓜品种上种群动态与防治措施模拟系统的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
计算机模拟技术作为一种研究复杂系统的重要手段,已经在有害生
    物综合治理研究中得到广泛应用。而构建种群动态计算机模拟模型是害
    虫最优管理中一项主要内容,同时也是研究温室生态系统健康监测与诊
    断研究工作有待解决的一个课题。温室白粉虱(Trialeurodes
    vaporariorum Westwood)是我国北方乃至全世界温室作物最重要的害
    虫之一,已经对瓜类、茄果类、豆类等多种蔬菜生产构成了严重威胁。
     本研究针对温室白粉虱最优管理中种群动态模拟问题,以温室主要
    作物黄瓜为例,研究温室白粉虱在不同黄瓜品种上的种群参数,并就几
    个北京市主栽黄瓜品种对白粉虱种群增长的影响作简单的评估,构建温
    室白粉虱在不同黄瓜品种上种群动态模拟模型。模拟结果表明在黄瓜生
    育期的前期和中期(2月28日-4月15日)温室白粉虱在四个黄瓜品种
    上的种群数量与实际调查相差不大,但在黄瓜的生育后期(4月17日
    以后)表现出了差异。本文尝试结合生命表研究技术,获得温室白粉虱
    在不同黄瓜品种上的种群参数,为建立温室白粉虱在不同黄瓜品种上的
    种群动态模拟数学模型提供参数,同时也为初步评估不同黄瓜品种对温
    室白粉虱的种群增长的影响提供了依据。
     在以上研究的基础上,最后利用计算机可视化语言形成了软件—温
    室白粉虱在不同黄瓜品种上种群动态与防治措施计算机模拟系统。这些
    工作可为制定温室白粉虱的最优控制方案提供参考,同时通过分析温室
    环境自动监控系统监测得到的环境数据与温室害虫种群动态二者之间
    的关系,可进一步为温室生态系统健康监测与诊断工作提供有利的工
    具。
The Study of the Computer Simulation Model of Whitefly
     Population Dynamic and its Prevention Measures on difference
     Cucumber Varieties
     The technique of computer simulation has been abroadty
     applied in 1PM research as an important measure to study a
     complex system. Especially, the construction of a pest population
     simulation model is a main part of optimum pest management,
     which is also an urgent problem to research healthy monitoring and
     diagnosing in the greenhouse ecosystem. Whitefly is one of the
     most important pests in the north of China even in all part of the
     world. This pest has been a severe threat to many kind of
     vegetables. Such as melon, aubergine and legume.
     This article aimed at optimum pest management in greenhouse,
     We researched the whitefly population parameter on four cucumber
     varieties, and simply assessed the influence of the cucumber
     varieties which are planted abroadly in Beijing, and constructed the
     whitefly population dynamic simulating model. The simulating
     res!lts showed that there was little difference between the
     simulating number and the practical investigating in the most part of
     the cucumber bearing period, but there was an evident diversity in
     the back period. We attempt to use life table technique to acquire
     the whitefly population parameter, so that this means can provide
     parameter for the simulating mathematical model, it also is easy to
     assess the influence of the four cucumber varieties, on caomi,
     sandongmici, lishi and tiancuilu.
     According to the results, we designed the software ?the
     simulation system of whitefly population dynamic and management
     measure. These work provided reference for finding an optimum
     management scheme, also supply an avail implement for analyzing
     the relation between environmental data and whitefly population
     dynamic, it can do good to healthy monitoring and diagnosing in
     greenhouse ecosystem health.
引文
1. Allen. J. C. 1976. A modified sine wave method for calculating degree days. Environ. Entomol. 5: 388-396.
    2. Arlo Biere, John Sjo. 1981. Management Information Systems for Local Government, American Journal of Agricultural Economics. 63: 967-974.
    3. Attonaty J.M. 1982. The Use of Computers for Farm Management and Fertilizer Advice, Reprint from: Optimizing Yield The Role of Fertilizers, Proc. 12th Conger. Int. Potash Institute Bern.
    4. Barr R. O, et al. 1973. Ecologically and economically compatible pest control. Mem. Ecol. Soc. Aust. 1: 241-264.
    5. Berry J. S. 1995. Computer models in integrated pest management: a case study of the grasshopper integrated pest management project. J. Agric. Entomol. 12 (4) : 229-240.
    6. Black J. L. et al. 1986. Simulation of Energy and Amino Acid Utilization in the Pig. Research and Development in Agriculture. 3(2) .
    7. Blokker K. J. 1986. A View of Information Technology as an Aid to Decision-Making by Farms. Research and Development in Agriculture. 3(2) .
    8. Curry G L, R. M. Feldman, P. J. H. Sharpe. 1978. Foundations of stochastic development. J. Theor. Pop. Biol. 13: 197-213.
    9. D avis. 1995. CLEX/RICE User's Guide, version 1. 1 University of California.
    10. De Wit C. T. et al. 1978. Simulation of Assimilation. Respiration and Transpiration of Crop. Wageningen.
    11. Diesslin H. G. The Computer-Extension's Delivery System of the Future. American Journal of Agricultural Economics. 63.
    12. Doluschitz R. et al 1988. Expert Systems: Applications to Agriculture and Farm Management. Computer and Electronics in Agriculture. 2(3) : 173-183.
    13. Donald H. 1996. Multimedia in the entomology classroom. American Entomologist. 42(2) : 92-98.
    14. Eisgruber L. M. 1973. Managerial Information and Decision systems in the U.S.A: Historical Development, current status and Major Issues Am. j. Agric. Econ. 55 (4) : 930-936.
    15. FAO. 1984. Geographic Database. Rome.
    16. Geoge E. L. et al. 1973. Managerial Information (Recording Date and Decision) Systems in Canada. American Journal of Agricultural Economics. 55(4) : 921-930.
    
    
    17. Goudriaan, J.1973. Dispersion in simulation models of population growth and salt movement in the soil. Neth. J. Agric. Sci. 21: 269-281.
    18. Harald H. 1986. The Information System for Agriculture in The Federal Republic of Germany, Quarterly Bulletin IAALD, XXXI(3) .
    19. Harsh S B. 1996. Farm Information System: Current Trends and Future Perspectives. In: Proceedings of 6th International Congress for Computer Technology in Agriculture. Wageningen, June. 3-17.
    20. HertsD.B. 1964. Risk analysis in capital investment, Harvard Business Rev. 42 (1) : 95-110.
    21. HertzDB et aI.1983. Risk Analysis and Its Application.New York: John Wiley and Sons,:9.
    22. Holt D. A. 1985. Computers in Production Agriculture, Science, 228 (4698) .
    23. lemmon H. Comax: An expert system for cotton crop management. Science, 1986, 233 (4) : 29-33.
    24. James L. et al . 1984. Micro-Computer in Agriculture. Virginia.
    25. James W. j. 1985. Using Expert Systems in Agricultural Models. Agricultural Engineering. 66(7) .
    26. Joseph H.H. 1986. The National Agricultural Library as a Source of Agricultural Information, Quarterly Bulletin IAALD,XXXI(3) .
    27. Kaplan S et al. 1981 .On the Quantitative Definition of Risk Analysis. 1 (1) : 11.
    28. Kawamoto H, et al. 1992. Computer simulation modeling for stored-grain pest management. J. stored. Prod. Res. 28 (2) : 139-145.
    29. Kickert R.N. 1984. Simulation.43,22.
    30. Kranzler G. A., 1985, Applying Digital Image Processing in Agriculture. Agricultural Engineering .66(3) : 11-14.
    31. Krit H. B. 1994. An expert system for aid in the appraisal and treatment of diseases of sugarcane. Agriculture et Development (3) : 49-53.
    32. Leslie P H. 1945. On the use of matrices in certain population mathematics. Biometrika. 33:183-212.
    33. Lewis E. G. 1942. On the generation and growth of a population. Sankhya 6: 93-96.
    34. Lindesey, A. A.&J. E. Newman. 1956. Ecology 37 (4) : 812-823.
    35. Lischke. H. 1992. A model to simulate the population dynamics of the codling moth (cydia pomonella): parameter estimation, validation and sensitivity analysis. Acta Horticulturae 313:33 1-338.
    36. Liu Laifu and Xu Rumei. 1982. Mathematical models and its sensitivity analysis of the population dynamics of insects with age structure and under varying conditions (e.g. temperature). J. ISEM4 (3/4) : 73-85.
    37. Louise R. Romanow, et al. 1991. Resistance in tomato to the greenhouse
    
    whitefly: analysis of population dynamics. Entomol. Exp. appl. 60: 241-259.
    38. May R. M. 1976. Theoretical ecology-principles and applications. Blackwell Sci. Publ. Oxford. 4-25.
    39. Mckinion J.M. 1985. Symbolic Computer and AI (Artificial Intelligence) Tools for A Cotton Expert System. American Society of Agricultural Engineers.
    40. Mckinion J. M, Lemmen H. E. 1986. Expert Systems for Agriculture. Computer and Electronics in Agriculture. 1(1) : 31-41.
    41. Microsoft. 1998. Visual Basic 5. 0 语言参考手册.北京:科学出版社龙门书局.
    42. Microsoft Corporation, Win32 Programming Techniques Online Help.
    43. Mingsheng You et al. 1995. A computer simulation model of population dynamics of brown planthopper, Nilaparvata lugens Stal. Entomologia Sinica. 2(2) : 163-178.
    44. Morris R F, C A Miller. 1954. The development of life tables for the spruce budworm. Can. J Zool.32: 282-301.
    45. Morris, R .F, C. W. Bennett. 1967. Can.Ent.99:9~17.
    46. Porta M. A. 1986. Selected Agricultural Database and Computer and Electronics in Agriculture 1(3) .
    47. Racin. 1994. The gypsy moth life system models interface. Computers in agriculture 1994: Proceedings of the 5th international conference, Orlando Florida, USA, 6-9 February. 780-785.
    48. Ruesink W G.1976. Modeling of pest population in the alfalfa ecosystem with special reference to the alfalfa weevil.In R L Tummala et al (Eds), modeling for pest management. Michigan State University Press, East Lansing. 80-89.
    49. Russell, L. M.1977. Hosts and distributions of the greenhouse whitefly Traleurodes vaporariorum (Westwood) (Hemiptea: Aleyrodidae). USEDA Coop. plant pest rep. 2:449-458.
    50. Shiggeru Sozuki. Kineo Kumagai. 1982. Genetic Resource Information Management. Agricultural Information Development Bulletin. 4(1) .
    51. Simpson, C.B.1903. Bull. US. Div. Ent: 165.
    52. Sinko J. W, Streifer W. 1967. A new model for age-size structure of a population Ecology.48:910~918.
    53. Smith G. E. and C.A. Shoemaker. 1978. Analysis of dynamics of piokilotherm populations with randomly distributed rate of development. Dept of Environ. Eng. Tech. Rep. Cornell University.
    54. Tatchell G. M. 1987. Agricultural View data Services in Britain and the Role of Rothamsted as an Information Provider. Computer and Electronics in Agriculture. 2(2) : 157-163.
    55. USDA. Research Progress in 1984. A Report of The Agricultural Research Service.
    
    
    56. yon Foerster H. 1959.Some remarks on changing populations in "The Kinetics of Cellular Proliferation" ed. Stohlman, F. 382~407.
    57. WhiteJ.A,et al.1977.Principles of Engineering economic analysis. John Wiley & Sons, New York.
    58. Wiechert W., Joksch, B., Wittig, R., Hartbfich, A., Honer, T and Mollney, M., 1995. Object-oriented programming for the biosciences. CABIOS vol.11(5): 517~534.
    59. Wilhoit L. R, et al.1991.PARMOD: a simulation model for the population dynamics of Muscidifurax spp. And Spalangia spp. (Hymenoptera: Pteromalidae), parasites of house fly pupae (Diptera: Muscidae) Environ. Entomol. 20 (5): 1418~1426.
    60. Williams M.E., et al. 1985. Agricultural Database Directory. Bibliographies and Literature of Agriculture. 42: USDA/NAL. Washington DC.
    61. Xiong GanLun edited. 1992. Proceedings of IFAC Workshop in Expert Systems in,Agriculture. Huangshan: International Academia Publisher, Aug.
    62. Zadoks J. C,EPIPRE. 1984. A Computer-based Scheme for Pest and Disease Control in Wheat .in: Gallagher(Ed.) Cereal Production Butterworths. London.
    63.蔡自兴等.1996.人工智能及其应用(第二版).北京:清华大学出版社.
    64.陈福云.1984.水稻品种对白背飞虱抗性筛选方法.昆虫与植病(2):5~7.
    65.陈述彭.1983.地理信息系统的探索与试验.地理科学.8(4):287~303.
    66.陈维博,陈玉平.1981.昆虫种群死亡过程的数字模拟.生态学报.1(2):159-167.
    67.陈晓峰.李典谟.1993.马尾松毛虫种群动态及模拟研究.昆虫学报.36(1):56~42.
    68.程家安,陈闽桂,祝增荣,等.褐飞虱治理计算机决策支持系统.浙江农业大学学报.1990,16(2):120~133.
    69.丁岩钦.1994.昆虫数学生态学.北京:科学出版社.
    70.董占山,潘学际,等.1992.棉花生产管理模拟系统CPMSS/CGSM.棉花学报(增刊).3~10.
    71.董占山,潘学标,等.1993.棉花生产管理决策支持系统CPMSS设计与实现.计算机农业应用.(2):16~19.
    72.杜国忠.1981.南阳麦田粘虫生命表的初步探讨.河南农林科技.(4):15-17.
    73.弗林特,M.L,范德博希,R.1985.害虫综合防治导论(曹骥,赵修复译),北京:科学出版社.
    74.傅丽辉.1984.1983年水稻品种抗稻虱鉴定筛选福建稻麦科技.(1):71~73.
    75.高崇省.1994.小麦品种抗性对麦长管蚜种群增长的影响.昆虫知识.31(4):201~205.
    76.古泊.1997.谈发展我国软件产业的策略和措施.软件世界.1:4~5.
    77.郭一新.1987.系统工程BASIC程序设计.北京:科学出版社.
    78.胡成军,郑援.1995.软件重用及其途径.软件.1:5~7.
    
    
    79.胡国文.1989.Nabeshi等.14个台湾品种对白背飞虱的抗性性测定初报.中国水稻科学.3(3):138~140.
    80.华南农业大学主编.1982.农业昆虫学(下册).北京:农业出版社265~268.
    81.纪力强,李典谟.1990.棉花害虫管理专家系统的初步研究.棉花病虫害综合防治研究进展.北京:中国农业科学出版.334~338.
    82.李保华.1995.梨黑星病预测及管理专家咨询系统—ESPSPM的研制.北京农业大学硕士学位论文.
    83.李典谟等.1986.确定动态经济阈值的微计算机模型.生态学报,6(1):53~59.
    84.李典谟等.1986.快速估计发育起点及有效积温法的研究.昆虫知识.23(4):184~187.
    85.李典谟等.1983.论计算机化的病虫害管理系统的原理.生态学报.3(3):252~261.
    86.李建廷.1987.电子计算机在农业应用中的功能.世界农业.(8).31~33.
    87.李明福.1997.植物病毒检疫诊断支持系统PQV-DSS.中国农业大学博士学位论文.
    88.李志红.1997.计算机辅助决策技术在蔬菜生产及害虫治理中的应用研究.中国农业大学博士学位论文.
    89.林尧瑞,张钹等.1988.专家系统原理与实践.北京:清华大学出版社.
    90.刘恩涛,赵耀峰.1999.Visual Basic 6.0编程技巧与实例分析.北京:中国水利水电出版社.
    91.刘启原.1997.从COSA实践谈基础软件工程.软件世界.3:6~8&12.
    92.刘少华.1986.白背飞虱在不同水稻品种上的产卵差异性观察.浙江农业科学.(4):184~186.
    93.马会钧,张子公.1995.软件开发方法述评与基于知识的软件开发方法.软件.8:22~27.
    94.毛莉菊,张孝羲.1998.南通地区棉花害虫综合管理专家系统.南京农业大学学报21(1):55~59.
    95.倪彬.1996.面向对象的系统分析和设计.中国计算机用户.(2):6~7.
    96.庞雄飞.1990.昆虫种群控制系统的信息处理-控制指数与种群系统控制.华南农业大学学报.11(3):6~12.
    97.庞雄飞等.种群矩阵模型在昆虫生态学研究上的应用问题.华南农学院学报,1980.1(3):27~37.
    98.邵丹华.1996.面向对象的程序设计.中国计算机用户.2:8~10.
    99.沈佐锐.1988.用于植保系统管理的天气模拟模型.北京农业大学博士学位论文.
    100.沈佐锐.1996.信息技术在植物医学中的应用.刊于:管致和主编,植物医学导论,北京:中国农业大学出版社.
    101.沈佐锐等.1990.生态系统的天气环境模拟模型.应用生态学报.1(1):20~25.
    102.时应,何克清.1995.实用化软件重用方法及其环境.计算机科学.22(5):58~60.
    
    
    103.史济民.1993.应用软件开发技术.北京:电子工业出版社.
    104.苏祥瑶.1986.粘虫种群动态模拟的研究.生态学报.6(1):65~73.
    105.苏祥瑶,林昌善.粘虫种群动态模拟的研究.生态学报.1986.6(1):65~73.
    106.孙慎侠.1996.西北地区小麦条锈病管理专家系统(NWSRMS).西北农业大学硕士论文.
    107.王世耆.1989.计算机农业应用进展.计算机农业应用.(1):1~14.
    108.王世耆.1989.计算机农业应用概况和发展趋势,农牧情报研究.(1).5
    109.王世耆.1984.农业应用计算机一瞥.现代化.(7):8~10.
    110.王向阳,杨红颖.面向对象的Windows编程技术.软件.6:59~65.
    111.王之岭.1996.植检害虫图文信息及鉴定辅导系统PQ-INFORMIS的研制与应用.中国农业大学博士学位论文.
    112.吴毅明.1982.温室环境的综合调节控制.农业气象(国外农学).试刊(1):13~18.
    100.113.吴中孚等.1990.褐稻虱田间种群动态模拟的研究.福建农学院学报.19(2):115~122.
    114.武小鹏.1996.面向对象技术形成、发展、现状.中国计算机用户.2:5&50.
    115.夏北成.1989.华北地区冬小麦生态系统模拟模型的研究.北京大学博士学位论文.29~40.
    116.肖长林.1991.作物病虫预测专家系统的研究以小麦条锈病流行程度预测为例.北京农业大学博士论文.
    117.肖志鹏等.1990.应用生命表技术评价棉花品种对棉红铃虫的抗性Ⅰ.不同品种上棉红铃虫自然种群生命表研究.昆虫学研究文集.北京:北京农业大学出版社.
    118.肖志鹏等.1990.应用生命表技术评价棉花品种对棉红铃虫的抗性Ⅱ.不同品种上棉红铃虫半自然种群生命表研究.昆虫学研究文集.北京:北京农业大学出版社
    119.谢立群.1996.烟青虫Helicoverpa assulta(Gueqee)种群动态及滞育特性的研究.南京农业大学硕士学位论文.
    120.刑云志.1986.小麦品种对小麦吸浆虫抗性初步分析.河南农业科学.(9):17~20.
    121.熊范纶.1999.农业专家系统及开发工具.清华大学出版社.
    122.熊范纶.1999.农业专家系统及开发工具.北京:清华大学出版社.
    123.徐汝梅.1990.种群数量的时空动态—对温室白粉虱的系统探讨.北京:北京师范大学出版社.
    124.徐汝梅等.1981.变维矩阵模型在温室白粉虱种群动态模拟中的作用.生态学报.1(2):147~158.
    125.徐师华,罗中岭.1984.日本电子计算机控制温室环境概况.农业气象.国外农学(3):1~5.
    126.杨芙清.1992.面向对象程序设计.北京:北京大学出版社.
    
    
    127.于新文.1999.昆虫图象数学技术的研究开发.中国农业大学博士学位论文.
    128.俞晓平.1990.水稻品种对白背飞虱耐性和抗生性的研究.植物保护学报.17(4):327~330.
    129.愈晓平.1990.不同水稻品种对白背飞虱产卵的影响.浙江农业大学学报16(1):61~65.
    130.臧伟,郝树广等.1997.江淮稻区褐飞虱种群动态模拟模型.南京农业大学学报.20(2):32~38.
    131.曾玲,吴荣宗.1984.水稻品种对褐飞虱的抗性昆虫学报.27(4):375~383.
    132.曾玲等.1984.水稻品种对褐飞虱的抗性.昆虫学报.27:(4)375~383.
    133.曾士迈主编.1994.植保系统工程导论.北京农业大学出版社.中国:北京.
    134.翟凤林等.1987.作物抗虫育种原理与方法.北京:北京科学技术出版社.
    135.张文庆等.1994.昆虫种群动态模拟方法的一点改进—三化螟种群动态模拟模型的研究.生态学报.14(3):281~289.
    136.张效祥等.1998.计算机科学技术百科全书.北京:清华大学出版社.
    137.赵圣菊.1983.用气象因子组建一代粘虫发生区越冬蛾量及迁入期的长期预报模式.植物保护学报.3(2):93~100.
    138.周国民等.1996.玉米生产计算机管理系统的研究与实现.计算机农业应用(专刊):84~86.
    139.朱国仁等.1992.温室白粉虱的种群动态和综合治理.主要蔬菜病虫害防治技术及研究进展.北京:中国农业科技出版社.
    140.朱国仁等1992温室黄瓜上白粉虱动态阈值的初步研究 主要蔬菜病虫害防治技术及研究进展 北京:中国农业科技出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700