用户名: 密码: 验证码:
都江堰枢纽区水流泥沙运动规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结合都江堰枢纽工程的历史、现状和发展需求深入分析都江堰河段引水分流、河道冲淤和泥沙输移等规律,对都江堰工程的维护和灌区的可持续发展具有重要的价值,对开展山区河流演变的科学研究亦有借鉴意义。
     本文以测量系统开发、数据库构建及实测资料分析为基础,对都江堰河段的水沙运动规律进行了深入研究,取得了如下主要成果:
     1、设计了新的大断面原型观测系统,将GPS RTK定位系统、超声测深仪、摄像设备以及数据采集储存系统集成于统一的测量平台,同时得出测量点的三维坐标、河床高程和表面流速场的分布,进而可计算断面流量。该系统具有测量精度高、速度快、操作简单等优势,已应用于都江堰河段的实际测量。
     2、建立了都江堰水沙信息分析系统,采用关系数据库技术结合水利行业标准设计数据库;开发出各应用功能模块,实现了对大量基础数据的科学存储和对水文泥沙信息的综合分析利用。
     3、根据枢纽区工程布局的时段变化和67年的实测流量资料,系统分析了都江堰鱼嘴和宝瓶口的分流规律。鱼嘴分流比主要受工程布局和维护的控制,1949年前内江春灌期分流不足50%,在外江闸的调控下,同期分流比达75%。飞沙堰闸则保证了凤栖窝不淘淤情况下宝瓶口的引水。
     4、根据二十多年的大断面实测资料,系统分析了内江河段的冲淤规律和横断面的冲淤变化。提出了水流综合作用力的概念,其与河段年冲淤量具有较好的负相关关系。
     5、从河流动力学的角度系统研究了凤栖窝河段淘淤的规律性;分析了流量和卵石运动对凤栖窝河段冲淤的影响,提出了内江河段冲/淤的临界流量约为400m3/s;论证了外江闸和飞沙堰闸的运行是凤栖窝长期不淘淤的前提条件。
     6、对Einstein推移质输沙率公式的推导过程中的三个假定进行了修正,采用长江寸滩站和都江堰内江站多年的实测资料进行了验证,结果表面修正后的Einstein公式可用于山区河流卵石推移质输沙率的计算。
With consideration of its historical role, current state and future development of the Dujiangyan Project, this dissertation investigates the characteristics of the discharge diversion, sediment transportation and fluvial processes. The study is of great significance for better maintenance of the Dujiangyan Project and for sustainable development of the Irrigation District. The results also cast new light on the behavior of mountainous rivers.
     The study is based on measuring system development, database construction and field data analysis. The main results are summarized as follows:
     1. A new system is developed for measuring flow depth and velocity along cross-section. The GPS RTK positioning system, ultrasonic depth-sounding equipment, camera equipment, data acquisition and processing system are integrated in the measurement system. The system can obtain 3D coordinates of the measuring point, elevation of river bed and surface flow field, based on which the discharge of the section can be calculated. The new system can be easily operated, and it has been applied in the measurement of the Dujiangyan Reach with high measuring accuracy and efficiency.
     2. The hydrologic and sediment information analysis system for the Dujiangyan Project is developed based on relational database technology with full consideration of hydraulic standards and regulations. The system provides scientific storage and integrated analysis of hydrologic and sediment data.
     3. The important change of the Dujiangyan Project and the measured discharge data of 67 years are analyzed, and the rule of water-diversion of Fish-mouth and Precious-bottle-neck is investigated. It is revealed that the water-diversion of Fish-mouth is mainly controlled by the project layout and regulation. The water diversted into the Neijiang River is less than 50 percent in spring-time before 1949, but the ratio is increased to 75 percent with the regulation of the Waijiang Gate. The Sand-flying-weir Gate ensures the water income of Precious-bottle-neck without any digging in the Fengqiwo Reach.
     4. Based on the measured river cross-section data of more than 20 years, the rule of scour and silt of the Neijiang Reach at Dujiangyan and the variation of the cross-section are systematic analyzed. The concept of total effect force of flow is proposed. Data analysis shows that the annual amount of scour and silt of the reach is negatively correlated with the total effect force.
     5. The rule of the digging load in the Fengqiwo Reach at Dujiangyan is systematicly studied from the view of river mechanics. The effect of discharge and sediment transport on the deposition of the Fengqiwo Reach is analyzed. The critical discharge of scour and silt in the Neijiang River is about 400m3/s. The basic condition of no-digging for a long term in the Fengqiwo Reach is the use of the Waijiang Gate and the Sand-flying-weir Gate.
     6. Three assumptions in the original derivation of the Einstein bed load formula are modified and a new formula is proposed. The modified version is tested with years of data of Cuntan Station of the Yangtze River and Neijiang Sation of the Dujiangyan Reach. The result shows the modified Einstein formula can be used to estimate bed load transport in mountainous rivers.
引文
[1]蔡毅,杨红,程俊祥. GPS RTK技术在水下地形测量中的应用.地理空间信息, 2004, 2(5):51-52.
    [2]曹叔尤,刘兴年,方铎.长江三峡卵石推移质颗粒沿程分布.水力发电学报, 1998(2):50-57.
    [3]曹叔尤,刘兴年,方铎,等.山区河流卵石推移质的输移特性.泥沙研究, 2000(4):1-5.
    [4]陈家扬.岷江都江堰河段河道演变和都江堰工程布局的发展.泥沙研究, 1982(4):86-94.
    [5]陈家扬.都江堰卵石推移质模型试验的几点经验.泥沙研究, 1983(3):53-60.
    [6]陈稚聪,王兴奎,等.四川岷江紫坪铺水库库区泥沙冲淤模型试验报告.清华大学, 1992.
    [7]都江堰模型试验组.岷江都江堰河段变态动床模型验证及推移质输沙率试验报告.泥沙模型报告汇编, 1978.
    [8]杜建国,杜得彦,梁贵生. RTK测量技术及其在河道测量中的应用.甘肃水利水电技术, 2002, 38(3):223-224.
    [9]方铎,曹叔尤,刘兴年,等.都江堰枢纽推移质冲淤数学模拟.泥沙研究, 1988(1):11-22.
    [10]高国胜,杜学礼.应用PIV法测定泥石流流速.水土保持应用技术,2006(6):3-4.
    [11]郭景荣,张仁忠.紫坪铺水库下泄清水冲刷对都江堰枢纽影响模型试验报告.四川省水利水电勘测设计研究院, 1993.
    [12]韩其为,何明民.泥沙起动规律及起动流速.北京:科学出版社, 1999.
    [13]何文社,戴会超,曹叔尤,等.三峡水库水文泥沙信息分析管理系统设计.水力发电学报, 2005(6):95-99.
    [14]贺志岗. GPS在水下地形测量中的应用.长江职业工程技术学院院报, 2005, 22(3):21-22.
    [15]华国祥,陈远信.都江堰泥沙的研究.河流泥沙国际学术讨论会论文集, 1980.
    [16]李文学,梁国亭,张晨霞.泥沙灾害数据库的研究与开发.泥沙研究, 2002(5):54-58.
    [17]林中亚. RTK技术和测深技术在水下测量中的应用.人民珠江, 2006(1):14-15.
    [18]刘汝贤.都江堰凤栖窝河段冲淤规律研究.都江堰建堰2250周年论文集, 1994.
    [19]刘兴年,黄尔,曹叔尤,等.长江上游卵石推移质输沙量时空分布初探.四川联合大学研究报告, 1996.
    [20]刘兴年,方铎,陈远信,等.宽级配推移质输沙随机过程的分维研究.四川联合大学研究报告, 1997.
    [21]彭述明,王兴奎.都江堰水资源发展战略思考.水力发电学报, 2006, 25(3):1-5.
    [22]乔南,李可可.都江堰的文化探寻.河海大学学报, 2005, 7(1):54-55.
    [23]钱宁,万兆惠.泥沙运动力学.北京:科学出版社, 1983.
    [24]水利部水文局.基础水文数据库表结构及标识符标准(SL324-2005). 2005.
    [25]水利电力部水文局.水文缆道测验规范(SD121-84). 1984.
    [26]水利部四川水利水电勘测设计研究院.四川省都江堰灌区续建配套与节水改造规划报告. 2000.
    [27]四川大学高速水力学国家重点实验室.紫坪铺水利枢纽工程清水下泄对都江堰长期冲刷影响与对策措施模型试验研究.四川大学, 2003.
    [28]四川省地方志编纂委员会.都江堰志.成都:四川辞书出版社, 1993.
    [29]四川省水利电力厅,都江堰管理局.都江堰.北京:水利电力出版社, 1986.
    [30]四川省水利电力厅,都江堰管理局.都江堰灌区工程.北京:水利电力出版社, 1988.
    [31]孙鹤泉,康海贵,李广伟.二维流场测量技术: PIV.仪表技术与传感器,2002 (6):43-45.
    [32]孙志林,祝永康. Einstein推移质公式探讨.泥沙研究, 1991(1):20-26.
    [33]王平义,陈远信.卵石推移质采样器试验研究.水文, 1994(3):12-16.
    [34]王伟,许全喜,熊明.长江水文泥沙信息分析管理系统研究.人民长江, 2006, 37(12):8-12.
    [35]王协康,敖汝庄,方铎,等.宽级配非均匀推移质输沙率的试验研究.四川联合大学学报(工程科学版), 1999, 3(5):101-105.
    [36]王兴奎,陈稚聪,张仁.长江寸滩站卵石推移质的运动规律.水利学报, 1992(4):32-38.
    [37]王兴奎,庞东明,王桂仙,等.图像处理技术在河工模型试验流场量测中的应用.泥沙研究,1996(4):21-26.
    [38]王兴奎,邵学军,李丹勋,等.河流动力学基础.北京:中国水利出版社,2002.
    [39]魏进春,袁德忠.三峡水文泥沙监测资料数据库系统研制开发.人民长江, 2003(12):6-7.
    [40]解刚.山区河流平面二维泥沙数学模型[硕士学位论文].成都:四川大学, 2004.
    [41]姚令侃,方铎.非均匀沙自组织临界性及其应用研究.四川联合大学研究报告, 1996.
    [42]张尚弘.都江堰水资源可持续利用及三维虚拟仿真研究[博士学位论文].北京:清华大学, 2004.
    [43]张正惕,胡辉,胡方西,等.回声测深仪在水下地形测量中的应用.海洋技术, 1998, 17(4):39-43.
    [44]张之湘,何文社,聂锐华,等.川江卵石推移质输移的随机性.四川大学学报(工程科学版), 2005, 37(2):16-21.
    [45]中国水利学会泥沙专业委员会主编.泥沙手册.北京:中国环境科学出版社, 1992.
    [46]周刚炎,高焕锦.中国和美国的推移质泥沙采样器野外比测试验.泥沙研究, 2000(5):28-31.
    [47]周建郑. GPS测量定位技术.北京:化学工业出版社,2004.
    [48] Ackers P and White W R. Sediment transport new approach and analysis. J. of Hyd. Div. ASCE, 1973, 99:2041-2060.
    [49] Ashmore P E. Channel morphology and bedload pulses in braided, gravel-bed streams. Geografiska Annaler, 1988, 73A(1):37-52.
    [50] Bagnold R A. An approach to the sediment transport problem from general physics. U.S. Geological survey profession Paper 422-J, 1966.
    [51] Bunte K, Abt S R, Potyondy J P, et al. Measurement of Coarse Gravel and Cobble Transport Using Portable Bed load Traps. Journal of Hydraulic Engineering, 2004, 130(9):879-893.
    [52] Chien N. Meyer-Peter formula for bed load transport and Einstein bed load function. Sediment Series No.7, Missouri river Div., 1954.
    [53] Church M A, McLean D G, Wolcott J F. River bed gravels: sampling and analysis. In: C.R. Thorne, J.C. Bathurst and R.D. Hey (Editors), Sediment transport in gravel-bed rivers. Chichester: John Wiley & Sons Ltd, 1987:43-88.
    [54] Cudden J R, Hoey T B. The causes of bedload pulses in a gravel channel: The implications of bedload grain-size distributions. Earth surface processes and landforms, 2003(13):1411-1428.
    [55] Einstein H A. Formulas for the Transportation of Bed Load. Trans. ASCE, 1942, 107:561-597. Cited from International Research and Training Center on Erosion and Sedimentation (IIRTCES), Publication Circular No. 2, Beijing, China, 1978:5-14.
    [56] Einstein H A. Bed load transportation in Mountain Creek. Tech. Paper No.55 Soil Conservation Service U.S. Dept. Agri. 1944, 55.
    [57] Einstein H A and El-Samni A. Hydrodynamic forces on a rough wall. Modern Physics, 1949, 21(3):520-524.
    [58] Einstein H A. The bed load function for sediment transportation in open channel flows. Tech. Bulletin 1026, USDA soil Conservation Service, 1950.
    [59] Einstein H A and Chien N. Transport of Sediment Mixture with Large Ranges of Grain Sizes. Missouri River Div. Sediment Series No.2, 1953:49.
    [60] Engelund F. Closure to“Hydraulic Resistance of Alluvial Streams”. J. Hyd. Div., ASCE, 1967(4):286-296.
    [61] Englund F, Hansen E. A monograph on sediment transport in alluvial streams. Copenhagen : Danish Technical Press, 1967.
    [62] Fujita I, Muste M and Kruger A. Large-Scale Particle Image Velocimetry for Flow Analysis in Hydraulic Engineering Applications. Journal of Hydraulic Research, 1998, 36(3):397-414.
    [63] Hoey T B, Sutherland A J. Channel morphology and bedload pulses in braided rivers: a loboratory study. Earth Surface Processes and landforms, 1991(16):447-462.
    [64] Hu C H, Hui Y J. Bed-load transport. I: Mechanical characteristics. J. Hydraulic Engineering, 1996a, 122(5):245-254.
    [65] Hu C H, Hui Y J. Bed-load transport. II: Stochastic characteristics. J. Hydraulic Engineering, 1996b, 122(5):255-261.
    [66] Kuhnle R A, Southard J B. Bedload transport fluctuations in a gravel bed laboratory channel. Water Resources Research. 1988(24):247-260.
    [67] Lekach J, Schick A P. Evidence for transport of bedload waves: analysis of fluvial sediment samples in a small upland stream channel. Catena, 1983(10):267-279.
    [68] Meyer-peter E, Muller R. Formulas for bed-load transport. Proc., 2nd meeting, intern. Assoc. Hyd. Res., 1948(6):39-64.
    [69] Chine N. Meyer-Peter formula for bed load transport and Einstein bed load function. Missouri River Div. Sediment Series No.7, 1954:23.
    [70] Shinohara K, Tsubaki T. On the characteristics of sand waves formed upon the beds of open channels and reivers. Res. Inst. Applied Mech, Kyushu Univ. Japan, 1959, 7(25):15-45.
    [71] Solov’ev. Pulsation of movement of bedload in mountain streams, Trudy GGI, 1969(175):119-123.
    [72] Yang C T, Huang C. Application of sediment transport formulas. 2001, 16(3):335-353.
    [73] van Rijn. Equivalent roughness of alluvial bed. J. Hyd. Div., ASCE. 1982(10):1215-1218.
    [74] Vanoni V A. Transportation of suspended sediment by water. Trans. ASCE, 1946, 111:67-133.
    [75] Wang X K, Li D X, Qu Z S, et al. Verification and comparison of formulas for bed load transport. Journal of Hydrodynamics Ser. B, 2001(1):8-11.
    [76] Wilcock P R, McArdell B W. Partial transport of a sand/gravel sediment. Water Resources Research, 1997, 33(1):235-245.
    [77] Yalin M S. Mechanics of Sediment Transport, 2nd Edition. New York: Pergamon Press, 1977.
    [78] Yang Xiaoqing. Manual on Sediment Management and Measurement. World Meteorological Organization Operational Hydrology Report No. 47, WMO-No. 948, Secretariat of the World Meteorological Organization– Geneva– Switzerland, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700