用户名: 密码: 验证码:
S,S-二氧—二苯并噻吩基共轭聚合物的合成及光电性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共轭聚合物光电功能材料具有轻质、结构多样化、光电效应性能高、可溶液加工和可制备成柔性器件等特点,在有机发光二极管、有机太阳电池和有机场效应晶体管中具有广阔的应用前景,并成为目前新材料研发的热点。
     S,S-二氧-二苯并噻吩(SO)是一个具有刚性平面结构的缺电子单元,结构内所有原子均处于最高的化合价状态,具有很高抗氧化能力和化学/环境稳定性,且SO基团具有较低的LUMO能级、较高的荧光量子效率和电子传输能力。本论文的主要研究内容是结合SO单元结构特点和目前聚合物光电材料性能的不足,针对性地将SO单元适当引入到光电性能聚合物中,进一步扩展SO单元的新应用,同时提高聚合物的光电性能,对高性能的聚合物光电材料的结构设计和合成有一定的指导意义。
     1)在聚(2,7-咔唑)为主链、苯并噻二唑为黄光发光中心的白光聚合物中引入一定比例的SO单元,有效地提高了聚合物的荧光量子效率和平衡因子,同时降低了蓝/黄光发光中心间的LUMO能级差,从而获得了高效且光谱稳定的白光发射。聚合物的电致发光光谱在电流密度12-300mA/cm2范围内,表现了优越的稳定性。基于含SO单元的白光聚合物的单层器件(ITO/PEDOT:PSS/polymer/CsF/Al),获得的最大流明效率和外量子效率分别为8.0lm/W和3.9%,发光效率比不含SO单元的聚合物的同类型器件高4倍左右。
     2)设计和合成了2,8-二辛基-S,S-二氧-二苯并噻吩-噻吩新型的D-A结构单元(DTSO),将其引入到聚芴主链中,通过调节DTSO的含量,分别获得高效的蓝光、绿光和白光聚合物,以其作为发光层,相关发光器件获得的激子利用率分别为34%、51%和56%,最大发光效率分别为3.4、8.8和7.5cd/A,其中基于白光聚合物的器件获得外量子效率达5.3%。
     3)在聚芴侧链中引入缺电子SO单元,有利于诱导了更多含量的聚芴β相,提高了聚合物排列的规整性和荧光量子效率。基于聚合物PFO-FSO1的单层器件获得的最大外量子效率达2.1%,是没有侧链SO单元的均聚芴发光效率的3倍以上;色坐标为(0.16,0.08),是标准的蓝光色坐标。相关器件的发光光谱在6-240mA/cm2电流密度范围显示出优越的稳定性。在含氨基的水/醇溶性聚芴侧链中引入SO单元,显示出优越的阴极界面修饰性能,该聚合物应用在以PCDTBT:PC71BM (1:4, w/w)为活性层的太阳电池正装器件中,获得光电转换效率可达6.46%,比无界面修饰状态下同类型器件提高约35%。
     4)将SO衍生物单元与强给电子单元苯并二茚并[1,2-b:5,6-b’]-二噻吩(IDT)进行交替共聚,合成了中等带隙(~2.2eV)的D-A共聚物,并用作聚合物太阳电池给体材料,经过器件优化后获得最高的光电转化效率达3.81%,是目前报道的带隙超过2.2eV的给体聚合物中最高的效率之一。此外,将SO单元共聚入窄带隙聚合物中,相关的太阳电池器件的效率达4.93%,比不含SO单元的聚合物相同结构器件的效率提高了接近1%。
Conjugated photoelectronic polymers have the advantages of light weight, high stability,structural diversification, high photoelectric response, solution processable and easy tofabricate flexible devices, and have great potential application in polymer light-emitting diodie,polymer solar cell and organic field effect transistor, and are becoming the focus of currentresearch and development of new materials.
     Dibenzothiophene-S,S-dioxide (SO) is an electron-deficient moiety with rigid and planarstructure. All the atoms are at the highest valence, giving the SO moiety having a greatantioxidant capacity, high chemical and environmental stability. Moreover, SO moiety has alow-lying lowest unoccupied molecular orbital (LUMO) energy level, high fluorescencequantum yields and electron mobility. In this thesis, aiming at the lacks of the photoelectricfunctional polymers, we brought the advantages of SO moiety into the relative polymers, toexploit the new functions of SO moiety and improve the performance of the polymers, as wellas reveal a way to better the design and synthesis highly efficient and stable photoelectricfunctional polymers.
     1) SO moiety was incorporated into the white-emitting single polymer based on2,7-carbazole as the backbone and benzothiadiazole as the yellow emitting center, andeffectively improved the fluorescence quantum yields and charge-balance factor, alsonarrowed down the LUMO energy gaps between the blue and yellow chromophores, leadingto high efficient and stable white-light emission based on the relative device. The electronicluminous (EL) spectra of the device showed excellent stable in a large applied current densityrange of12-300mA/cm2. The device based on the white-emitting single polymer containingSO moiety exhibited the maximum power efficiency (PEmax) of8.0lm/W and maximumexternal quantum efficiency (EQEmax) of3.9%with the single layer device of structureITO/PEDOT:PSS/polymer/CsF/Al. The effecienies were4times of the device based on thepolymer without SO moiety.
     2) new D-A type thiophene-2,8-dioctyl-dibenzothiophene-S,S-dioxide (DTSO) moietyhad been designed and synthesized. DTSO unit was further incorporated into the poly(2,7-fluorene) with varying content, and high exciton utilization rate of34%,51%and56%for the related blue, green and white emitting polymers were obtained, respectively. And thedevice based on the related polymers showed the maximum luminous efficiency (LEmax) of3.4,8.8and7.5cd/A, and the maximum external quantum efficiency of5.3%was obtained basedon the white-emitting single polymer.
     3) SO moiety as the side chain was grafted into poly(2,7-fluorene), and more β phase wassuccessfully induced, leading to more rigid polymer chain and higher fluorescence quantumyields. The related polymer PFO-FSO1based single layer device showed the EQEmaxof2.1%,which was3times of that of polyfluorene without SO. The CIE coordinate of the PFO-FSO1is (0.16,0.08), which is the NTSC standard blue-emitting CIE coordinates. Moreover, the ELspectra of the device showed excellent stable in a large applied current density range of6-240mA/cm2. And it also found that electron-deficient side chain could induce more β phase ofpoly(2,7-fluorene) than electron-rich side chain. SO moiety as the side chain was grafted intothe water/alcohol soluble poly(2,7-fluorene) containing amino-group, which was used as thecathode materials of interfacial modification for polymer solar cells (PSCs). The PSC based onPCDTBT:PC71BM (1:4, w/w) as the active layer and the interfacial polymer with SO moiety,exhibited excellent performance with the power conversion efficiency (PCE) of6.46%, whichimproved about35%of PCE of the PSC without the interfacial polymer. The interfacialpolymer with aromatic groups in the side chain showed similar interfacial modificationproperty comparing to that without. In contrast, the electron-deficient SO moiety containerexhibited a little bit better interfacial modification performance.
     4) SO derivatives were copolymerized with strong electron-rich indacenodithiophene (IDT)moiety to build the medium band gap (~2.2eV) donor-acceptor copolymers, which were usedas the electron-donor for the polymer solar cells. The best PCE of the related device can reach3.81%, which is among the highest efficiencies in the polymers with the bandgap over2.2eV.SO moiety was incorporated into the narrow bandgap copolymers, and the related polymersolar cells exhibited a high PCE of4.93%, which is improved by about1%of PCE comparedwith the device based on the polymer without SO.
引文
[1] Geffroy B., Le Roy P., Prat C. Organic light-emitting diode (OLED) technology: materials,devices and display technologies [J]. Polymer International,2006,55(6):572-582.
    [2] Choi M.-C., Kim Y., Ha C.-S. Polymers for flexible displays: From material selection todevice applications [J]. Progress in Polymer Science,2008,33(6):581-630.
    [3] D'Andrade B.W., Forrest S.R. White organic light-emitting devices for solid-state lighting [J].Advanced Materials,2004,16(18):1585-1595.
    [4] Braga A.F.B., Moreira S.P., Zampieri P.R., et al. New processes for the production ofsolar-grade polycrystalline silicon: A review [J]. Solar Energy Materials and Solar Cells,2008,92(4):418-424.
    [5] You J., Dou L., Yoshimura K., et al. A polymer tandem solar cell with10.6%powerconversion efficiency [J]. Nature Communications,2013,4.
    [6] Burroughes J.H., Bradley D.D.C., Brown A.R., et al. Light-emitting diodes based onconjugated polymers [J]. Nature,1990,347(6293):539-41.
    [7] Braun D., Heeger A.J. Visible light emission from semiconducting polymer diodes [J].Applied Physics Letters,1991,58(18):1982-4.
    [8] Gustafsson G., Cao Y., Treacy G.M., et al. Flexible light-emitting diodes made from solubleconducting polymers [J]. Nature,1992,357(6378):477-9.
    [9] Grimsdale A.C., Chan K.L., Martin R.E., et al. Synthesis of Light-Emitting ConjugatedPolymers for Applications in Electroluminescent Devices [J]. Chemical Reviews,2009,109(3):897-1091.
    [10] Kido J., Hongawa K., Okuyama K., et al. White light-emitting organic electroluminescentdevices using the poly(N-vinylcarbazole) emitter layer doped with three fluorescent dyes[J]. Applied Physics Letters,1994,64(7):815-17.
    [11] Adachi C., Baldo M.A., Thompson M.E., et al. Nearly100%internal phosphorescenceefficiency in an organic light-emitting device [J]. Journal of Applied Physics,2001,90(10):5048-5051.
    [12] D'Andrade B.W., Esler J., Lin C., et al., Realizing white phosphorescent100lm/W OLEDefficacy. In Organic Light Emitting Materials and Devices Xii, So, F.; Adachi, C., Eds.2008,7051.
    [13] He G., Rothe C., Murano S., et al. White stacked OLED with38lm/W and100,000-hourlifetime at1000cd/m(2) for display and lighting applications [J]. Journal of the Society forInformation Display,2009,17(2):159-165.
    [14] Cao Y., Yu G., Zhang C., et al. Polymer light-emitting diodes with polyethylenedioxythiophene-polystyrene sulfonate as the transparent anode [J]. Synthetic Metals,1997,87(2):171-174.
    [15] Groenendaal L.B., Jonas F., Freitag D., et al. Poly(3,4-ethylenedioxythiophene) and itsderivatives: past, present, and future [J]. Advanced Materials,2000,12(7):481-94.
    [16] Martens H.C.F., Huiberts J.N., Blom P.W.M. Simultaneous measurement of electron andhole mobilities in polymer light-emitting diodes [J]. Applied Physics Letters,2000,77(12):1852-1854.
    [17] Friend R.H., Gymer R.W., Holmes A.B., et al. Electroluminescence in conjugated polymers[J]. Nature,1999,397(6715):121-128.
    [18] Cao Y., Parker I.D., Yu G., et al. Improved quantum efficiency for electroluminescence insemiconducting polymers [J]. Nature,1999,397(6718):414-417.
    [19] Golubov S.I., Konobeev Y.V. The theory of sensitized fluorescence in solids [J]. PhysicaStatus Solidi B,1975,71(2):777-86.
    [20] Miyakawa T., Dexter D.L. Photon sidebands, multiphonon relaxation of excited states, andphonon-assisted energy transfer between ions in solids [J]. Physical Review B (Solid State),1970,1(7):2961-9.
    [21] Peng Q., Yi Y., Shuai Z., et al. Toward quantitative prediction of molecular fluorescencequantum efficiency: Role of Duschinsky rotation [J]. Journal of the American ChemicalSociety,2007,129(30):9333-9339.
    [22] Farinola G.M., Ragni R. Electroluminescent materials for white organic light emittingdiodes [J]. Chemical Society Reviews,2011,40(7):3467-3482.
    [23] Forrest S.R., Bradley D.D.C., Thompson M.E. Measuring the efficiency of organiclight-emitting devices [J]. Advanced Materials,2003,15(13):1043-1048.
    [24] Tsutsui T. Progress in electroluminescent devices using molecular thin films [J]. MrsBulletin,1997,22(6):39-45.
    [25] Zhao Q., Liu S.-J., Huang W. Polyfluorene-Based Blue-Emitting Materials [J].Macromolecular Chemistry and Physics,2009,210(19):1580-1590.
    [26] Romaner L., Pogantsch A., de Freitas P.S., et al. The origin of green emission inpolyfluorene-based conjugated polymers: On-chain defect fluorescence [J]. AdvancedFunctional Materials,2003,13(8):597-601.
    [27] List E.J.W., Gaal M., Guentner R., et al. The role of keto defect sites for the emissionproperties of polyfluorene-type materials [J]. Synthetic Metals,2003,139(3):759-763.
    [28] Kulkarni A.P., Zhu Y., Jenekhe S.A. Quinoxaline-containing polyfluorenes: Synthesis,photophysics, and stable blue electroluminescence [J]. Macromolecules,2005,38(5):1553-1563.
    [29] Wu F.I., Reddy D.S., Shu C.F., et al. Novel oxadiazole-containing polyfluorene withefficient blue electroluminescence [J]. Chemistry of Materials,2003,15(1):269-274.
    [30] Hung M.C., Liao J.L., Chen S.A., et al. Fine tuning the purity of blue emission frompolydioctylfluorene by end-capping with electron-deficient moieties [J]. Journal of theAmerican Chemical Society,2005,127(42):14576-14577.
    [31] Lee S.K., Ahn T., Park J.-H., et al. beta-Phase formation in poly(9,9-di-n-octylfluorene) byincorporating an ambipolar unit containing phenothiazine and4-(dicyanomethylene)-2-methyl-6-p-(dimethylamino)styryl-4H-pyran [J]. Journal ofMaterials Chemistry,2009,19(38):7062-7069.
    [32] Morin J.F., Leclerc M., Ades D., et al. Polycarbazoles:25years of progress [J].Macromolecular Rapid Communications,2005,26(10):761-778.
    [33] Fu Y., Sun M., Wu Y., et al. Conjugated polymers containing electron-transporting,hole-transporting, and light-emitting units in the polymer main chain [J]. Journal ofPolymer Science Part a-Polymer Chemistry,2008,46(4):1349-1356.
    [34] Wang H., Wang X., Wang L., et al. Time-dependent density functional theory study ofelectronic spectrum property for carbazolyl-pyridinyl alternating copolymers [J].International Journal of Quantum Chemistry,2007,107(4):937-945.
    [35] Luo J., Li X., Hou Q., et al. High-Efficiency White-Light Emission from a SingleCopolymer: Fluorescent Blue, Green, and Red Chromophores on a Conjugated PolymerBackbone [J]. Advanced Materials,2007,19(8):1113-1117.
    [36] Liu J., Chen L., Shao S.Y., et al. Three-Color White Electroluminescence from a SinglePolymer System with Blue, Green and Red Dopant Units as Individual Emissive Speciesand Polyfluorene as Individual Polymer Host [J]. Advanced Materials,2007,19(23):4224-4228.
    [37] Lee P.-I., Hsu S.L.-C., Lee R.-F. White-light-emitting diodes from single polymer systemsbased on polyfluorene copolymers end-capped with a dye [J]. Polymer,2007,48(1):110-115.
    [38] Perepichka I.I., Perepichka I.F., Bryce M.R., et al. Dibenzothiophene-S,S-dioxide-fluoreneco-oligomers. Stable, highly-efficient blue emitters with improved electron affinity [J].Chemical Communications,2005,(27):3397-3399.
    [39] King S.M., Perepichka I.I., Perepichka I.F., et al. Exploiting a Dual-Fluorescence Process inFluorene–Dibenzothiophene-S,S-dioxideCo-Polymers to Give Efficient Single PolymerLEDs with Broadened Emission [J]. Advanced Functional Materials,2009,19(4):586-591.
    [40] Li Y., Wu H., Zou J., et al. Enhancement of spectral stability and efficiency on bluelight-emitters via introducing dibenzothiophene-S,S-dioxide isomers into polyfluorenebackbone [J]. Organic Electronics,2009,10(5):901-909.
    [41] Yu L., Liu J., Hu S., et al. Red, Green, and Blue Light-Emitting Polyfluorenes Containing aDibenzothiophene-S,S-Dioxide Unit and Efficient High-Color-Rendering-IndexWhite-Light-Emitting Diodes Made Therefrom [J]. Advanced Functional Materials,2013,23(35):4366-4376.
    [42] Liu J., Hu S., Zhao W., et al. Novel Spectrally Stable Saturated Blue-Light-EmittingPoly[(fluorene)-co-(dioctyldibenzothiophene-S,S-dioxide)]s [J]. Macromolecular RapidCommunications,2010,31(5):496-501.
    [43] Kamtekar K.T., Vaughan H.L., Lyons B.P., et al. Synthesis and Spectroscopy ofPoly(9,9-dioctylfluorene-2,7-diyl-co-2,8-dihexyldibenzothiophene-S,S-dioxide-3,7-diyl)s:Solution-Processable, Deep-Blue Emitters with a High Triplet Energy [J]. Macromolecules,2010,43(10):4481-4488.
    [44] Smilowitz L., Sariciftci N.S., Wu R., et al. Photoexcitation spectroscopy ofconducting-polymer–C60composites: Photoinduced electron transfer [J]. Physical ReviewB,1993,47(20):13835-13842.
    [45] Yu G., Gao J., Hummelen J.C., et al. Polymer photovoltaic cells: enhanced efficiencies via anetwork of internal donor-acceptor heterojunctions [J]. Science,1995,270(5243):1789-91.
    [46] He Z., Zhong C., Su S., et al. Enhanced power-conversion efficiency in polymer solar cellsusing an inverted device structure [J]. Nature Photonics,2012,6(9):591-595.
    [47] Brabec C.J. Organic photovoltaics: technology and market [J]. Solar Energy Materials andSolar Cells,2004,83(2-3):273-292.
    [48] Dennler G., Sariciftci N.S. Flexible conjugated polymer-based plastic solar cells: frombasics to applications [J]. Proceedings of the IEEE,2005,93(8):1429-1439.
    [49] Brabec C.J., Sariciftci N.S., Hummelen J.C. Plastic solar cells [J]. Advanced FunctionalMaterials,2001,11(1):15-26.
    [50] Huang F., Wu H., Wang D., et al. Novel electroluminescent conjugated polyelectrolytesbased on polyfluorene [J]. Chemistry of Materials,2004,16(4):708-716.
    [51] He Z., Zhong C., Huang X., et al. Simultaneous enhancement of open‐circuit voltage,short‐circuit current density, and fill factor in polymer solar cells [J]. Advanced Materials,2011,23(40):4636-4643.
    [52] Duan C., Wang L., Zhang K., et al. Conjugated Zwitterionic Polyelectrolytes and TheirNeutral Precursor as Electron Injection Layer for High‐Performance Polymer Light‐Emitting Diodes [J]. Advanced Materials,2011,23(14):1665-1669.
    [53] Liu S., Zhang K., Lu J., et al. High-Efficiency Polymer Solar Cells via the Incorporation ofan Amino-Functionalized Conjugated Metallopolymer as a Cathode Interlayer [J]. Journalof the American Chemical Society,2013,135(41):15326-15329.
    [54] Zhong C., Liu S., Huang F., et al. Highly efficient electron injection from indium tinoxide/cross-linkable amino-functionalized polyfluorene interface in inverted organic lightemitting devices [J]. Chemistry of Materials,2011,23(21):4870-4876.
    [55] Zhao Y., Xie Z., Qin C., et al. Enhanced charge collection in polymer photovoltaic cells byusing an ethanol-soluble conjugated polyfluorene as cathode buffer layer [J]. Solar EnergyMaterials and Solar Cells,2009,93(5):604-608.
    [56] Shi W., Fan S., Huang F., et al. Synthesis of novel triphenylamine-based conjugatedpolyelectrolytes and their application as hole-transport layers in polymeric light-emittingdiodes [J]. Journal of Materials Chemistry,2006,16(24):2387-2394.
    [57] Li C.-Y., Wen T.-C., Guo T.-F., et al. A facile synthesis of sulfonated poly (diphenylamine)and the application as a novel hole injection layer in polymer light emitting diodes [J].Polymer,2008,49(4):957-964.
    [58] Li C.Z., Chueh C.C., Ding F., et al. Doping of Fullerenes via Anion‐Induced ElectronTransfer and Its Implication for Surfactant Facilitated High Performance Polymer SolarCells [J]. Advanced Materials,2013,25(32):4425-4430.
    [59] Zhou H., Yang L., You W. Rational design of high performance conjugated polymers fororganic solar cells [J]. Macromolecules,2012,45(2):607-632.
    [60] Padinger F., Rittberger R.S., Sariciftci N.S. Effects of Postproduction Treatment on PlasticSolar Cells [J]. Advanced Functional Materials,2003,13(1):85-88.
    [61] Havinga E., Ten Hoeve W., Wynberg H. Alternate donor-acceptor small-band-gapsemiconducting polymers; Polysquaraines and polycroconaines [J]. Synthetic Metals,1993,55(1):299-306.
    [62] Blouin N., Michaud A., Leclerc M. A low‐bandgap poly (2,7‐carbazole) derivative foruse in high‐performance solar cells [J]. Advanced Materials,2007,19(17):2295-2300.
    [63] Zhou H., Yang L., Price S.C., et al. Enhanced Photovoltaic Performance of Low‐BandgapPolymers with Deep LUMO Levels [J]. Angewandte Chemie,2010,122(43):8164-8167.
    [64] Zhou H., Yang L., Stuart A.C., et al. Development of fluorinated benzothiadiazole as astructural unit for a polymer solar cell of7%efficiency [J]. Angewandte Chemie,2011,123(13):3051-3054.
    [65] Wang M., Hu X., Liu P., et al. Donor–acceptor conjugated polymer based on naphtho [1,2-c:5,6-c] bis [1,2,5] thiadiazole for high-performance polymer solar cells [J]. Journal ofthe American Chemical Society,2011,133(25):9638-9641.
    [66] Yang T., Wang M., Duan C., et al. Inverted polymer solar cells with8.4%efficiency byconjugated polyelectrolyte [J]. Energy&Environmental Science,2012,5(8):8208-8214.
    [67] Szarko J.M., Guo J., Liang Y., et al. When function follows form: effects of donorcopolymer side chains on film morphology and BHJ solar cell performance [J]. AdvancedMaterials,2010,22(48):5468-5472.
    [68] Huang Y., Guo X., Liu F., et al. Improving the Ordering and Photovoltaic Properties byExtending π–Conjugated Area of Electron‐Donating Units in Polymers with D‐AStructure [J]. Advanced Materials,2012,24(25):3383-3389.
    [69] Huang F., Chen K.-S., Yip H.-L., et al. Development of New Conjugated Polymers withDonor π-Bridge Acceptor Side Chains for High Performance Solar Cells [J]. Journal ofthe American Chemical Society,2009,131(39):13886-13887.
    [70] Cravino A., Sariciftci N.S. Double-cable polymers for fullerene based organicoptoelectronic applications [J]. Journal of Materials Chemistry,2002,12(7):1931-1943.
    [71] Kim J.-H., Kim H.U., Kang I.-N., et al. Incorporation of Pyrene Units to Improve HoleMobility in Conjugated Polymers for Organic Solar Cells [J]. Macromolecules,2012,45(21):8628-8638.
    [72] Gather M.C., Alle R., Becker H., et al. On the Origin of the Color Shift in White‐EmittingOLEDs [J]. Advanced Materials,2007,19(24):4460-4465.
    [73] Jankus V., Chiang C.J., Dias F., et al. Deep Blue Exciplex Organic Light‐Emitting Diodeswith Enhanced Efficiency; P‐type or E‐type Triplet Conversion to Singlet Excitons?[J].Advanced Materials,2013,25(10):1455-1459.
    [74] Song H.J., Lee S.M., Lee J.Y., et al. The synthesis and electroluminescent properties ofdithienylquinacridone-based copolymers for white light-emitting diodes [J]. SyntheticMetals,2011,161(21):2451-2459.
    [75] Herguth P., Jiang X., Liu M.S., et al. Highly efficient fluorene-and benzothiadiazole-basedconjugated copolymers for polymer light-emitting diodes [J]. Macromolecules,2002,35(16):6094-6100.
    [76] Dierschke F., Grimsdale A.C., MüLLEN K. Efficient synthesis of2,7-dibromocarbazolesas components for electroactive materials [J]. Synthesis,2003,(16):2470-2472.
    [77] Perepichka I.I., Perepichka I.F., Bryce M.R., et al. Dibenzothiophene-S, S-dioxide–fluoreneco-oligomers. Stable, highly-efficient blue emitters with improved electron affinity [J].Chemical Communications,2005,(27):3397-3399.
    [78] Huang J., Niu Y., Yang W., et al. Novel electroluminescent polymers derived fromcarbazole and benzothiadiazole [J]. Macromolecules,2002,35(16):6080-6082.
    [79] Colladet K., Nicolas M., Goris L., et al. Low-band gap polymers for photovoltaicapplications [J]. Thin Solid Films,2004,451:7-11.
    [80] Koyuncu S., Zafer C., Sefer E., et al. A new conducting polymer of2,5-bis(2-thienyl)-1H-(pyrrole)(SNS) containing carbazole subunit: Electrochemical,optical and electrochromic properties [J]. Synthetic Metals,2009,159(19–20):2013-2021.
    [81] Ranger M., Rondeau D., Leclerc M. New well-defined poly (2,7-fluorene) derivatives:photoluminescence and base doping [J]. Macromolecules,1997,30(25):7686-7691.
    [82] Yang W., Hou Q., Liu C., et al. Improvement of color purity in blue-emitting polyfluoreneby copolymerization with dibenzothiophene [J]. Journal of Materials Chemistry,2003,13(6):1351-1355.
    [83] Liu J., Yu L., Zhong C., et al. Highly efficient green-emitting electrophosphorescenthyperbranched polymers using a bipolar carbazole-3,6-diyl-co-2,8-octyldibenzothiophene-S, S-dioxide-3,7-diyl unit as the branch [J]. RSC Advances,2012,2(2):689-696.
    [84] Zhang B., Hu X., Wang M., et al. Highly efficient polymer solar cells based on poly(carbazole-alt-thiophene-benzofurazan)[J]. New Journal of Chemistry,2012,36(10):2042-2047.
    [85] Nicolai H., Wetzelaer G., Kuik M., et al. Space-charge-limited hole current in poly (9,9-dioctylfluorene) diodes [J]. Applied Physics Letters,2010,96(17):172107.
    [86] Ma Z., Ding J., Zhang B., et al. Red‐Emitting Polyfluorenes Grafted with Quinoline‐Based Iridium Complex:“Simple Polymeric Chain, Unexpected High Efficiency”[J].Advanced Functional Materials,2010,20(1):138-146.
    [87] Fu L., Pan M., Li Y.-H., et al. A butterfly-like yellow luminescent Ir (III) complex and itsapplication in highly efficient polymer light-emitting devices [J]. Journal of MaterialsChemistry,2012,22(42):22496-22500.
    [88] Wu F.-I., Reddy D.S., Shu C.-F., et al. Novel oxadiazole-containing polyfluorene withefficient blue electroluminescence [J]. Chemistry of Materials,2003,15(1):269-274.
    [89] Chen X., Liao J.-L., Liang Y., et al. High-efficiency red-light emission from polyfluorenesgrafted with cyclometalated iridium complexes and charge transport moiety [J]. Journal ofthe American Chemical Society,2003,125(3):636-637.
    [90] Zhang Y., Zou J., Yip H.-L., et al. Indacenodithiophene and quinoxaline-based conjugatedpolymers for highly efficient polymer solar cells [J]. Chemistry of Materials,2011,23(9):2289-2291.
    [91] Liang Y., Feng D., Wu Y., et al. Highly efficient solar cell polymers developed viafine-tuning of structural and electronic properties [J]. Journal of the American ChemicalSociety,2009,131(22):7792-7799.
    [92] Ding P., Chu C.C., Liu B., et al. A High‐Mobility Low‐Bandgap Copolymer forEfficient Solar Cells [J]. Macromolecular Chemistry and Physics,2010,211(24):2555-2561.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700