用户名: 密码: 验证码:
猪CRHR1、CRHR2基因的克隆及mRNA表达规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代化养猪生产中,存在着断奶应激、屠宰应激、热应激等诸多应激因素。这些因素严重影响着养猪业的发展。对此,人们已从饲养管理方面提出了许多对策,但对猪应激的遗传机制、分子机理及从遗传角度进行改良的研究却很少。
     应激产生时,下丘脑-垂体-肾上腺(HPA)轴兴奋,下丘脑释放促肾上腺皮质激素释放激素(CRH)以及神经肽激素到下丘脑门脉系统与位于脑垂体前部的促皮质激素细胞中的促肾上腺皮质激素释放激素受体(CRHR)结合,并激发促肾上腺皮质激素(ACTH)的分泌。ACTH通过血液作用于外周器官肾上腺皮质,使其释放糖皮质激素(GC),糖皮质激素能够影响整个机体,是机体对应激适应的关键激素。
     本文以猪为研究对象,对CRH受体基因CRHR1、CRHR2进行克隆、核酸序列分析、蛋白质结构功能预测,并探讨了这两个基因的mRNA表达规律,目的在于从应激的生理过程出发研究猪应激的分子机理,从遗传上找到猪抗应激的有效方法,进而推动猪的抗病育种,同时为以猪为动物模型进行人类疾病的研究提供理论依据。
     本研究的具体内容及结论如下:
     1、利用同源克隆与电子克隆结合的方法首次从猪脑组织中克隆得到CRHR1、CRHR2基因的全长编码序列(CDS)。CRHR1基因包含一个长为1248bp的开放阅读框,编码415个氨基酸。CRHR2基因包含一个长为1236bp的开放阅读框,编码411个氨基酸。结合已有的数据库对序列进行分析,发现了6个单核苷酸多态性(SNP)位点。
     2、将猪CRHR1和CRHR2基因与人、大鼠、小鼠、牛、狗等物种同源基因的CDS进行序列比对,表明CRHR1基因与其它哺乳动物的CDS相似性达91%以上,CRHR2基因与其它哺乳动物的CDS相似性达86%以上。猪CRHR1和CRHR2氨基酸序列与其它哺乳动物同源的氨基酸序列比较,相似性分别达97%和88%以上。这些结果说明CRHR1和CRHR2基因在哺乳动物中是高度保守的。
     3、应用生物信息学的方法对猪CRHR1和CRHR2蛋白质的基本特性、结构和功能进行预测。结果表明猪CRHR1和CRHR2同属于G蛋白偶联受体Ⅱ家族,属于类分泌素蛋白,包含一个GPCR结构域,包括4个胞外域、7个跨膜域和4个胞内域。CRHR1和CRHR2蛋白质结构还包含一个激素受体结构域,表明它可能具有激素受体的特征和基本功能。生物信息学的结果表明在对蛋白的结构和功能起关键作用的区域上,猪CRHR1和CRHR2蛋白是保守的。说明猪CRHR1和CRHR2蛋白具有与已知功能蛋白相似的功能。
     4、利用实时荧光定量PCR方法对21日龄断奶仔猪与未断奶仔猪脑中CRHR1和CRHR2基因mRNA表达量进行检测,结果表明断奶应激对采集的仔猪脑中CRHR1和CRHR2基因mRNA表达量表现出一定的差异,但未达到显著水平(p>0.05)。
In the modern swine production, the stress syndrome, including weaning stress, the slaughter stress, heat stress and so on, brings great loss in the pig industry economically. As a result, a great deal of efforts has been made to control porcine stress, especially on the sides of feed and environment management. But pig stress is controlled by not only environmental but also genetic factors. Thus, it is indispensable to uncover the molecular genetic mechanism of the pig stress.
     As stress arises, the excitement of hypothalamus-pituitary-adrenal (HPA) axis causes the release of hypothalamic corticotropin-releasing hormone (CRH), as well as neuropeptide hormone to the hypothalamic portal system, which stimulates adrenocorticotropic hormone (ACTH) secretion by binding the corticotropin-releasing hormone receptor (CRHR) in the cell in the front of pituitary. With the effect of ACTH in blood on the adrenal cortex in the peripheral organs, glucocorticoid (GC) is released. Finally, GC is a key hormone to the stress which can affect the whole body.
     Therefore, in order to uncover the molecular mechanism of pig stress, this study focused on pig CRH receptor genes CRHR1 and CRHR2 basing on the physiological process of pig stress described above. Gene cloning, sequence analysis, protein structure and function prediction of these two genes were finished as well as their mRNA expression analysis in the brain of weaning piglets.
     The main research works and conclusions are as follows:
     (1) The first complete coding sequence (CDS) of CRHR1 and CRHR2 are obtained using the approach of combining homology and electronic cloning. CRHR1 gene contains a 1,248 bp open reading frame (ORF) encoding 415 amino acids while CRHR2 gene contains a 1,236 bp ORF encoding 411 amino acids. Analysing the two genes and database, we found six single nucleotide polymorphism sites.
     (2) The alignment analysis of CDS sequences of CRHR1 and CRHR2 among rats, mice, cows, dogs and pigs shows that the consistency of CRHR1 gene in pig and other mammals is more than 91%, while the comparability of CRHR2 is more than 86%. The comparability of the protein sequences of CRHR1 and CRHR2 of pig with other mammals are more than 97% and 88% respectively. It verified that CRHR1 and CRHR2 gene are highly conserved in mammals.
     (3) We predicted the basic features, protein structure and molecular function of porcine CRHR1 and CRHR2 proteins with bioinformatics methods. The results indicate that porcine CRHR1 and CRHR2 belong to G-protein-coupled receptor family, which consist of a GPCR domain, including four extracellular domains, seven transmembrane domains and four intracellular domains. CRHR1 and CRHR2 proteins structure also contains a hormone receptor domain that suggests those two genes have the basic characteristics and functions of hormone receptor. Bioinformatics results show that porcine CRHR1 and CRHR2 proteins are very conservative in the key structural and functional region. This suggests that porcine CRHR1 and CRHR2 proteins should have the similar function with some known proteins.
     (4) CRHR1 and CRHR2 mRNA expression was detected in the brains of weaning and non-weaning piglets using real-time quantitative PCR method. The result shows the effects of weaning stress on the mRNA expression level of CRHR1 and CRHR2 in the piglet brain exist though not significant (p>0.05) statistically.
     Obviously, our research built an important foundation for finding the effective genetic anti-stress approach and developing the anti-disease breeding of pig.
引文
1. 赵威. 猪 5-羟色胺 4 受体基因的克隆和表达规律的研究[D]. 上海交通大学硕士学位论文. 2005.
    2. 许振英. 仔猪营养与饲养. 1989[A]. 许振英教授论著选集. (续集 1984~1993 年) [C]. 2000. 158-167.
    3. Leibbrandt, V.C. and Ewan, R.C., Effect of weaning and age at weani ng on performance by baby pigs. J. Anim. Sci, 1972. 35. 1107.
    4. 朱贯泉,王重龙, 仔猪断奶应激的影响因素及防制措施. 安徽农业科学, 2000. 28(005). 662-664.
    5. Funderburke, D.W. and Seerley, R.W., The effects of postweaning stressors on pig weight change, blood, liver and digestive tract characteristics. 1990, Am Soc Animal Sci. p. 155-162.
    6. Lecce, J.G., Armstrong, W.D., Crawford, P.C., et al., Nutrition and Management of Early Weaned Piglets: Liquid vs Dry Feeding. Journal of Animal Science, 1979. 48(5). 1007.
    7. Botstein, D., White, R.L., Skolnick, M., et al., Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980. 32(3). 314-31.
    8. 王启贵. 通过候选基因法对影响肉质性状基因的研究[D]. 东北农业大学硕士学位论文. 2001.
    9. Fujii, J., Otsu, K., Zorzato, F., et al., Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science, 1991. 253(5018). 448-451.
    10. Rothschild, M., Jacobson, C., Vaske, D., et al., The estrogen receptor locus is associated with a major gene influencing litter size in pigs. Proc Natl Acad Sci US A, 1996. 93(1). 201-205.
    11. 张沅, 家畜育种学. [M]. 2001, 中国农业出版社: 北京.
    12. Selye, H.A., Syndrome produced by diverse nocuous agents. Nature, 1936. 138. 32.
    13. Stott, G.H. and Williams, R.J., Causes of Low Breeding Efficiency in Dairy Cattle Associated with Seasonal High Temperatures. Journal of Dairy Science, 1962. 45(11). 1369-1342.
    14. 邹胜龙,冯定远, 动物热应激机理及其研究进展. 广东饲料, 2000. 9(004). 20-23.
    15. 刘士豪, 非特异性抵抗力. 赛里应激学说概要. [M]. 1963, 上海科学技术出版社: 上海.
    16. Chrousos, G.P. and Gold, P.W., The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA, 1992. 267(9). 1244-1252.
    17. Herman, J.P. and Cullinan, W.E., Neurocircuitry of stress: central control of the hypothalamo–pituitary–adrenocortical axis. Trends in Neurosciences, 1997. 20(2). 78-84.
    18. Bomholt, S.F., Harbuz, M.S., Blackburn-Munro, G., et al., Involvement and Role of the Hypothalamo-pituitary-adrenal (HPA) Stress Axis in Animal Models of Chronic Pain and Inflammation. Stress, 2004. 7(1). 1-14.
    19. Lephart, E.D., Galindo, E., and Bu, L.H., Stress (hypothalamic–pituitary–adrenal axis) and pain response in male rats exposed lifelong to high vs. low phytoestrogen diets. Neuroscience Letters, 2003. 342(1-2). 65-68.
    20. Reznikov, A.G., Sinitsyn, P.V., and Tarasenko, L.V., Responses of the hypothalamic-pituitary-adrenal axis to noradrenergic and hormonal stimulation in prenatally stressed rats. Neurophysiology, 1999. 31(2). 112-114.
    21. Samson, W.K., Baker, J.R., Samson, C.K., et al., Central Neuropeptide B Administration Activates Stress Hormone Secretion and Stimulates Feeding in Male Rats. Journal of Neuroendocrinology, 2004. 16(10). 842-849.
    22. Barker, D.J., Osmond, C., Forsen, T.J., et al., Maternal and social origins of hypertension. Hypertension, 2007. 50(3). 565-71.
    23. Phillips, D.I.W., Endocrine programming and fetal origins of adult disease. Trends in Endocrinology & Metabolism, 2002. 13(9). 363-363.
    24. Heim, C. and Nemeroff, C.B., The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biological Psychiatry, 2001. 49(12). 1023-1039.
    25. Ladd, C.O., Huot, R.L., Thrivikraman, K.V., et al., Long-term behavioral and neuroendocrine adaptations to adverse early experience. Prog Brain Res, 2000. 122. 81-103.
    26. Ammerman, R.T., Cassisi, J.E., Hersen, M., et al., Consequences of child abuse and neglect in children. Clin. Psychol. Rev, 1986. 6. 291-310.
    27. Francis, D.D., Caldji, C., Champagne, F., et al., The role of corticotropin-releasing factor–norepinephrine systems in mediating the effects of early experience on the development of behavioral and endocrine responses to stress. Biological Psychiatry, 1999. 46(9). 1153-1166.
    28. Agid, O., Shapira, B., Zislin, J., et al., Environment and vulnerability to major psychiatric illness: a case control study of early parental loss in major depression, bipolar disorder and schizophrenia. Molecular Psychiatry, 1999. 4(2). 163-172.
    29. Plotsky, P.M. and Meaney, M.J., Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) messenger RNA, median eminence CRF content and stress-induced release in adult rats. Mol Brain Res, 1993. 18(3). 195-200.
    30. Liu, D., Diorio, J., Tannenbaum, B., et al., Maternal Care, Hippocampal Glucocorticoid Receptors, and Hypothalamic-Pituitary-Adrenal Responses to Stress. Science, 1997. 277(5332). 1659-1662.
    31. Caldji, C., Tannenbaum, B., Sharma, S., et al., Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proceedings of the National Academy of Sciences, 1998. 95(9). 5335.
    32. Kanitz, E., Manteuffel, G., and Otten, W., Effects of weaning and restraint stress on glucocorticoid receptor binding capacity in limbic areas of domestic pigs. Brain Research, 1998. 804(2). 311-315.
    33. Dantzer, R. and Mormede, P., Influence of weaning method on the behavior and the hypophyseal-adrenal axis activity in the piglet. Reprod Nutr Dev, 1981. 21(5A). 661-70.
    34. Worsaae, H. and Schmidt, M., Plasma cortisol and behaviour in early weaned piglets. Acta Vet Scand, 1980. 21(4). 640-57.
    35. Vale, W., Spiess, J., Rivier, C., et al., Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science, 1981. 213(4514). 1394-1397.
    36. Karteris, E., Randeva, H.S., and Hillhouse, E.W., Corticotropin Releasing Factor (CRF) Peptide Family and their Receptors: Divergent Actions Influencing Human Physiology. Current Genomics, 2004. 5. 473-481.
    37. Montecucchi, P.C. and Henschen, A., Amino acid composition and sequence analysis of sauvagine, a new active peptide from the skin of Phyllomedusa sauvagei. Int J Pept Protein Res, 1981. 18(2). 113-20.
    38. Lederis, K., Letter, A., McMaster, D., et al., Complete amino acid sequence of urotensin I, a hypotensive and corticotropin-releasing neuropeptide from Catostomus. Science, 1982. 218(4568). 162-165.
    39. Letter, A., McMaster, B., Moore, G., et al., Complete amino acid sequence of urotensin I, a hypotensive and corticotropin releasing neuropeptide from Catoftomus. Science, 1982. 218. 162-164.
    40. Hauger, R.L., Grigoriadis, D.E., Dallman, M.F., et al., International Union of Pharmacology. XXXVI. Current Status of the Nomenclature for Receptors for Corticotropin-Releasing Factor and Their Ligands. Pharmacological Reviews, 2003. 55(1). 21-26.
    41. Dautzenberg, F.M., Kilpatrick, G.J., Hauger, R.L., et al., Molecular biology of the CRH receptors--in the mood. Peptides, 2001. 22(5). 753-60.
    42. 张敏娟, 张庆瑜. 促肾上腺皮质激素释放因子及其受体的研究. 国际病理科学与临床杂志, 2006. 26(2). 162-165.
    43. Gravanis, A. and Margioris, A.N., The Corticotropin-Releasing Factor (CRF) Family of Neuropeptides in Inflammation: Potential Therapeutic Applications. Current Medicinal Chemistry, 2005. 12(13). 1503-1512.
    44. 金丹, 沙金燕. 促肾上腺皮质激素释放激素受体的研究进展. 中国妇幼健康研究. 2006. 17(3). 244-248.
    45. Dautzenberg, F.M., Dietrich, K., Palchaudhuri, M.R., et al., Identification of two corticotropin-releasing factor receptors with high ligand selectivity from Xenopus laevis: unusual pharmacology of the type 1 receptor. J. Neurochem, 1997. 69. 1640–1649.
    46. Landsberg, E.C., Regulation of iron-stress-response by whole-plant activity. J. Plant Nutr, 1984. 7. 609–621.
    47. Deussing, J.M. and Wurst, W., Dissecting the genetic effect of the CRH system on anxiety and stress-related behaviour. Comptes rendus-Biologies, 2005. 328(2). 199-212.
    48. Parham, K.L., Zervou, S., Karteris, E., et al., Promoter Analysis of Human Corticotropin-Releasing Factor (CRF) Type 1 Receptor and Regulation by CRF and Urocortin. Endocrinology, 2004. 145(8).3971-3983.
    49. Chalmers, D.T., Lovenberg, T.W., and De Souza, E.B., Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression. Journal of Neuroscience, 1995. 15(10). 6340.
    50. Makino, S., Takemura, T., Asaba, K., et al., Differential regulation of type-1 and type-2α corticotropin-releasing hormone receptor mRNA in the hypothalamic paraventricular nucleus of the rat. Molecular Brain Research, 1997. 47(1-2). 170-176.
    51. Grammatopoulos, D.K. and Chrousos, G.P., Functional characteristics of CRH receptors and potential clinical applications of CRH-receptor antagonists. Trends in Endocrinology & Metabolism, 2002. 13(10). 436-444.
    52. Perrin, M.H., Cloning and functional expression of a rat brain corticotropin releasing factor (CRF) receptor. Endocrinology, 1993. 133(6). 3058-3061.
    53. Lovenberg, T.W., CRF2 alpha and CRF2 beta receptor mRNAs are differentially distributed between the rat central nervous system and peripheral tissues. Endocrinology, 1995. 136(9). 4139-4142.
    54. Perrin, M.H. and Vale, W.W., Corticotropin Releasing Factor Receptors and Their Ligand Family. Annals of the New York Academy of Sciences, 1999. 885(1). 312.
    55. Karteris, E., Goumenou, A., Koumantakis, E., et al., Reduced Expression of Corticotropin-Releasing Hormone Receptor Type-1α in Human Preeclamptic and Growth-Restricted Placentas. 2003, Endocrine Soc. p. 363-370.
    56. Moriyama, T., Kageyama, K., Kasagi, Y., et al., Differential regulation of corticotropin-releasing factor receptor type 1 (CRF1 receptor) mRNA via protein kinase A and mitogen-activated protein kinase pathways in rat anterior pituitary cells. Molecular and Cellular Endocrinology, 2005. 243(1-2). 74-79.
    57. Kostic, T.S., Andric, S.A., and Stojilkovic, S.S., Spontaneous and Receptor-Controlled Soluble Guanylyl Cyclase Activity in Anterior Pituitary Cells. Molecular Endocrinology, 2001. 15(6). 1010-1022.
    58. Aggelidou, E., Hillhouse, E.W., and Grammatopoulos, D.K., Up-regulation of nitric oxide synthase and modulation of the guanylate cyclase activity by corticotropin-releasing hormone but not urocortin II or urocortin III in cultured human pregnant myometrial cells. Proceedings of the National Academy of Sciences, 2002. 52296399.
    59. Maya-NG., Castro-Fernández, C., and Méndez, P., CRH-stimulation of cyclic adenosine 5′-monophosphate pathway is partially inhibited by the coexpression of CRH-R1 and CRH-R2α. Endocrine, 2005. 27(1). 67-73.
    60. Gammie, S.C., Hasen, N.S., Stevenson, S.A., et al., Elevated stress sensitivity in corticotropin-releasing factor receptor 2 deficient mice decreases maternal, but not intermale aggression. Behavioural Brain Research, 2005. 160(1). 169-177.
    61. Heinrichs, S.C. and Tache, Y., Therapeutic potential of CRF receptor antagonists: a gut-brain perspective. Expert Opinion on Investigational Drugs, 2001. 10(4). 647-659.
    62. Taché, Y., Martinez, V., Wang, L., et al., CRF receptor signaling pathways are involved in stress-related alterations of colonic function and viscerosensitivity: implications for irritable bowel syndrome. British Journal of Pharmacology, 2004. 141. 1321-1330.
    63. Wang, L., Martinez, V., Rivier, J.E., et al., Peripheral urocortin inhibits gastric emptying and food intake in mice: differential role of CRF receptor 2. American Journal of Physiology- Regulatory, Integrative and Comparative Physiology, 2001. 281(5). 1401-1410.
    64. Chen, C.Y., Million, M., Adelson, D.W., et al., Intracisternal urocortin inhibits vagally stimulated gastric motility in rats: role of CRF 2. British Journal of Pharmacology, 2002. 136. 237-247.
    65. Tache, Y., Corticotropin releasing factor receptor antagonists: potential future therapy in gastroenterology? British Medical Journal, 2004. 53(7). 919.
    66. Longstreth, G.F., Thompson, W.G., Chey, W.D., et al., Functional Bowel Disorders. Gastroenterology, 2006. 130(5). 1480-1491.
    67. Thompson, W.G., Longstreth, G.F., Drossman, D.A., et al., Functional bowel disorders and functional abdominal pain. British Medical Journal, 1999. 45(Supplement 2).
    68. Yuan, Y.Z., Tao, R.J., Xu, B., et al., Functional brain imaging in irritable bowel syndrome with rectal balloon-distention by using fMRI. 世界胃肠病学杂志 (英文版), 2003. 9(6). 1356-1360.
    69. Chen, R., Lewis, K., Perrin, M., et al., Expression cloning of a human corticotropin-releasing-factor receptor. Proc Natl Acad Sci US A, 1993. 90(19). 8967-8971.
    70. Pisarchik, A. and Slominski, A.T., Alternative splicing of CRH-R1 receptors in human and mouse skin: identification of new variants and their differential expression. FASEB J, 2001. 15(14). 2754-6.
    71. Sakai, K., Yamada, M., Horiba, N., et al., The genomic organization of the human corticotropin-releasing factor type-1 receptor. Gene, 1998. 219(1-2). 125-130.
    72. Polymeropoulos, M.H., Torres, R., Yanovski, J.A., et al., The Human Corticotropin-Releasing Factor Receptor (CRHR) Gene Maps to Chromosome 17q12-q22. Genomics, 1995. 28(1). 123-124.
    73. Liaw, C.W., Cloning and characterization of the human corticotropin-releasing factor-2 receptor complementary deoxyribonucleic acid. Endocrinology, 1996. 137(1). 72-77.
    74. Meyer, A.H., Ullmer, C., Schmuck, K., et al., Localization of the Human CRF2 Receptor to 7p21–p15 by Radiation Hybrid Mapping and FISH Analysis. Genomics, 1997. 40(1). 189-190.
    75. Murdoch, J.N., Mapping of the mouse corticotropin-releasing hormone receptor 2 gene (Crhr2) to Chromosome 6. Mammalian Genome, 1997. 8(12). 944-945.
    76. Liaw, C.W., Grigoriadis, D.E., Lovenberg, T.W., et al., Localization of Ligand-Binding Domains of Human Corticotropin-Releasing Factor Receptor: A Chimeric Receptor Approach. Molecular Endocrinology, 1997. 11(7). 980-985.
    77. Licinio, J., O'Kirwan, F., Irizarry, K., et al., Association of a corticotropin-releasing hormonereceptor 1 haplotype and antidepressant treatment response in Mexican-Americans. Mol Psychiatry, 2004. 9(12). 1075-82.
    78. Soyka, M., Preuss, U.W., Koller, G., et al., No association of CRH1 receptor polymorphism haplotypes, harm avoidance and other personality dimensions in alcohol dependence: results from the Munich gene bank project for alcoholism. Addict Biol, 2004. 9(1). 73-9.
    79. Treutlein, J., Kissling, C., Frank, J., et al., Genetic association of the human corticotropin releasing hormone receptor 1 (CRHR1) with binge drinking and alcohol intake patterns in two independent samples. Molecular Psychiatry, 2006. 11. 594-602.
    80. Blomeyer, D., Treutlein, J., Esser, G., et al., Interaction between CRHR1 Gene and Stressful Life Events Predicts Adolescent Heavy Alcohol Use. Biological Psychiatry, 2008. 63(2). 146-151.
    81. Tharmalingam, S., King, N., De Luca, V., et al., Lack of association between the corticotrophin-releasing hormone receptor 2 gene and panic disorder. Psychiatr Genet, 2006. 16(3). 93-97.
    82. De Luca, V., Tharmalingam, S., and Kennedy, J.L., Association study between the corticotropin-releasing hormone receptor 2 gene and suicidality in bipolar disorder. European Psychiatry, 2007. 22(5). 282-287.
    83. 欧阳松应, 杨冬, 欧阳红生, et al.. 实时荧光定量 PCR 技术及其应用. 生命的化学. 2004. 24(001). 74-76.
    84. Spengler, S.J., Bioinformatics in the information age. Science, 2000. 287(5456).
    85. 张成岗, 贺福初. 生物信息学方法与实践. 北京: 科学出版社, 2002.
    86. 张成岗, 贺福初. 生物信息学在新基因全长 cDNA 序列分析及功能预测中的应用. 生物化学与生物物理进展, 2003. 30(001). 159-163.
    87. 李衍达, 生物信息学基因和蛋白质分析的实用指南. 2000: 清华大学出版社.
    88. 田立峰, 戴建凉. 2813 条全长人类新基因编码蛋白质的功能预测. 复旦学报: 自然科学版. 2000. 39(006). 639-644.
    89. 殷志祥. 蛋白质结构预测方法的研究进展. 计算机工程与应用. 2004. 40(020). 54-57.
    90. Giulietti, A., Overbergh, L., Valckx, D., et al., An Overview of Real-Time Quantitative PCR: Applications to Quantify Cytokine Gene Expression. Methods, 2001. 25(4). 386-401.
    91. Yin, J.L., Shackel, N.A., Zekry, A., et al., Real-time reverse transcriptase-polymerase chain reaction(RT-PCR) for measurement of cytokine and growth factor mRNA expression with fluorogenic probes or SYBR Green I. Immunology and Cell Biology, 2001. 79(3). 213-221.
    92. Lie, Y.S. and Petropoulos, C.J., Advances in quantitative PCR technology: 5′ nuclease assays. Current Opinion in Biotechnology, 1998. 9(1). 43-48.
    93. 张蓓, 沈立松. 实时荧光定量 PCR 的研究进展及其应用. 国外医学: 临床生物化学与检验学分册. 2003. 24(006). 327-329.
    94. 洪华, 杨明清, 邓君, et al.. 荧光定量 PCR 技术检测乳腺癌 ck19 mRNA 表达过量的意义. 临床检验杂志, 2003. 21(u04). 39-41.
    95. Gasteiger, E., Hoogland, C., Gattiker, A., et al., Protein identification and analysis tools on the ExPASy server. The Proteomics Protocols Handbook, 2005. 571–607.
    96. Blomeyer, D., Treutlein, J., Esser, G., et al., Interaction between CRHR1 Gene and Stressful Life Events Predicts Adolescent Heavy Alcohol Use. Biol Psychiatry, 2007.
    97. De Luca, V., Tharmalingam, S., and Kennedy, J.L., Association study between the corticotropin-releasing hormone receptor 2 gene and suicidality in bipolar disorder. Eur Psychiatry, 2007. 22(5). 282-7.
    98. Colson, V., Orgeur, P., Foury, A., et al., Consequences of weaning piglets at 21 and 28 days on growth, behaviour and hormonal responses. Applied Animal Behaviour Science, 2006. 98(1-2). 70-88.
    99. Moeser, A.J., Ryan, K.A., Nighot, P.K., et al., Gastrointestinal dysfunction induced by early weaning is attenuated by delayed weaning and mast cell blockade in pigs. American Journal of Physiology- Gastrointestinal and Liver Physiology, 2007. 293(2). G413.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700