用户名: 密码: 验证码:
四轮独立电动车驱动/转向/制动稳定性集成控制算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
四轮独立电动车驱动/转向/制动稳定性集成控制算法研究
     随着传统能源的日益匮乏和环境的恶化,政府和汽车生产商开始致力于发展电动车以缓解交通运输对于能源和环境的压力。另一方面,消费者对于车辆各项性能的要求不断提升,传统汽车经历过一个多世纪的发展已经趋于完善,由于受到固有机械结构的局限,整车性能很难再有较大的提升。全线控四轮轮毂电机独立驱动、独立转向、独立制动电动车既符合车辆电动化的趋势,又由于相对于传统车辆具备更多的可控自由度,适于采用车辆底盘集成控制技术,一体化分配车辆驱动、转向、制动系统执行器动作,达到车辆性能的全局最优。因此,将四轮独立电动车与车辆底盘集成控制技术相结合具有较好的发展前景。本文在国家自然科学基金“线控汽车底盘控制方法与关键技术研究”(50775096)和国家自然科学基金青年基金“线控转向系统操纵杆及其双向控制方法研究”(51105165)的资助下,基于全线控四轮独立电动车,提出最大化车辆轮胎附着裕度的稳定性控制目标,设计集成控制算法结构,开发稳定性集成控制算法。
     为了探究四轮独立电动车的动力学特点,并为稳定性集成控制算法提供仿真平台,本文建立了四轮独立电动车的动力学仿真模型。该模型能够反映车辆纵向、侧向、横摆运动之间的耦合关系,体现驱动电机、转向电机的动态响应特性,能够进行四轮独立电动车所特有的多运动模式仿真。之后,针对本文所研究的稳定性集成控制,对模型在高速、低附着等极限工况的仿真精度进行了验证。
     本文设计的集成控制算法采用分层集中控制结构,既具备较高的算法集成度以使控制性能达到理论最优,又简化了车辆解耦控制的难度。算法结构分为两层,上层根据车辆运动控制目标,利用车辆逆动力学求出车体所需的总纵向力、总侧向力、总横摆力矩,实现驾驶意图;下层把四个车轮的转向角和驱动/制动力矩作为8个独立的控制变量,利用最优化控制方法并考虑优化利用轮胎附着能力提高车辆稳定性,从而把车体运动所需的总控制力转化为控制变量的具体值作为集成控制器的输出。
     在算法设计方面,上层采用线性化的三自由度车辆被控系统模型,构建了被控系统反馈镇定矩阵,基于模型预测控制理论设计多输入多输出系统多目标跟踪集中控制层算法。算法下层以最大化四个轮胎附着裕度为分配目标,考虑轮胎垂直载荷、路面附着条件对轮胎附着能力的限制,得到轮胎纵向力、侧向力的优化分配结果。轮胎纵向力由驱动、制动系统力控制直接实现,对于轮胎侧向力控制,本文建立了轮胎逆模型,通过控制车轮转角,获得对应轮胎侧偏角实现。
     最后,本文通过三种极限工况的仿真,验证本文提出的四轮独立电动车稳定性集成控制结构和控制算法的有效性。验证结果表明,集成控制算法能够实现驾驶员的驾驶意图,保持车辆质心侧偏角为零,控制四个车轮的轮胎利用率相等,降低了最大轮胎利用率;通过与无稳定性集成控制的车辆对比,证明稳定性集成控制算法能够提高车辆行驶稳定性。
With the increasing scarcity of traditional energy sources and the growing pollution,government and car manufacturers are committed to the electric cars to alleviate thetransport pressure on energy and the environment. On the other hand, consumers requirevehicle performance to increase. However, conventional vehicles have developed for morethan a century and the performance is relatively difficult to increase furthermore because ofthe limitation of mechanical structures. Full-wire four wheel-motor independent drive,independent steering, independent braking electric vehicle complies with the trend of vehicleelectrification. And it has more controllable degrees of freedom. Therefore, it is suitable toadopt vehicle chassis integrated control technology to allocate driving, steering and brakingsystem actuator actions to achieve the global optimum of vehicle performance. Therefore,four wheel independent electric vehicles equipped with integrated chassis control technologyhave good development prospects. In this thesis which is supported by National NaturalScience Foundation of China(50775096) and National Science Foundation for DistinguishedYoung Scholars of China(51105165), based on full-wire four-wheel-independent electricvehicles, integrated control algorithm structure is designed, the stability control objective isproposed to maximize tire attachment margins, and stability integrated control algorithm isdeveloped.
     To explore the dynamic characteristics of four-wheel-independent electric vehicle, andprovide the validation platform for stability integrated control algorithm, dynamic simulationmodel of four-wheel-independent electric vehicle is established. The model can reflect thecoupling among vehicle longitudinal, lateral, and yaw movement, and the dynamic response characteristics of driving motors and steering motors. Moreover, it can simulatemulti-moving modes which are unique to four-wheel-independent vehicles. Besides, for thesimulation of stability integrated control, the model is validated in harsh working conditionssuch as high speed and low adhesion conditions.
     Integrated control algorithm designed in this thesis uses a hierarchical centralized controlstructure, which has high integration degree so that it can achieve the theoretical optimalcontrol performance, and also simplify vehicle decoupling control problem. The algorithmstructure is divided into two layers. The upper layer calculates the required total verticalforce, total lateral force and total yaw moment according to vehicle movement targets, byusing vehicle inverse dynamics. Therefore, the driving intention is realized. The lower layertakes four wheel steering angles and four wheel diving torques as eight independent controlvariables, and adopts optimal control methods to assign tire adhesions so that to enhancevehicle stability. At the same time, the total virtual control outputs are transformed intospecific control output values which are the control targets of vehicle actuators.
     To design the algorithm, in the upper layer, three degrees of freedom vehicle model isadopted, system feedback stabilization matrix is constructed, and the multi-inputmulti-output system multi-target tracking algorithm is designed based on model predictivecontrol theory. In the lower layer of the algorithm, with consideration of the effect of tirevertical load and road adhesion condition, tire adhesion margins are taken as allocation targetto calculate tire longitudinal force and tire lateral force optimally. Tire longitudinal forces arerealized directly by driving system and braking system. However, to control tire lateralforces, tire inverse model is built in this thesis. Therefore, the steering system can control tirelateral forces by controlling steering angles to obtain corresponding tire slip angles.
     Finally, the four-wheel-independent electric vehicle stability integrated control structure andthe algorithm is validated by simulation of three harsh working conditions. The results showthat the integrated control algorithm can achieve driver’s driving intentions, keep vehicle slipangle to be zero, and control the utilization of tire adhesions to be equal so that the maximumtire adhesion utilization is reduced. Vehicle with and without stability integrated control are compared, and it show that stability integrated control algorithm can improve vehiclestability.
引文
[1]阿莫斯·萨尔瓦(美).能源:历史回顾与二十一世纪展望[M].赵政璋等译.北京:石油工业出版社,2007.
    [2]Huihuan QIAN,Tin Lun LAM. System and Design of an Omni-directional Vehicle[C].Proceedings of the2008IEEE International Conference on Robotics and Biomimetics,Bangkok,2009:389-394.
    [3]Roshan, Naraghi. Vehicle Integrated Control-An Adaptive Optimal Approach toDistribution of Tire Forces[C].2008IEEE International Conference on Networking, Sensingand Control,Sanya,2008:885-890.
    [4]Dr.-Ing.Klaus Webers,Dr.-Ing.Rainer Busch,Fort Integrated Vehicle Dynamics ControlRealization[J]. Reseache&Advanced Engineering.2003.
    [5]Aleksander Hac,David Doman,Michael Oppenheimer. Unified Control of Brake-andSteer-by-Wire Systems Using Optimal Control Allocation Methods[C].2006SAE WorldCongress,Detroit,Michigan,2006.
    [6]Junmin Wang, Raul G.Longoria. Coordinated Vehicle Dynamics Control with ControlDistribution[C].2006American Control Conference, Minneapolis, Minnesota, USA,2006:5348-5353.
    [7]Ossama Mokhiamar,Masato Abe. How the four wheels should share forces in anoptimum cooperative chassis control[J]. Control Engineering Practice,2006,14:295-304.
    [8]Eiichi Ono,Yoshikazu Hattori,Yuji Muragishi. Estimation of Tire Friction Circle andVehicle Dynamics Integrated Control for Four-wheel Distributed Steering and Four-wheelDistributed Traction/Braking Systems[J]. R&D Review of Toyota CRDL.2005,40(4):7-13.
    [9]Junjie He,D A Crolla,M C Levesley,and W J Manning. Coordination of active steering,driveline and braking for integrated vehicle dynamics control[J]. Proc.IMechE,2006,220:1401-1421.
    [10]Johannes Tjonnas,Tor A.Johansen. Stabilization of Automotive Vehicles Using ActiveSteering and Adaptive Brake Control Allocation[C]. IEEE transactions on control systemstechnology,2010,18(3):545-558.
    [11]Tin Lun Lam,Yangsheng Xu,and Guoqing Xu. Traction Force Distribution onOmni-directional Four Wheel Independent Drive Electric Vehicle[C].2009IEEEInternational Conference on Robotics and Automation,Kobe,Japan,2009:3724-3729.
    [12]Tin Lun Lam,Huihuan Qian,Yangsheng Xu. Omnidirectional Steering Interface andControl for a Four-Wheel Independent Steering Vehicle IEEE/ASME Transaction onMechatronics,VOL.2010,15(3):1083-4435.
    [13]Johan Andreasson,Christian Knobel. On Road Vehicle Motion Control-striving towardssynergy[C]. The8thInternational Symposium on Advanced Vehicle Control,Taipei,Taiwan,2006.
    [14]赵树恩.基于多模型智能递阶控制的车辆底盘集成控制研究[D].重庆:重庆大学,2010.
    [15]秦炜华.基于多体模型的汽车底盘集成控制[D].安徽:合肥工业大学,2010.
    [16]刘显贵.汽车底盘关键子系统的稳定性分析与集成控制研究[D].安徽:合肥工业大学,2010.
    [17]祝辉.基于磁流变半主动悬架的汽车底盘集成控制[D].安徽:合肥工业大学,2009.
    [18]初长宝.汽车底盘系统分层式协调控制研究[D].安徽:合肥工业大学,2008.
    [19]王其东,秦炜华,陈无畏.基于多刚体动力学和规则协调的汽车EPS与ASS建模与控制[J].中国机械工程,2010,21(14):1709-1714.
    [20]王其东,宋宜亮.车辆防抱制动系统与主动悬架系统集成协调控制算法的仿真[J].合肥工业大学学报(自然科学版),2007,30(12):1610-1614.
    [21]王其东,秦炜华,姜武华,陈无畏.基于多体模型的汽车底盘分级式综合控制仿真研究[J].汽车工程,2010,32(8):693-698.
    [22]王其东,吴勃夫,陈无畏.基于预测控制的主动悬架与电动助力转向集成控制[J].农业机械学报,2007,38(1):1-5.
    [23]应艳杰,方敏,张增年,陈无畏,汪洪波.汽车EPS与ASS的H∞/PID集成控制[J].农业机械学报,2007,38(1):6-11.
    [24]赵君卿,王其东.汽车电动助力转向与主动悬架集成控制及其仿真[J].合肥工业大学学报(自然科学版),2005,28(3):234-237.
    [25]陈无畏,孙启启,初长宝.汽车电动助力转向与主动悬架系统的H∞集成控制[J].振动工程学报,2007,20(1):45-50.
    [26]王其东,王霞,陈无畏,秦炜华.汽车主动前轮转向和防抱死制动协调控制[J].农业机械学报,2008,39(3):1-5.
    [27]Li-Qiang Jin,Chuan-Xue Song,Chang-Jian Hu. Driving Force Power Steering for TheElectric Vehicles with Motorized Wheels[C].2009IEEE Vehicle Power and PropulsionConference,Dearborn,MI,2009:1518-1524.
    [28]朱冰,李幼德,赵健,李静.基于多变量频域控制方法的车辆底盘集成控制[J].农业机械学报,2010,41(1):13-17.
    [29]郭建华,李幼德,李静.汽车防抱死系统与主动悬架联合控制研究[J].中国机械工程,2007,18(24):3014-3018.
    [30]郭建华,李静,李幼德.汽车主动前轮转向与防抱死制动系统集成控制研究[J].汽车技术,2007(11):4-8.
    [31]刘力,罗禹贡,江青云,李克强.基于广义预测理论的AFS/DYC底盘一体化控制[J].汽车工程,2011,33(1):52-55.
    [32]牛礼民,陈龙,江浩斌,赵景波.基于嵌入式的悬架与转向集成控制器研究[J].汽车电子,2008,24(42):245-247.
    [33]牛礼民,陈龙,赵又群,汪若尘.车辆底盘集成控制系统的电动机控制[J].农业机械学报,2008,39(12):27-30.
    [34]牛礼民,陈龙,江浩斌,赵又群.多智能体理论在车辆底盘集成控制中的应用[J].汽车技术,2008(8):31-35.
    [35]牛礼民.车辆半主动悬架和电动助力转向集成控制的研究与实现[D].江苏:江苏大学,2008.
    [36]邹庆,常玉林.汽车主动悬架与转向系统的集成控制[J].拖拉机与农用运输车,2008,35(1):56-58.
    [37]聂佳梅,陈龙,张孝良,汪若尘.汽车ASS与EPS分层协调控制[J].系统仿真学报,2010,22(12):2886-2889.
    [38]陈龙,袁传义,江浩斌,徐凯,汪少华.汽车主动悬架与电动助力转向系统自适应模糊集成控制[J].汽车工程,2007,29(1):8-12.
    [39]徐凯,陈龙,江浩斌,袁传义,汪少华.汽车转向与主动悬架集成系统的D-LMS控制[J].拖拉机与农用运输车,2007,34(1):42-44.
    [40]姜炜,余卓平,张立军.汽车底盘集成控制综述[J].汽车工程,2007,29(5):420-425.
    [41]吴利军,崔海峰,马岳峰.汽车ABS/ASR/ACC集成控制系统设计[J].液压与气动,2006(9):3-5.
    [42]喻凡,李道飞.车辆动力学集成控制综述[J].农业机械学报,2008,39(6):1-7.
    [43]沈晓鸣.基于广义执行器-受控对象的车辆底盘集成控制的研究[D].上海:上海交通大学,2006.
    [44]李道飞.基于轮胎力最优分配的车辆动力学集成控制研究[D].上海:上海交通大学,2008.
    [45]武建勇.提高车辆操纵稳定性的底盘集成控制系统设计与方法研究[D].上海:上海交通大学,2008.
    [46]Yingmin Jia. Robust Control with Decoupling Performance for Steering and Traction of4WS Vehicles under Velocity-Varying Motion[C]. IEEE Transactions On Control SystemsTechnology,2000,8(3):554-569.
    [47]Yongli Zhao, Yuhong Zhang, Yane Zhao. Stability Control System forFour-In-Wheel-Motor Drive Electric Vehicle[C].2009Sixth International Conference onFuzzy Systems and Knowledge Discovery,Tianjin,2009:171-175.
    [48]李昌刚,武建勇,唐厚君,欧阳涛.基于底盘集成控制的人-车闭环系统对提高车辆操纵稳定性和路径跟踪能力的效果研究[J].汽车工程,2009,31(9):812-819.
    [49]贝绍轶,赵景波,刘海妹.汽车底盘集成系统的重构控制技术评述[J].传感器与微系统,2010,29(4):1-4.
    [50]武建勇,唐厚君,欧阳涛,许香秀,刘伟.基于AFS与DYC集成控制提高车辆操纵稳定性的研究[J].系统仿真学报,2009,21(5):1227-1232.
    [51]宗长富,刘经文,郑宏宇,宋攀,张强.4WID/4WIS电动车建模和特殊工况仿真[J].汽车工程,2011,33(10):829-833.
    [52]Pacejka Hans B. Tyre and Vehicle Dynamics[M].Butterworth-Heinemann,2002.
    [53]Katsuhiko Ogata.现代控制工程(第三版)[M].卢伯英,于海勋等译.电子工业出版社,2000年5月.
    [54]席裕庚.预测控制[M].北京:国防工业出版社,1993.
    [55]张凤茹.鲁棒极点正规配置数值算法研究[D].黑龙江:哈尔滨工程大学,2009.
    [56]Max Demenkov.Reconfigurable direct control allocation for over-actuatedsystems[C].18thIFAC World Congress,Milano,Italy,2011:4696-4700.
    [57]Ola Harkegard,S.Torkel Glad.Resolving actuator redundancy-optimal control vs. controlallocation[J].Atuomatica,2005,41(1):137-144.
    [58]Ali Tavasoli,Nahyar Naraghi.Comparison of Static and Dynamic Control AllocationTechniques for Integrated Vehicle Control[C].18thIFAC WorldCongress,Milano,Italy,2011:7180-7186.
    [59]Yan Chen,Junmin Wang.Energy-Efficient Control Allocation with Applications onPlanar Motion Control of Electric Ground Vehicles[C].2011American Control Conferenceon O’Farrell Street, Sanfrancisco,2011:2719-2724.
    [60]余志生.汽车理论(第3版)[M].北京:机械工业出版社,2000.
    [61]Jorge VILLAGRA,Brigitte d’ANDREA-NOVEL,Michel FLIESS,Hugues MOUNIER.Adiagnosis-based approach for tire-road forces and maximum friction estimation[J].ControlEngineering Practice,2011,19(2):174-184.
    [62]SHIN-ICHIRO SAKAI, HIDEO SADO, and YOICHI HORI.Dynamic Driving/BrakingForce Distribution in Electric Vehicles with Independently Driven Four Wheels [J].Electrical Engineering in Japan,2002,138(1):79-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700