用户名: 密码: 验证码:
基于动力吸振原理的车辆ISD悬架动力学特性与实现方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车辆ISD悬架是一种由"Inerter(惯容器)-Spring(弹簧)-Damper(阻尼器)”组成的新型悬架的简称,该悬架以惯容器代替质量元件,改变了基于经典隔振理论的“质量-弹簧-阻尼器”传统悬架结构,解决了运用机电模拟理论研究传统悬架时,质量元件等效为电路元件必须作“接地”处理,从而造成机电元件对应关系不对称的问题。ISD悬架的出现为研究车辆悬架振动控制和隔振技术提供了新的思路和空间,同时也提出了一系列新的课题。因此,研究ISD悬架的动力学特性、拓扑结构设计方法及其应用于车辆的关键技术,具有重要的学术价值和工程指导意义。
     本文主要研究新型机械元件惯容器以及基于动力吸振原理的ISD悬架设计的若干理论问题和关键技术。从惯容器的动力学特性、ISD悬架的机电模拟理论和机械阻抗分析方法、基于动力吸振理论的ISD悬架建模与参数优化、ISD悬架的动力学特性及其隔振机理、ISD悬架的拓扑结构设计方法与实现方案、ISD悬架中的惯容器研制与性能测试、车辆ISD悬架系统台架试验等方面,开展了深入而系统的研究,主要工作如下:
     建立了惯容器的动力学模型,分析了惯容器中的非线性因素,对可变惯质系数的惯容器、惯容器与阻尼器一体化等新技术进行了剖析。针对ISD悬架的新特点,对研究中涉及的相关基础理论,包括机电模拟理论、机械阻抗分析方法和机械网络综合理论等进行了较系统的论述。
     提出了基于动力吸振原理的ISD悬架结构设计理论和方法,并创新设计了ISD悬架结构。分析了传统动力吸振器的结构形式、动力学特性及工作机理,剖析了传统动力吸振器在车辆中应用的效果和问题。通过对含惯容器的动力吸振器与传统动力吸振器的机械阻抗特性的比较研究,证明了两者的机械阻抗特性具有等效性,揭示了惯容器弥补传统动力吸振器缺陷的机理。在此基础上,设计了基于动力吸振原理的ISD悬架结构,分别研究了单质量和双质量ISD悬架模型,并推导了基于1/4车辆的双质量ISD悬架的状态方程和传递函数。针对ISD悬架设计的多参数、多目标特点,提出了基于多目标遗传算法ISD悬架参数优化设计方法,并结合实例进行了优化设计。
     构建了基于“惯容器-弹簧-阻尼器”的广义机械网络的元件理想匹配关系,揭示了新型机械网络中元件连接方式的振动控制固有属性。通过研究ISD悬架的振动传递特性,揭示了该新型悬架由于惯容器质量阻抗的引入而产生的多元振动传递本质,及其具有的衰减和抑制低频振动的性能特点。分析了ISD悬架中主弹簧刚度、副弹簧刚度、惯质系数和阻尼系数等四个元件参数对振动传递特性的影响,推导了悬架无阻尼自由振动的频率特性,获得了元件参数对ISD悬架性能的影响规律和作用机理。研究了基于“惯容器-弹簧-阻尼器”的广义机械网络的隔振机理和力传递特性,构建了具有较好隔振效果的元件理想匹配关系,即:惯容器与弹簧宜串联,惯容器与阻尼器宜串联,弹簧与阻尼器串并联皆可。
     提出了ISD悬架的机械网络拓扑结构分析和设计方法,并对改进三元件拓扑结构进行了关键技术设计。定义了最具代表性的简单三元件拓扑结构,分析了车用机械网络的拓扑属性和结构特点,设计了一类最适宜ISD悬架应用的改进三元件拓扑结构。提出了ISD悬架相对于惯质系数的性能敛散性分类方法,可用于快速筛选有效的ISD结构。在综合比较5种有效的改进三元件ISD悬架性能基础上,证明了L4结构的ISD悬架在该类结构中性能最为理想。基于动力吸振原理的ISD悬架就是L4结构的ISD悬架,且符合广义机械网络的元件理想匹配关系,证明了设计和研究方法的科学性、有效性。
     最后,开发惯容器和基于动力吸振原理的ISD悬架系统,并进行试验研究。论述了ISD悬架中的惯容器选型方法,对螺母旋转式滚珠丝杠惯容器的设计流程进行分析,研制了惯容器样件并进行性能测试,得出研制的惯容器基本符合理论模型,能够满足试验要求。在此基础上,设计了基于动力吸振原理的ISD悬架系统样机,将ISD悬架装配为一体式压杆结构,采用正弦输入和随机输入两种模式,进行台架性能试验。试验结果表明:与等刚度的传统被动悬架相比,在正弦输入条件下,基于动力吸振原理的ISD悬架低频段的性能指标均方根值明显降低;在随机输入条件下,ISD悬架的性能指标均方根值均低于传统被动悬架。车速为40km/h时,ISD悬架的悬架动行程均方根值下降了16.24%,车身加速度和轮胎动载荷均方根值也得到明显改善。试验结果和理论研究相符,进一步证明基于动力吸振原理的ISD悬架能够有效改善低频段工作性能,明显降低悬架动行程均方根值,兼顾改善车身加速度和轮胎动载荷均方根值,较好协调了悬架平顺性与安全性之间的要求。
     本文的研究工作,揭示了ISD悬架的工作机理、本质特性以及优于传统被动悬架的显著特点,将惯容器理论和动力吸振原理相结合所设计的ISD悬架,可以解决传统动力吸振器在车辆应用中遇到的诸多问题,丰富和拓展了悬架设计理论,为改善悬架性能和技术创新提供了新的方向。
Vehicle ISD is short for a new suspension composed of "Inerter-Spring-Damper", which uses inerter instead of mass element and changes the traditional suspension structure based on classical vibration isolation theory "Mass-Spring-Damper". The ISD suspension has solved the problem that mass element equivalent to circuit elements must be done "ground connection" treatment when the research of traditional suspension applies electromechanical simulation theory, resulting in an asymmetric relationship between electromechanical components. The appearance of ISD suspension provides new ideas and space for the study of vehicle suspension vibration control and vibration isolation technology, but also proposes a series of new issues. Therefore, the study of ISD suspension dynamics characteristic, the topology design method and its key technologies used in vehicles, have important academic value and engineering guiding significance.
     This thesis mainly studies several theoretical problems and key technologies of new mechanical element inerter and ISD suspension based on dynamic vibration absorber theory. This thesis has investigated deeply in the following aspects:the dynamics characteristic of inerter, ISD suspension electromechanical simulation theory and mechanical impedance analysis method, ISD suspension modeling and parameter optimization based on dynamic vibration absorber theory, dynamic characteristic and vibration isolation mechanism of ISD suspension, ISD suspension topology design and the design methods and implementation scheme, inerter development and performance testing in ISD suspension, the vehicle suspension system ISD bench test, etc., the main work is as follows:
     Dynamic model of inerter is established; nonlinear factors in the inerter are analyzed; new technologies such as the inerter with variable used qualitative coefficient and damper-inerter integration are analyzed. Aiming at the new features of the ISD suspension, the related basic theories included in research, including mechanical simulation theory, the mechanical impedance analysis method and mechanical network synthesis theory and so on are systematically specified.
     Structural design theory and method of ISD suspension based on dynamic vibration absorber theory are proposed, and ISD suspension is innovatively designed. This thesis analyzes the structure form, design method, dynamic characteristics and working mechanism of traditional dynamic vibration absorber. This thesis dissects the effects and problems of traditional dynamic vibration absorber in vehicle applications. By comparing dynamic vibration absorber containing inerter with traditional dynamic vibration absorber on their mechanical impedance characteristics, this thesis proves their characteristics of mechanical impedance have equivalence, and reveals the mechanism that inerter can make up for the defects of traditional dynamic vibration absorber. On this basis, ISD suspension based on dynamic vibration absorption theory is designed, this thesis studies single quality ISD suspension model and double quality ISD suspension model separately. This thesis deduces the state equation and the transfer function of double quality ISD suspension model based on a quarter car model. Aiming at the multiparameter and multiple target characteristics of ISD suspension, this thesis puts forward ISD suspension parameters optimization design method based on multiple target genetic algorithm and optimizes design combined with the instance.
     The ideal elements matching relations of generalized mechanical network based on "Inerter-Spring-Damper" are established. The inherent attributes of element connection vibration control in new mechanical network is revealed. By studying the ISD suspension vibration transfer characteristics, this thesis reveals the multiple vibration transfer feature of the new suspension due to the introduction of the inerter quality impedance, and its attenuation and performance characteristics of restraining low frequency vibration. This thesis analyzes four element factors as the main spring stiffness, deputy spring stiffness, used qualitative factor and damper factor, which act on the vibration transfer characteristics. The suspension undamped free vibration frequency characteristic is deduced. The effect law and working mechanism of element parameters on ISD suspension are obtained. The generalized mechanical network isolation mechanism and force transfer characteristics based on "Inerter-Spring-Damper" is studied. The ideal matching relations between the mechanical network elements which has better vibration isolation effects is established, which is "inerter and spring fit in series, inerter and damper fit in series, spring and damper fit both in series or in parallel".
     This thesis proposes the mechanical network topology structure analysis and design method of ISD suspension, and designs key technology for improved three-element topological structure. This thesis defines the most representative simple three-element topology. This thesis analyzes the topology properties and structural characteristics of the vehicle mechanical network, and designs a class of improved three-component topology structure which is most suitable to the ISD suspension application. This thesis proposes the performance convergence and divergence classification methods about ISD suspension compared to used qualitative factor, which can be used for screening effective ISD structure rapidly. On the basis of comprehensive comparison of5kinds of improved three-element ISD suspensions, this thesis proves that ISD suspension with L4structure is the most ideal one among the above kinds. ISD suspension based on dynamic vibration absorber theory is ISD suspension with L4structure, which conforms to the ideal element matching relations of generalized mechanical network. Design method and research method are proved to be scientific and effective.
     Finally, inerter and ISD suspension based on dynamic vibration absorber theory are developed and tested. This thesis discusses the selection methods of inerter in ISD suspension, analyzes the design process of nut-rotary ball screw inerter and develops the inerter sample to test its performance. The designed inerter basically conforms to theoretical model and can meet test requirements. Based on this, this thesis designs the ISD suspension system sample and assembles the ISD suspension as an integrated suspension structure, using sinusoidal input and random input modes for bench performance test. The results shows that:compared with traditional passive suspension which have the same stiffness, in the sinusoidal input conditions, the performance index root-mean-square value in low frequency performance of ISD suspension based on dynamic vibration absorber theory decreases obviously; in the random input conditions, the performance index root-mean-square value of ISD suspension are all lower than traditional passive suspension. When the speed is40km/h, the travel root-mean-square value of suspension decreases16.24%; the body accelerated speed root-mean-square value and tyre dynamic load root-mean-square value have also improved obviously. Test results conform to theoretical research, and prove that ISD suspension based on dynamic vibration absorber theory can effectively improve the working performance of suspension in low frequency. This kind of ISD suspension can obviously decrease travel root-mean-square value and improve both the body accelerated speed root-mean-square value and tyre dynamic load root-mean-square value.
     The research work in this thesis reveals the working mechanism, natural characteristics and the advantages than traditional passive suspension. The design of ISD suspension combining with inerter theory and dynamic absorber theory conforms to the ideal matching relation of mechanical network element, and can solve many problems of traditional dynamic vibration absorber appearing in vehicle application. The design of ISD suspension enriches and expands the suspension design theory, provides a new direction for improving suspension performance and technological innovation.
引文
[1]陈家瑞.汽车构造[M].北京:机械工业出版社,2007:199-243
    [2]周长城.汽车平顺性与悬架系统设计[M].北京:机械工业出版社,2011:58-75
    [3]刘有侠.汽车座椅的力学模型设计[J].天津汽车,2004(1):52-54
    [4]张孝祖.车辆控制理论基础及应用[M].北京:化学工业出版社,2007:132-145
    [5]Thomas D. Gillespie.车辆动力学基础[M](赵六奇,金达锋译).北京:清华大学出版社,2006:163-187
    [6]张孝良.理想天棚阻尼的被动实现及其在车辆悬架中的应用[D].镇江:江苏大学,2012
    [7]汪若尘.基于大系统理论的时滞半主动悬架研究[D].镇江:江苏大学,2006
    [8]余志生.汽车理论(第5版)[M].北京:机械工业出版社,2009:203-251
    [9]陈龙.车辆半主动悬架及其控制系统理论与技术研究[D].镇江:江苏大学,2007
    [10]Richter B.主动底盘系统的发展趋向(上),(张兆奎译)[J].汽车工程,1992,14(1):12-18
    [11]Nagai Masao, shionerr T., Hayass M. Analysis of vibration suppression control system of semi-active secondry suspension[J]. SICE,1989,929-932
    [12]喻凡,林逸.汽车系统动力学[M].北京:机械工业出版社,2005:140-209
    [13]李克强,董珂,永井正夫.多自由度车辆模型主动悬架及鲁棒控制[J].汽车工程,2003,25(1):7-11
    [14]Elbeheiry E. M., Karnopp D. C., Elaraby M. E., et al. Advanced ground vehicle suspension system-a classified bibliography[J]. Vehicle System Dynamics,1995,24(4):231-256
    [15]Goodall R M., Kortum W. Active control in ground transportation-a review of the state-of-the art and future potential[J]. Vehicle System Dynamics,1983,12:225-257
    [16]Nagai Masao. Recent researches on active suspension for ground vehicle[J]. JSME International Journal Series C,1993,36(2):167-170
    [17]Margolis D. L. The response of active and semi-active suspension to realistic feedback signals[J]. Vehicle System Dynamics,1982,11(3):267-282
    [18]Kawakami H, Sato H, Tabata M, et al. Development of integrated system between active control suspension, active 4WS,TRC and ABS[J]. SAE Technical Paper Series,920271:41-48
    [19]Nagai Masao, Motoki Shino, Gao Feng. Study on integrated control of active front steer angle and direct yaw moment[J]. JSAE Review,2002,23:309-315
    [20]徐伯清,钱瑜.汽车主动悬架的最优控制[J].江南学院学报,1999,14(4):59-63
    [21]Bender E. K. Some fundamental limitations of active and passive vehicle suspension system[J]. SAE paper,1968, No.680750
    [22]Crosby M. J., Karnopp D. C. The active damper-a new concept for shock and vibration control[J]. The Shock and Vibration Bull,1973,43(4):119-133
    [23]董波,主要类型可控悬架的原理简介及发展[J].汽车技术,2002(5):14-17
    [24]Krasnicki E. J. The experimental performance of an on-off active damper[J]. The Shock and Vibration Bull,1980,53(11):125-131
    [25]Sharp R. S., et al. Road vehicle suspension design-a review [J]. Vehicle System Dynamics, 1987,16:167-192
    [26]Aoyama Y., Kawabata K., Hasegawa S., et al. Development of the full active suspension by Nissan. SAE paper 901747,1990
    [27]Yokoya K., Kizu R., Kawaguchi H., et al. Integrated control system between active control suspension and four wheel steering for the 1989 Celica. SAE paper 901748,1990
    [28]Yu F., Crolla D. A. Wheelbase preview optimal control for active vehicle suspensions[J]. Chinese Journal of Mechanical Engineering (English edition),1998,11(2):122-129
    [29]Tompson A. G., Davis B. R., Pearce C. E. An optimal linear active suspension with finite road preview[J]. SAE paper 800520,1980
    [30]Hac A. Optimal linear preview control of active vehicle suspension[J]. Vehicle System Dynamics,1992,21:167-195
    [31]Karnopp D. C., Crosby M. J., HARWood R. A. Vibration control using semi-active force generators[J]. American Society of Mechanical Engineers (paper),1973
    [32]Karnopp D. C. Electronically controllable vehicle suspension[J]. Vehicle System Dynamics, 1991,22:207-217
    [33]Hedrick J. K., Wormely D. N. Active suspension for ground support vehicle-a state of the art review[J]. ASME,AMD,1975,15:21-40
    [34]Ivers D. E., Miller L. R. Experimental and comparison of passive, semi-active on/off and semi-active continuous suspension[J]. SAE paper, No.89484,1989
    [35]Bank P. Passive versus active and semi-active suspension from theory to application in north American industry[J]. SAE paper, No.922140,1992
    [36]Hrovat D., Margolis D. L., Hubbard M. An approach toward the optimal semi-active suspension[J]. Journal of Dynamic System, Measurement and Control,1988,110:288-296
    [37]Sharp R. S., Crolla D. A. Road vehicle suspension system design-a review[J]. Vehicle System Dynamics,1987,16:167-192
    [38]Seung-Bok Choi, Wan-Kee Kim. Vibration Control of a Semi-active Featuring Electrorheological Fluid Dampers[J]. Journal of Sound and Vibration,2000,234(3):537-546
    [39]方锡邦,陈无畏,吴乐等.模糊控制技术及其在汽车半主动悬架中应用[J].机械工程学报,1999,(3)
    [40]陈无畏,方锡邦,王启瑞等.车辆半主动悬架系统的分析设计及试验研究[J].农业机械学报,1999,(6)
    [41]Lu Lyan-Ywan. Semi-active modal control for seismic structures with variable friction damp-.rs[J]. Engineering Structures,2004,26(4):437-454
    [42]SUN Tao, HUANG Zhen-yu, CHEN Da-yue. Signal frequency-based semi-active fuzzy control for two-stage vibration isolation system[J]. Journal of Sound and Vibration,2005,280(3-5): 965-981
    [43]王世明,王孙安,李天石.半主动悬架及其控制[J].汽车技术,1999,(12):1-3
    [44]李以农,郑玲.基于磁流变减振器的汽车半主动悬架非线性控制方法[J].机械工程学报,2005,41(5):31-37
    [45]陈龙,江浩斌,周孔亢等.半主动悬架系统设计及控制[J].机械工程学报,2005,41(5):137-141
    [46]陈龙,李德超,周孔亢等.自适应模糊控制技术在半主动悬架控制中的应用[J].农业机械学报,2005,35(4):5-8
    [47]陈龙,李德超,薛念文等.基于模糊控制理论的自适应模糊控制半主动悬架研究[J].农业工程学报,2001,(6):9-12
    [48]CHEN Long, JIANG Haobin, YANG Moucun. Study on the Semi-active Suspension Control System and its Stability Based on T-S Fuzzy Neural Comtrol Strategy[J]. Advances in Materials Manufacturing Science and Technology,2005, (471-472):557-562
    [49]CHEN Long, JIANG Haobin, LI Zhongxing, et al. Study on Design and Control Measures of Semi-active Suspension System[C]//Proceedings of The 6th International Conference on Frontiers of Design and Manufacturing,2005
    [50]CHEN Long, JIANG Haobin, LIU Fei. A Research on Modeling and Control of Semi-Active Suspension System[C]//CIGR International Conference,2004
    [51]陈龙,汪若尘,江浩斌等.含时滞半主动悬架及其控制系统[J].机械工程学报,2006,42(1):130-133
    [52]陈龙,周孔亢,李德超.半主动悬架与整车性能匹配研究[J].机械工程学报,2002,38(3):113-116
    [53]傅志方,张志谊,华宏星.半主动悬架控制的H∞方法[J].振动工程学报,1999,12(1):33-39
    [54]陈龙,李德超.车辆半主动悬架自适应模糊控制器设计与仿真[J].江苏理工大学学报(自然科学版),2001,22(6):18-21
    [55]陈龙,周孔亢,李德超.车辆半主动悬架控制技术的研究[J].农业机械学报,2002,33(1):25-28
    [56]陈龙,崔晓利,李德超.车辆悬架的半主动自适应模糊控制方法研究[J].兵工学报,2003,24(4):544-547
    [57]陈龙,汪若尘,江浩斌等.半主动悬架及其控制系统的时滞控制研究[J].中国机械工程,2005,16(24):2249-2251
    [58]陈龙,周立开,江浩斌等.车辆悬架阻尼的神经网络优化设计与试验研究[J].中国机械工程,2005,16(18):1666-1668
    [59]陈龙,汪若尘,江浩斌等.车辆半主动悬架系统设计与试验研究[J].农业工程学报,2005,21(8):58-61
    [60]陈龙,李德超,周孔亢.一种新的车辆半主动悬架控制器设计[J].农业工程学报,2002,18(3):54-57
    [61]日本自动车技术会.汽车工程手册7-整车试验评价篇[M](中国汽车工程学会组译).北京:北京理工大学出版社,2010:144-185
    [62]M.米奇克.汽车动力学[M].北京:人民交通出版社,1997
    [63]International Standard Organization, ISO2631, Guide for evaluation of human exposure to whole body vibration[S],1974
    [64]International Standard Organization, ISO2631-1:1997(E), Mechanical vibration and shock-evaluation of human exposure to whole-body vibration-Part 1:General requirements[S], 1997
    [65]马广发,赵六奇,卢士富,等起草.GB/T 4970-1996,汽车平顺性随机输入行驶试验方法[S].北京:中国标准出版社,1996
    [66]中国第一汽车集团公司技术中心起草,GB/T 4970-2009,汽车平顺性试验方法[S].北京: 中国标准出版社,2009
    [67]Al-zahrnah Iyad Talal. Performace evaluation and multi-objective optimization of passive vehicle suspension systems[D]. Dhahran, Saudi Arabia:KingFahd University of Petroleum and Minerals,1993
    [68]Ammon Dieter. Spring-Damper-Strut:Germany,19958178.8[P].1999-12-2
    [69]Smith Malcolm C. Synthesis of mechanical networks:the inerter[J]. IEEE Transactions on Automatic Control,2002,47(10):1648-1662
    [70]Smith Malcolm C. Synthesis of mechanical networks:the inerter[C]//Proceedings of the 41th IEEE Conference on Design and Control. USA:Las Vegas.2002:1657-1662
    [71]Smith Malcolm C. Force-controlling mechanical device:UK PCT/GB02/03056[P].2003-01-16
    [72]Smith Malcolm C., WANG Fu-cheng. Performance benefits in passive vehicle suspensions employing inerters[C]//Proceedings of the 42nd IEEE Conference on Design and Control. USA: Hawaii.2003:2258-2263
    [73]Smith Malcolm C., WANG Fu-cheng. Performance benefits in passive vehicle suspensions employing inerters[J]. Vehicle System Dynamics,2004,42(4):235-257
    [74]Evangelou Simos, Limebeer David J. N., Sharp Robin S., et al. Steering compensation for high-performance motorcycles[C]//Proceedings of the 43rd IEEE Conference on Design and Control. Bahamas:Paradise Island.2004:749-754
    [75]Papageorgiou Christakis, Smith Malcolm C. Laboratory experimental testing of inerters[C]//Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference. Spain:Seville.2005:3351-3356
    [76]Papageorgiou Christos, Houghton Neil E., Smith Malcolm C. Experimental testing and analysis of inerter devices[J]. Journal of Dynamic Systems, Measurement, and Control,2009,131
    [77]Papageorgiou Christakis, Smith Malcolm C. Positive real synthesis using matrix inequalities for mechanical networks:application to vehicle suspension[J]. IEEE Transactions on Control System Technology,2006,14(3):423-434
    [78]WANG Fu-cheng, YU Chung-huang, CHANG Mong-lon, et al. The performance improvements of train suspension systems with inerters[C]//Proceedings of the 45th IEEE Conference on Design and Control.2006:1472-1477
    [79]WANG Fu-cheng, LIAO Min-kai, LIAO Bo-huai, et al. The performance improvements of train suspension systems with mechanical networks[J]. Vehicle System Dynamics,2009,47(7): 805-830
    [80]WANG Fu-cheng, LIAO Min-kai. The lateral stability of train suspension systems employing inerters[J]. Vehicle System Dynamics,2010,48(5):619-643
    [81]WANG Fu-cheng, HSIEH Min-ruei, CHEN Hsueh-ju. Stability and performance analysis of a full-train system with inerters[J]. Vehicle System Dynamics,2012,50(4):545-571
    [82]WANG Fu-cheng, CHEN Cheng-wei, LIAO Min-kai, et al. Performance analyses of building suspension control with inerters[C]//Proceedings of the 46th IEEE Conference on Decision and Control. USA:New Orleans.2007:3786-3791
    [83]WANG Fu-cheng, HONG M. F., CHEN Cheng-wei. Building suspension with inerters[C]//Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science,2010,224(8):1605-1616
    [84]WANG Fu-cheng, SU Wei-jiun. Impact of inerter nonlinearities on vehicle suspension control[J]. Vehicle System Dynamics,2008,46(7):575-595
    [85]WANG Fu-cheng, SU Wei-jiun. Inerter nonlinearities and the impact on suspension control[C]//Proceedings of 2008 American Control Conference. USA:Washington.2008: 3245-3250
    [86]WANG Fu-cheng, CHAN Hsiang-an. Mechatronic suspension design and its applications to vehicle suspension control[C]//Proceedings of the 47th IEEE Conference on Decision and Control. Mexico:Cancun.2008:3769-3774
    [87]WANG Fu-cheng, CHAN Hsiang-an. Vehicle suspensions with a mechatronic network strut[J]. Vehicle System Dynamics,2011,49(5):811-830
    [88]WANG Fu-cheng, HONG M. F., LIN T. C. Design and testing a hydraulic inerter[C]//Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science,2011,225(1):66-72
    [89]CHEN Michael Z. Q., Papageorgiou Christos, Scheibe Frank, et al. The missing mechanical circuit element[J]. IEEE Circuit and System Magazine,2009,9(1):10-26
    [90]CHEN Michael Z. Q., Smith Malcolm C. Restricted complexity network realizations for passive mechanical control[J]. IEEE Transactions on Automatic Control,2009,54(10): 2290-2301
    [91]JIANG Jason Zheng, Smith Malcolm C. Synthesis of positive-real functions with low-complexity series-parallel networks[C]//Proceedings of the 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference. China:Shanghai.2009:7086-7091
    [92]JIANG Jason Zheng, Smith Malcolm C. On the classification of series-parallel electrical and mechanical networks[C]//Proceedings of 2010 American Control Conference. USA:Baltimore. 2010:1416-1421
    [93]JIANG Jason Zheng, Smith Malcolm C. Regular positive-real functions and five-element network synthesis for electrical and mechanical networks[J]. IEEE Transactions on Automatic Control,2011,56(6):1275-1290
    [94]JIANG Jason Zheng, Z. Matamoros-Sanchez Alejandra, M. Goodall Roger, et al. Passive suspensions incorporating inerters for railway vehicle[J]. Vehicle System Dynamics,2012, 50(suppl 1):263-276
    [95]Kuznetsov Alexey, Mammadov Musa, Sultan Ibrahim, et al. Optimization of improved suspension system with inerter device of the quarter-car model in vibration analysis[J]. Archive of Applied Mechanics,2011,81(10):1427-1437
    [96]Hanazawa Yuta, Suda Hiroyuki, Yamakit Masaki. Analysis and experiment of flat-footed passive dynamic walker with ankle inerter[C]//Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics. Thailand:Phuket.2011:86-91
    [97]Amrit Sharma, David Limebeer. Dynamic stability of an aerodynamically efficient mototcycle[J]. Vehicle System Dynamics,2012,50(8):1319-1340
    [98]陈龙,张孝良,汪若尘.应用惯性蓄能的车辆悬架,中国,发明专利,专利号:ZL200810123830.8
    [99]陈龙,张孝良,江浩斌等.基于机电系统相似性理论的蓄能悬架系统[J].中国机械工程,2009,20(10):1248-1251
    [100]江浩斌,耿建涛,张孝良等.基于虚拟样机模型的车辆蓄能悬架联合仿真研究[J].振动与冲击,2010,29(12):221-223
    [101]孙晓强,陈龙,张孝良等.基于ADAMS的滚珠丝杠式ISD悬架平顺性仿真研究[J].车辆与动力技术,2012,126:1-4
    [102]陈龙,张孝良,聂佳梅等.一种被动天棚与地棚阻尼隔振系统,国际,发明专利,申请号:PCT/CN2011/083991
    [103]陈龙,张孝良,聂佳梅等.基于半车模型的两级串联型ISD悬架性能分析[J].机械工程学报,2012,48(6):102-108
    [104]张孝良,陈龙,聂佳梅等.2级串联型ISD悬架频响特性分析与试验[J].江苏大学学报 (自然科学版),2012,33(3):255-258
    [105]陈国涛,陈龙,张孝良等.“惯容器-弹簧-阻尼”悬架系统正实综合研究[J].机械设计与制造,2012,4:116-118
    [106]聂佳梅,张孝良,江浩斌等.惯容器模型结构探索[J].机械设计与研究,2012,28(1):29-32
    [107]聂佳梅,张孝良,胡贝等.车辆被动悬架技术发展新方向[J].车辆与动力技术,2012,126:59-64
    [108]陈龙,张孝良,聂佳梅等.摆线钢球式惯性质量蓄能器,中国,发明专利,申请号:201010281317.9
    [109]陈龙,张孝良,聂佳梅等.液力惯容器装置,中国,发明专利,申请号:201010510953.4
    [110]陈龙,张孝良,聂佳梅等.两自由端点式动力吸振器,中国,发明专利,申请号:201010281992.1
    [111]陈龙,张孝良,汪若尘等.杠杆式惯性质量蓄能悬架,中国,发明专利,申请号:201010281307.5
    [112]陈龙,张孝良,汪若尘等.惯性质量蓄能式车辆悬架,中国,发明专利,申请号:201010281331.9
    [113]李川,邓菊丽,王时龙等.螺旋飞轮运动转换系统的机电比拟设计理论研究[J].机械工程学报,2010,46(3):103-108
    [114]李川,王时龙,张贤明等.一种含螺旋飞轮运动转换器的悬架的振动控制性能分析[J].振动与冲击,2010,29(6):96-100
    [115]王锴,陈志强.双二次阻抗函数的低复杂度实现问题[C]//Proceedings of the 24th Chinese Control and Decision Conference (CCDC),2012:2888-2893
    [116]ZHANG Xin-jie, Mehdi Ahmadian, GUO Kong-hui. On the benefits of semi-active suspensions with inerters[J]. Shock and Vibration,2012,19(3):257-272
    [117]陈龙,杨谋存,薛念文等.基于T-S模糊模型的半主动悬架控制研究[J].江苏大学学报(自然科学版),2004,25(5):385-388
    [118]陈龙,陈杨,江浩斌.节流口可调式减振器的性能分析与试验研究[J].江苏大学学报(自然科学版),2004,25(3):208-211
    [119]陈龙,周立开,江浩斌.可调减振器阻尼控制与半主动悬架试验研究[J].公路交通科技,2005,22(10):151-153
    [120]杨谋存.半主动悬架系统设计与车辆性能协调研究[D].镇江:江苏大学,2004
    [121]陈杨.车辆半主动悬架系统控制与试验研究[D].镇江:江苏大学,2004
    [122]刘飞.半主动悬架系统与车辆性能的协调研究[D].镇江:江苏大学,2003
    [123]李德超.车辆半主动悬架系统自适应模糊控制的研究[D].镇江:江苏理工大学,2001
    [124]徐茂盛.惯质概念之实现及在建筑物减振之应用[D].台北:国立台湾大学,2005
    [125]林子谦.惯质模型的实现[D].台北:国立台湾大学,2007
    [126]M. Nordin, J. Galic, P. O. Gutman. New Models for backlash and gear play[J]. International Journal of Adaptive Control and Signal Processing,1997,11:49-63
    [127]左鹤声.机械阻抗方法与应用[M].北京:机械工业出版社,1987:1-85
    [128]F. A. Firestone. A new analogy between mechanical and electrical systems[J]. J. Acoust. Soc.Amer.,1933,4:249-267
    [129]罗胜钦,刘芳,韩志刚.网络综合原理[M].上海:同济大学出版社,2005:1-58
    [130]上海铁道学院.网络综合理论[M].北京:中国铁道出版社,1980:1-54
    [131]汪文秉,邹理和.网络综合原理[M].北京:国防工业出版社,1979:1-146
    [132]贝卡利.网络分析与综合基础[M](陈大倍,颜超,卢衍桐译).北京:人民教育出版社,1979:1-102
    [133]吴宁.电网络分析与综合[M].北京:科学出版社,2002:1-286
    [134]O. Brune. Synthesis of a finite two-terminal network whose driving-point impedance is a prescribed function of frequency[J]. J. Math. Phys.,1931,10:191-236
    [135]R. Bott and R. J. Duffin, Impedance synthesis without use of transformers[J]. J. Appl. Phys.,1949 20:816
    [136]S. Darlington. Synthesis of reactance 4-poles which produce prescribed insertion loss characteristics[J]. J. Math. Phys.,1931,10:257-353
    [137]廖柏淮.被动式机械系统之网路实现-惯质与线性矩阵不等式在火车悬吊系统上之应用[D].台北:国立台湾大学,2006
    [138]俞立.鲁棒控制-线性矩阵不等式处理方法[M].北京:清华大学出版社,2002:1-20
    [139]陈国涛.“惯容器-弹簧-阻尼”悬架系统网络综合与分析研究[D].镇江:江苏大学,2012
    [140]刘耀宗,郁殿龙,赵宏刚,等.被动式动力吸振技术研究进展[J].机械工程学报,2007,43(3):14-21
    [141]Frahm H. Device for damping vibration of bodies:U. S. Patent,989958[P].1909. 3576-3580
    [142]陈开景,潘公宇.带动力吸振器的空气主动悬架的仿真研究[J].机械设计与制造,2012(3):139-141
    [143]张孝祖,武鹏.装有动力吸振器的汽车悬架性能分析[J].江苏大学学报(自然科学版),2004,25(5):389-392
    [144]赵继俊.优化技术与Matlab优化工具箱[M].北京:机械工业出版社,2011:166-171
    [145]史峰,王辉,郁磊,等.Matlab智能算法30个案例分析[M].北京:北京航空航天大学出版社,2011:1-56
    [146]龚纯,王正林.精通Matlab最优化计算(第2版)[M].北京:电子工业出版社,2012:313-344
    [147]薛定宇.控制系统计算机辅助设计-Matlab语言与应用[M].北京:清华大学出版社,2006
    [148]FEI L, ZHAO X. D. Integrated control of automotive four wheel steering and active suspension systems based on uniform model[C]//Proceedings of 9th International Conference on Electronic Measurement and Instruments. China:Beijing.2009:3551-3556
    [149]侯志祥,吴义虎,申群太.基于混合遗传算法的主动悬架集成优化研究[J].汽车工程,2005,27(3):309-312
    [150]盛云,吴光强.7自由度主动悬架整车模型最优控制的研究[J].汽车技术,2007,(6):12-16
    [151]李德葆,陆秋海.工程振动试验分析[M].北京:清华大学出版社,2004:205-314
    [152]程光仁,施祖康,张超鹏.滚珠螺旋传动设计基础[M].北京:机械工业出版社,1987
    [153]何纪承.高速滚珠丝杠副动力学性能分析及试验研究[D].济南:山东建筑大学,2012
    [154]范东风.大导程滚珠丝杠副螺母成型磨削加工建模与仿真[D].上海:上海交通大学,2009
    [155]L. Ljung. System Identification Theory for the User (Second Edition). Prentice-Hall PTR 1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700