用户名: 密码: 验证码:
多苯并咪唑配合物的合成及其超氧化物歧化酶模拟活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多苯并咪唑类化合物的模拟酶活性和配位化学性质引起我们的特别关注和兴趣。本文以多苯并咪唑基为主线从配体合成、配合物合成到SOD模拟活性研究,从晶体结构表征到SOD模拟物消除活性氧物种的机制探讨。本文的研究手段基于常规的方法,目的是探讨多苯并咪唑类化合物与金属配合后的结构特征,对SOD模拟活性的影响。总的来说,我们围绕目标开展研究,小有收获。
     1 设计并合成了三个含多苯并咪唑基化合物配体:三(2-苯并咪唑亚甲基)胺(NTB)、N,N,N′,N′-四(2-苯并咪唑亚甲基)-1,2-乙二胺(EDTB)和N,N,N′,N′-四(2-苯并咪唑甲基)-1,4-二乙氨基乙二醚(EGTB),即C_(34)H_(32)N_(10)·2C_2H_6O·2H_2O、C_(34)H_(32)N_(10)·2C_2H_6O_2和C_(38)H_(44)N_(10)O_2·2ClO_4·2Cl·2CH_3OH,分别得到了它们的单晶,通过X-射线衍射测试并解析后发现后两者为新化合物。
     2 设计、合成了含多苯并咪唑基的多齿金属配合物单晶七个。解析了这七个配合物的晶体结构,从晶体结构发现:(1) 含三个苯并咪唑环的NTB金属化合物依中心离子不同,有八面体结构,其化合物为“蝴蝶型”,也有三角双锥结构,其化合物呈“齿轮型”;(2) 含四个苯并咪唑环的EDTB金属化合物,由于EDTB的柔性小,其中心离子均为扭曲的八面体结构;(3) 含四个苯并咪唑基由乙二醚基相连的EGTB本身拥有内桥基(-OCH_2CH_2O-),通过内桥、醋酸根和氯阴离子构成三桥双核配合物,镍中心离子为稍有扭曲的八面体几何构型。
     X-射线单晶衍射测试、红外、紫外等方法确定了三(2-苯并咪唑亚甲基)胺的Fe(Ⅲ)和Co(Ⅱ)配合物的结构,由晶体结构发现金属配位情况不同、配合物在结构上存在着差异,Fe(Ⅲ)(NTB)为八面体构型,而Co(NTB)为三角双锥构型;其次,两配合物中的苯并咪唑环间夹角不同,配合物中包含N2和N4的两个苯并咪唑环间夹角仅为9.41(0.11),几乎构成一个平面,呈蝴蝶形;后者Co(NTB)三个苯并咪唑环几乎平分了整个空间,它们之间的夹角约为120,呈三扇叶螺旋桨式构型,为齿轮形。
     用X-射线单晶衍射测试了EDTB金属配合物的四个单晶,[Cu(C_(34)H_(32)N_(10))CdBr_4·3H_2O]和[Cu(C_(34)H_(32)N_(10))ZnCl_4·4CH_3OH]两个化合物为[Cu(Ⅱ)EDTB]~(2+)阳离子与大阴离子CdBr_4~(2-)或者ZnCl_4~(2-)相结合的溶剂化物,而[Ni(C_(34)H_(32)N_(10))(NO_3)_2·C_2H_5OH]和[Ni(C_(34)H_(32)N_(10))Cl_2·CH_3OH·C_2H_5OH]为EDTB-Ni~(2+)配阳离子与阴离子Cl~-或者NO_3~-相结合的溶剂化物。晶体解析表明EDTB-Cu(Ⅱ)和EDTB-Ni(Ⅱ)配合物中,中心离子分别与四个苯并咪唑氮和两个氨基氮配位,Cu(Ⅱ)
Multi-benzimidazole compounds have attracted great attention by their mimic enzyme activities, such as superoxide dismutase activity, catalase activity, and their coordination chemistry. In this dissertation, we selected multi-benzimidazole compounds as a main ligand to study the structure characteristic of its complexes and their influence on the activity of eliminating active oxygen by means of X-ray single crystal diffractometer, Here are the results.(i) We designed and synthesized multi-benzimidazole compounds, and obtained three single crystals, by means of X-ray single crystal diffraction method, among which three were characterized and two were novel. The novel compound is C34H32N10 2C2H6O2 and C38H44N10O2 2C1O4-2Cl-2CH3OH, i.e. EDTB-2C2H6O2 (EDTB = N,N,N',N'-tetrakis-(2'-benzimidazolylmethyl)-l,2-ethanediamine), and (EGTBH4)-2C1O4-2C1-2CH3OH, (EGTB= N,N,N',N'-tetrakis-(2-benzimidazolyl methyl-1,4-di-ethylene amino) glycol ether).(ii) We designed and synthesized seven metal-containing multi-benzimidazole complexes. All of them were analyzed by X-ray single crystal diffraction method. Crystal structure showed that: (1) NTB metal complexes which contained three benzimidazole group have different coordination geometry according to central metal ion, such as octahedron structure, formed butterfly-like shape complex, and triangle bipyramid structure, gear-like shape compound, respectively. (2) EDTB metal complexes in which contained four benzimidazole groups have distorted octahedron geometry structure because of rigidity of EDTB. (3) EGTB metal complexes in which included four benzimidazole groups and an intra-ligand (-OCH2CH2O-) group have slightly distorted octahedron structure.The structure of [Fe(NTB)Cl2]Cl-CH3OH-2H2O and [Co(NTB)Cl](CoCl4)-CH3OH were confirmed by means of X-ray single crystal diffraction method, IR and UV. Crystal structure showed that [Fe(NTB)Cl2]+ moiety has octahedron geometry and [Co(NTB)Cl]+ moiety has triangle bipyramid configuration. The dihedral angel between the benzimidazole rings is different in the two complexes, in [Fe(NTB)Cl2]+ moiety, the angel
    between the two benzimidazole rings including N2 and N4 is 9.41(0.11)° and the two benzimidazole rings is nearly on a plane, butterfly shape complex formed. But in the [Co(NTB)Cl]+ moiety, the three benzimidazole rings shared the whole space equally, the dihedral angel among them is about 120°, just like three fan blades of an airscrew, the molecular structure appear gear-like shape.Four single crystal of metal-containing EDTB complexes were characterized by X-Ray single diffraction method, and crystal structure show that Cu(EDTB)CdBr4-3H2O or Cu(EDTB)ZnCl4-4CH3OH is combined [CuEDTB]2+ cation with large counter ion [CdBr4]2 " or [ZnCl4]2 " , but in the complex Ni(EDTB)Cl2-CH3OH-C2H5OH or Ni(EDTB)(NO3)2-C2H5OH the counter ion is simple ion Cl" or NO3". In the four EDTB metal complexes the central ion is coordinated by four benzimidazole N atoms and two amine N atoms. The coordination geometry around the central ion can be described as distorted octahedron. Anyway, the four complexes are novel compound.The novel dinuclear Ni2+ complex [Ni2(yu-Cl)(//-0Ac)(EGTB)]-Cl-C104-2CH30H is bridged triply bridging agents of a chloride ion, an acetate and an intra-ligand (-OCH2CH2O-) group. The nickel coordination geometry is that of a slightly distorted octahedron with a NiN3O2Cl arrangement of the ligand donor atoms. Each identical Ni(II) cation is coordinated by a chloride ion, an oxygen atom from the acetate, an ether oxygen atom from the ligand and three nitrogen atoms from two benzimidazole groups and an aliphatic amine group of the same ligand. Because of flexibility of EGTB, each identical Ni(II) geometry is slightly distorted octahedron. Whole molecular is highly symmetrical and has particular nest-shape structure.Common ground of multi-benzimidazole metal complex is that the bond distance between benzimidazole N atoms and metal is shorter than the distance between amine group N atom and metal. The different metal-N bond length is likely due to benzimidazole N atoms can provide better o and 71 electron donor than amine group N atom, naturally, the metal ion bond more tightly.(iv) The pyrogallol UV-VIS spectrophotometeric method was performed to study the activity of SOD mimics at 320nm. The Ni(II)(EDTB) cationic species exhibit a high SOD mimic activity, but Cu(II)(EDTB) and [Ni2(EGTB)Cl(OAc)] cationic species do not have SOD mimic activity.
引文
[1] CHOUDHURY S B, LEE J-W, DAVIDSON G, YIM Y-I, BOSE K, SHARMA M L, KANG S-O, CABELLI D E, MARONEY M J. Examination of the Nickel Site Structure and Reaction Mechanism in Streptomyces seoulensis Superoxide Dismutas[J]. Biochemistry, 1999, 38(12): 3744-3752.
    [2] 陈淮杨,刘望夷.从超氧化物歧化酶的分布和结构看其分子进化[J].生物化学与生物物理进展,1996,23(5):408-413.
    [3] MARN T, KEILIN D. Proc Roy Soc London Ser B, Bio Sci 1939, 126: 303.
    [4] MCCORD J M, FRIDOVICH I. Superoxide Dismutase-An Enzymic Function for Erythrocuprein[J]. J Biol Chem, 1969, 244(22): 6049.
    [5] 王夔主编.生命科学中的微量元素,上卷[M].北京,中国计量出版社,1991.
    [6] STEINMAN H. Superoxide Dislnutase, Vol. Ⅰ[M], CRC Press, Florida, 1982, 11-68.
    [7] OBERLEY L W. Superoxide Dismutase, Vol. Ⅱ[M]. CRC Press, Florida, 1982, 127-165.
    [8] FRIDOVICH I. Oxygen and Oxy Radical in Chemistry and Biology[M]. Academic Press, New York, 1981, 197-204.
    [9] HASSAN H M, FRIDOVICII I. Chemistry and Biochemistry of Superoxide Dismutase[J]. Eur J Rhenmatol Imflamm, 1981, 4(2): 160.
    [10] 刘之俊,陈东,唐雯霞.咪唑桥异多核配台物的台成和表征[J] 无机化学学报,1990,6(2):198-203.
    [11] 罗勤慧.铜锌超氧化物歧化酶的模拟化学研究[J] 高等学校化学学报,1997,18(7):1012-1018.
    [12] 廖展如,姚锦,刘长林,石巨恩.一类新的超氧化物歧化酶的模型化合物[J] 华中师范大学学报(自然科学版),1993,27(4):474-478.
    [13] 郑雪峰,李东风,熊云,梅伏生,廖展如.双核锰配合物的合成、表征和性质[J].华中师范大学学报(自然科学版),1996,30(4):433-436.
    [14] 樊志,赵茹,周卫红,程庆彦,刘小兰.超氧化物歧化酶模型化合物的合成、表征与活性研究[J] 天津师大学报(自然科学版),1999,19(3):16-21.
    [15] 孙秋香,李武客,李东风,朱莉,陈彦国,廖展如.含苯并咪唑螯合配体EDTB—Co(Ⅱ)配合物的合成和表征[J] 华中师范大学学报(自然科学版),1999,33(3):375-378.
    [16] 赵茹,刘晓红,周卫红,刘小兰,缪方明.模拟超氧化物歧化酶二(乙二胺)配合物的合成及生物活性[J] 天津师大学报(自然科学版),2000,20(3):7-11.
    [17] LIAO Z R, ZHENT X F, LUO B S, SHEN L R, LI D F, LI H L, ZHAO W. Synthesis, Characterization and SOD-like Activities of Manganese-containing Complexes with N,N,N',N',-Tetrakis(2'-benzimidazolyl Methyl)-1,2-Ethanediamine(EDTB)[J]. Polyhedron, 2001, 20: 2813-2821.
    [18] 朱莉,廖展如,王哲明,严纯华.钴配合物的合成晶体结构及活性研究[J].无机化学学报,2002,18(7):731-734.
    [19] 刘媛媛,岳俊杰,刘小兰.三(苯并咪唑2-亚甲基胺)锌配合物的晶体结构和量化计算[J].天津师范大学学报(自然科学版),2003,23(2):1-3.
    [20] 洪新宇,朱云龙,陈林根,罗生根,关英杰,沈光祖,曹晓东,金锡鹏.竹茹提取物黄 酮和内酯延缓皮肤细胞衰老的效能[J].日用化学工业,2003,33(5):302-304.
    [21] 卢映霞,邹静恂,赵俊英,王莉,徐薇,曹仁烈.SOD皮肤抗衰化妆品的研制[J].日用化学工业,1995,25(3):(总)119-121.
    [22] 赵晓宾,钱红.超氧化物歧化酶人工细胞(AC-SOD)在化妆品中的应用研究[J].日用化学工业,1995,25(5):(总)225-227.
    [23] 阎家麒,谓文正.月桂酸修饰超氧化物歧化酶的制备及其性质研究[J] 生物化学与生物进展,1994,21(2):154-157.
    [24] 明景熙.从啤酒废酵母中提取SOD的几种工艺方法[J].中国酿造,2003,4总127(4):7-9
    [25] 张海悦,李晓玲,张凤消,朱梅梦,姜海威.高活性小白菜SOD口服液的研制[J].食品科学,2003,24(4):66-68.
    [26] 董文彦,张东平,林远辉,王泽运.紫参延缓衰老作用的研究[J].食品工业科技,2000,21(4):30-31.
    [27] 张翊,王军志,吴勇杰.超氧化物歧化酶药用研究的进展[J].约学学报,2003,38(1):71-74.
    [28] 左晓霞,段力平,曹治函,文斌,袁新志.CuZn超氧化物歧化酶治疗类风湿关节炎临床研究[J].湖南医科大学报,1995,20(3):275-277.
    [29] 马玲,徐臻荣,付德润,郭伟,吐尔逊江·买买提明,刘金宝,葡萄籽油抗氧化作用的实验研究[J].中国公共卫生,2002,18(9):1062-1063.
    [30] 熊永德,叶松柏,梁永娱,宋培钊,周素珍,超氧化物歧化酶的抗炎作用研究[J].华西医大学报,1997,28(1):58-61.
    [31] 于孟学,程蓉,王叙冬,张春芳,李培峰.铜锌超氧化物歧化酶在风湿性疾病患者滑膜中的变化[J].基础医学与临床,1995,15(1):(总)64-66.
    [32] 沈涛,张天乐,刘长林.铜锌超氧化物歧化酶的突变与神经退行性紊乱的生物无机化学[J].化学进展,2004.16(5):813-819.
    [33] VALENTINE J S. Do Oxidatively Moclifid Proteins Cause ALS? [J]. Free Radi Bio Med, 2002, 33(10): 1314-1320.
    [34] VALENTINE J S, HART P J, Misfolded CuZnSOD and Amyotrophic Lateral Sclerosis[J]. Proc Nat Acad Sci, 2003, 100(7): 3617-3622.
    [35] STRANGE R W, ANTHOYUK S, HOUGH M A, DOUCETTE P A, RODRIGUEZ J A, HART P J, HAYWARD L J, VALENTINE J S, HASNAIN J S, The Structure of Holo and Metal-deficient Wild-type Human Cu, Zn Superoxide Dismutase and Its Relevance to Familial Amyotrophic Lateral Sclerosis[J]. J Mol Biol, 2003, 328: 877-891.
    [36] HOUGH M A, GROSSMANN J G, ANTONYUK S V, STRANGE RW, DOUCETTE P A, RODRIGUEZ J A. WI-IITSON L J, I-IART P J, HAYWARD L J, VALENTINE J S, HASNAIN S S. Dimer Destabilization in Superoxide Dismutase May Result in Disease-causing Properties: Structures of Motor Neuron Disease Mutants[J]. Proc Nat Acad Sci, 2004, 101(16): 5976-5981.
    [37] LUND-OLESEN K. MEMANDER K B. Orgotein: a New Anti-inflammatory Metalloproteins Drug Preliminary Evaluation of Clinical Efficacyand Safety in Degenerative Joint Disease[J]. Curr Ther Res 1974, 16: 706-717.
    [38] PETER H, EDWARD S. Free Radicals and Disease in Man[J]. Physiological Chemistry and Physics and Medical NMR, 1984, 16: 175-195.
    [39] WASSMANN S, WASSMANN K, NICKENIG. G., Modulation of Oxidant and Antioxidant Enzyme Expression and Function in Vascular Cells[J]. Hypertension, 2004, 44(4): 381-386.
    [40] TSAN M F. Superoxide Dismutase and Pulmonary Oxygen Toxicity[J]. Proc Soc Exp Biol Med, 1997, 214(2): 107-113.
    [41] BHUYAN K C, BHUYAN D K, Molecular Mechanism of Cataractogenesis Ⅲ. Toxic Metabolites of Oxyinitiators of Lipid Peroxidation and Cataract[J]. Curr Eye Res, 1984, 3: 67-81.
    [42] CEJKOVA J, STIPEK S, CRKOVSKA J, ARDAN T, PLATENIK J, CEJKA C, MIDELFART A. UV RAYS, The Prooxidant/Antioxidant Imbalance in the Cornea and Oxidative Eye Damage[J]. Physiol Res, 2004, 53: 1-10.
    [43] 杨频,高飞,生物无机化学原理[M],北京,科学出版社,2002,284-299.
    [44] YOUN H-D, KIM E-J, ROE J-H, HAH Y C, KANG S-O. A Novel Nickel-containing Superoxide Dismutasc from Streptomyces spp[J]. Biochem J 1996, 318: 889-896.
    [45] RICHORDSON D C. JAMES BIER C. RICHORDSON J S. Two Crystal Forms of Bovine Superoxide Dismutase[J]. J Biol Chem Commun, 1972, 247(19): 6368-6369.
    [46] THOMAS K A, RUBIN B H, JAMES B, RICHARDSON J S, RICHARDSON D C. The Crystal Structure of Bovine Cu~(2+), Zn~(2+) Superoxide Dismutase at 5.5A Resolution[J]. J Biol Chem, 1974, 249(17): 5677-5683.
    [47] STEINMAN H M, NAIK V R, ABERNETHY J L, HILL R L. Bovine Erythrocyte Superoxide Dismutase[J]. J Biol Chem, 1974, 249(22): 7326-7338.
    [48] CARRICO R J, DEUTSCH H F. The Presence of Zinc in Human Cytocuprein and Some Properties of the Apoprotein[J]. J Biol Chem, 1970, 245(4): 723-727.
    [49] RICHARDSON J S, THOMAS K A, RUBIN B H, RICHARDSON D C. Crystal Structure of Bovine Cu, Zn Superoxide Dismutase at 3 Angstrom Resolution: Chain Tracing and Metal Ligands[J]. Pro Nat Acad Sci, 1975, 72(4): 1349-1353.
    [50] TAINER J A, GEETZOFF E D, BEEN K M, RICHARDSON J S, RICHARDSON D C. Determination and Analysis of the 2 Angstroms Structure of Copper, Zinc Superoxide Dismutase[J]. J Mol Biol, 1982, 160: 181-217.
    [51] MALACHLAN A D. Nature(London), 1980, 258: 267.
    [52] RICHARDSON J S. Nature(London), 1977, 268: 495.
    [53] RICHARDSON J S. Proc Nat Acad Sci USA, 1976, 73, 2619.
    [54] 李益新,超氧化物歧化酶的结构功能[J],生物化学与生物物理进展,1985,3,15.
    [55] JACKSON S M, COPPER J B, An Analysis of Structural Similarity in the Iron and Manganese SOD Based on Know Structures and Sequences[J], Bio Metals, 1998, 11(2):, 159-173.
    [56] BANNISTER J V, BANNISTER W H. What Is Superoxide Dismutase[J]. Biochem Edu, 1981, 9(2): 42-45.
    [57] RYPNIEWSKI W R. MANGANI S, BURNI B, ORIOLI P L, CASATI M, WILSON K S. Crystal Structure of Reduced Bovine Erythrocyte Supecoxide Dismutase at 1.9A Resolution[J]. J Mol Biol. 1995, 251(2): 282-296.
    [58] OGIHARA N L, PARGE H E, JOHN HART P, WEISS M S, GOTO J J, CRANE B R, TSANG J, SLATER K. ROE J A, VALENTINE J S, EISENBERG D, TAINER J A. Unusual Trigonal-planar Copper Configuration Revealed in the Atomic Structure of Yeast Copper-zinc Superoxide Dismutase[J]. Biochemistry, 1996, 35(7): 2316-2321.
    [59] FERRARONI M, RYPNIEWSKI W R, BRUNI B, ORIOLI P, MANGANI S. Crystallographic Determination of Reduced Bovine Superoxide Dismutase at pH 5.0 and of Anion Binding to Its Active Site[J]. J Biol Inorg Chem, 1998, 3: 411-422.
    [60] HOUGH M A, HASNAIN S S. Crystallographic Structures of Bovine Copper-zinc Superoxide Dismutase Reveal Asymmetry in Two Subunits: Functionally Important Three and Five Coordinate Copper Sites Captured in the Same Crystal[J]. J Mol Biol, 1999, 287(3): 579-592.
    [61] HOUGH M A, STRANGE R W, HASNAIN S S. Conformational Variability of the Cu Site in One Subunit of Bovine CuZn Superoxide Dismutase: The Importance of Mobility in the Glu119-Leu142 Loop Region for Catalytic Function[J]. J Mol Biol, 2000, 304(2): 231-241.
    [62] PARGE H E, HALLEWELL R A, TAINER J A. Atomic Structures of Wild-type and Thermostable Mutant Recombinant Human Cu, Zn Superoxide Dismutase[J]. Proc Nat Acad Sci, 1992, 89: 6109-6113.
    [63] MURPHY L M, STRAGNE R W, HASNAIN S S. A Critical Assessment of the Evidence from XAFS and Crystallography for the Breakage of the Imidazolate Bridge During Catalysis in CuZn Superoxide Dismutase[J]. Structure, 1997, 5(3): 371-379.
    [64] PELMENSCHIKOV V, SIEGBAHN P E M. Copper-Zinc Superoxide Dismutase: Theoretical Insights into the Catalytic Mechanism. Inorg Chem, 2005, 44(9): 3311-3320.
    [65] SMITH M W, DOOLITTLE R F. A Comparison of Evolutionary Rates of the Two Major Kinds of Superoxide Dismutase[J]. J Mol Evol, 1992, 34(2): 175-184.
    [66] TSANG E, HEROUART C D, VAN CAMP K, VILLARROEL R, GENETELLO C, VAN MONTAGU M, INZE D. Differential Regulation of Superoxide Dismutases in Plants Exposed to Environmental Stress[J]. Plant Cell, 1991, 3: 783-792.
    [67] BARRA D, SCHININA M E, BOSSA F, PUGET K, DUROSAY P, GUISSANI A, MCICHESON A M. A Tetrameric Iron Superoxide Dismutase from the Eucaryote Tetrahymena Pyriformis] J]. J Biol Chem, 1990, 265(29): 17680-17687.
    [68] STEINMAN H M, WEINSTEIN L, BRENOWITZ M. The Manganese Superoxide Dismutase of Escherichia coli K-12 Associates with DNA[J]. J Biol Chem, 1994, 269(46): 28629-29634.
    [69] SLYKHOUSE T O, FEE J A. Physical and Chemical Studies on Bacterial Superoxide Dismutases—Purification and Some Anion Binding Properties of the Iron-containing Protein of Escherichia Coli B[J]. J Biol Chem, 1976, 251 (18): 5472-5477.
    [70] LIM J-H, YU YG, HAN YS, CHO S, AHN B-Y, KIM S-H, CHO Y. The Crystal Structure of an Fe-superoxide Dismutase from the Hyperthermophile Aquifex Pyrophilus at 1.9 A Resolution: Structural Basis for thermostability[J]. J Mol Chem, 1997, 270: 259-274.
    [71] STODDARD B L, HOWELL P L, RINGE D, PETSKO G A. The 2.1 A Resolution Structure of Iron Superoxide Dismutase from Pseudomonas ovalis[J]. Biochemistry, 1990, 29(38): 8885-88893.
    [72] STALLINGS W C, POWERS T B, PATTRIDGE K A, FEE J A, LUDWIG M L. Iron Superoxide Dismutase from Escherichia coli at 3.1-Angstrom Resolution: A Structure Unlike That of Copper/Zinc Protein at Both Monomer and Dimer Levels[J]. Proc Nat Acad Sci USA, 1983, 80(13): 3884-3888.
    [73] RINGE D, PETSKO G A, YAMAKURA F, SUZUKI K, OHMORI D. Structure of Iron Superoxide Dismutase from Pseudomonas ovalis at 2.9-Angstrom Resolution[J]. Pro Nat Acad Sci USA, 1983. 80(13): 3879-3883.
    [74] SCHMIDT M, MEIER, B, PARAK F. X-ray Structure of the Cambialistic Superoxide Dismutase from Propionibacterium Shermanii Active with Fe or Mn[J]. J Bioinorg Chem, 1997, 1: 532-541.
    [75] COPPER J B, MCLNTYRE K, BADASSO M O, WOOD S P ZHANG Y, GARBE T R, YOUNG D. X-ray Structure Analysis of the Iron-dependent Superoxide Dismutase from Mycobacterium Tuberculosis at 2.0 Angstroms Resolution Reveals Novel Dimer-dimer Interactions[J]. J Mol Biol, 1995, 246(4): 531-544.
    [76] URSBY T, ADINOLFI B S, AL-KARADAGHI S, DE VENDITTIS E, BOCCHINI V. Iron Superoxide Dismutase from the Archaeon Sulfolobus Solfataricus: Analysis of Structure and Thermostability[J]. J Mol Biol, 1999, 286(1): 189-205.
    [77] LAH M S, DIXON M M, PATTRIDGE K A, STALLINGS W C, FEE J A, LUDWOG M L. Structure-function in Escherichia coli Iron Superoxide Dismutase: Comparisons with the Manganese Enzyme from Thermus thermophilus[J]. Biochemistry, 1995, 34(5): 1646-1660.
    [78] BORGSTAHL G E O. PARGE H E, HICKEY M J, BEYER J F W, HALLEWELL R A, TAINER J A. The Structure of Human Mitochondrial Manganese Superoxide Dismutase rRveals a Novel Tetrameric Interface of Two 4-helix Bundles[J]. Cell, 1992, 71(1): 107-118.
    [79] STODDARD B L, RINGE D, PETSKO G A. The Structure of Iron Superoxide Dismutase from Pseudomonas ovalis Complexed with the Inhibitor Azide[J]. Protein Energ, 1990, 4(2): 113-119.
    [80] EDWARDS R A, WHITTAKER M M, WHITTAKER J W, JAMESON G B, BAKER E N. Distinct Metal Environment in Fe-substituted Manganese Superoxide Dismutase Provides a Structural Asis of Metal Specificity[J]. J Am Chem Soc, 1998, 120(37): 9684-9685.
    [81] STALLINGS W C, METZGER A L, PATTRIDGE K. A, FEE J A, LUDWIG M L. Structure Function Relationships in Iron and Manganese Superoxide Dismutases[J]. Free Rad Res Comms, 1991, 12-13: 259-268.
    [82] GUAN Y, HICKEY M J, BORGSTAHL G E O, HALLWELL R A, LEPOCK J R. O'CONNOR D, HSIEH Y, NICK H S, SILVERMAN D N, TAINER J A. Crystal Structure of Y34F Mutant Human Mitochondrial Manganese Superoxide Dismutase and the Functional Role of Tyrosine 34[J]. Biochemisrty, 1998, 37: 4722-4730.
    [83] BORDERS Jr C L, CHAIN V W F, BJERRUM M J. The Positive Charge at Position 189 Is Essential for the Catalytic Activity of Iron and Manganese-containing Superoxide Dismutases[J]. Free Rad Res Commun, 1991, 12-13: 279-285.
    [84] MILLER A-F, SORKIN D L. Superoxide Dismutases: A Molecular Perspective[J]. Comments in Molecular and Cellular Biophysics, 1997, 9(1): 1-48.
    [85] LAVELLE F, MAADAM M E, FIELDEN E M, ROBERTS P B, PUGET K, MICHELSON A M. A Pulse-radiolysis Study of the Catalytic Mechanism of the Iron-containing Superoxide Dismutase from Photobactcterium leiognathi[J]. Biochem J, 1977, 161: 3-11.
    [86] BULL C, FEE J A. Strady-state Kinetic Studies of Superoxide Dismutases: Properties of the Iron Containing Protein from Escherichia coli[J]. J Am Chem Soc, 1985, 107(11): 3295-3304.
    [87] SCHWARTZ A L, YIKILMAZ E, VANCE C K, VATHYAM S, KODER Jr R L, MILLER A-F. Mutational and Spectroscopic Studies of the Significance of the Active Site Glutamine to Metal Ion Specificity in Superoxide Dismutase[J]. J Inorg Biochem, 2000, 80: 247-256.
    [88] TIERNEY D L, FEE J A, LUDWIG M L, PENER-HAHN J E. X-ray Absorption Spectroscopy of the Iron Site in Escherichia coli Fe(Ⅲ) Superoxide Dismutase[J]. Biochemistry, 1995, 34(5): 1661-1668.
    [89] DOOLEY D M, KARAS J F, JONES T F, COTE C E, SMITH S B. Reactions of H_2O_2 with the Iron-containing Superoxide Dismutase from Escherichia coli[J]. Inorg Chem, 1986, 25(26): 4761-4766.
    [90] Jr W F B, FRIDOVICH I. Effect of Hydrogen Peroxide on the Iron-containing Superoxide Dismutase of Escherichia coli[J]. Biochemistry, 1987, 26(5): 1251-1257.
    [91] BANNISTER J V, BANNISTER W H, ROTILIO G. Aspects of the Structure, Function and Applications of Superoxide Dismutase[J]. CRC Crit. Rev. Bioehem., 1987, 2: 111-180.
    [92] NIEBOER E, TOM RT, ROSSETTO F E. Superoxide Dismutase Activity and Novel Reactions with Hydrogen Peroxide of Histidine-containing Nickel(Ⅱ)-oligopeptide Complexes and Nickel(Ⅱ)-induced Structural Changes in Synthetic DNA[J]. Biol Trace Elem Res, 1989, 21: 23-33.
    [93] INOUE S, KAWANISHI S. ESR Evidence for Superoxide, Hydroxyl Radicals and Singlet Oxygen Produced from Hydrogen Peroxide and Ni(Ⅱ) Complex of gglycylglycyl-histidine[J]. Biochem Biophys Res Commun, 1989, 159: 445-451.
    [94] COTELLE N, TREMOLIERES E, BEMIER J L, CATTEAU J P, HENICHART, J P. Redox Chemistry of Complexes of Nickel(Ⅱ) with Some Biologically Important Peptides in The Presence of Reduced Oxygen Species: An ESP Study[J]. J. Inorg. Biochem., 1992, 46: 7-15.
    [95] SUNDERMAN F W, Perspective on Legionnaires Disease in Relation to Acute Nickel Carboxyl Poisoning[J]. Ann. Clin. Lab. Sci., 1977, 7: 377-398.
    [96] KEARNS L P, SIGEL D C, The Occurrence of Group Ⅳ Elements in Dinoflagellate Chromation: An X-ray Microanalytical Study[J]. J Cell Sci, 1980, 46: 113-127.
    [97] DIXON N E, GAZZOLA C, ASHER C J. Jack Bean Urease (EC 3.5.1.5) Ⅱ. The Relationship Between Nickel, Enzymic Activity, and the "abnormal" Ultraviolet Spectrum the nickel Content of Jack beans[J]. Can J Biochem, 1980, 58: 474-478.
    [98] WALSH C T, ORME-JOHNSON W H, Nickel Enzymes[J]. Biochemistry, 1987, 26(16): 4901-4906.
    [99] CLUGSTON S L, BARNARD J F J, KINACH R, MIEDEMA D, RUMAN R, DAUB E, HONEK J F. Overproduction and Characterization of a Dimeric Non-Zinc Glyoxalase I from Escheriehia coli: Evidence for Optimal Activation by Nickel Ions[J]. Biochemistry, 1998, 37(24): 8754-8763.
    [100] [100] BARONDEAU D P, KASSMANN C J, BRUNS C K, TAINER J A, GETZOFF E D. Nickel Superoxide Dismutase Structure and Mechanism[J]. Biochemistry, 2004, 43(25): 8038-8047. SALVEMINI D, RILEY D P, CUZZOCREA S. SOD Mimetics Are Coming of Age[J]. Nature Reviews Drug Discovery, 2002, 1(5): 367(2002).
    [101] RILEY D P. Functional Mimics of Superoxide Dismutase Enzymes as Therapeutic Agents[J]. Chem Rev, 1999, 99(9): 2573-2588.
    [102] LIU C L, WANG M, ZHANG T L, SUN H Z, DNA Hydrolysis Promoted by Di- and Multi-nuclear Metal Complexes[J]. Coord Chem Rev, 2004, 248: 147-168.
    [103] LIU C L, YU S W, LID F, LIAO Z R, SUN X H, XU H B. DNA Hydrolytic Cleavage by the Diiron(ⅲ) Complex Fe_2(DTPB)(μ-O)(μ-AC)Cl(BF_4)_2: Comparison with Other Binuclear Transition Metal Complexes[J]. Inorg Chem, 2002, 41(4): 913-922.
    [104] YAN X X, LU L P, ZHU M L, A Novel Bridged Asymmetric Binuclear Manganese(Ⅱ) Complex with DTPB [DTPB is 1,1,4,7,7-pentakis(1H-benzimidazol-2-yhnethyl)-1,4,7-triazaheptane][J]. Acta Cryst, 2004, C60, m221-m223.
    [105] LIU Y C, MA J F, HUN H, JIA H Q. [N,N,N',N'-Tetrakis(2-Benzimidazolyl-Methyl)-1,2-Ethanediamine]Zinc(Ⅱ) Dinitrate Ethanol Solvate[J]. Acta Cryst, 2003, E59: m361-363.
    [106] BIRKER P J M W L, HENDRIKS H M J, REEDIJK J, VERSCHOOR G C. Coordination Compounds of Chelating Ligands Containing Imidazole Groups. Synthesis and Characterization of Copper(Ⅰ) and Copper(Ⅱ) Complexes of N,N,N',N'-Tetrakis [(2-Benzimidazolyl) Methyll]-1,2-Ethanediamine and the X-ray Structure of an [N,N,N',N'-Tetrakis-[(2-Benzimidazolyl) Methyl]-l,2-Ethanediamine]Copper(Ⅱ) Cation[J]. Inorg Chem, 1981, 20(8): 2408-2414
    [107] HENDRIKS H M J, BIRKER P J M W L, RIJN J V, VERSCHOOR G C, REEDIJK J. Synthesis and Characterization of Coordination Compounds of Chelating Ligands Containing Imidazole Groups. The Crystal and Molecular Structures of the Dinuclear Cu~Ⅰ and Cu~Ⅱ Compounds [N,N,N',N'-Tetrakis-(2-benzimidazolylmethyl)-1,2-ethanediamine] dicopper(Ⅰ) Bis(perchlorate) and ofμ-(Nitrato-O,O')-bis(nitrato-O)-{N,N,N',N'-tetrakis[(1-methyl-2-benzimidazolyl) methyl]-1,2-ethanediamine}dicopper(Ⅱ) Nitrate Tetrahydrate[J]. J Am Chem Soc. 1982, 104(13): 3607-3617
    [108] HOLT S D H, PIGGOTT B, HURSTHOUSE M B, SGIRT R L. Nickel complex of N,N,N',N'-Tetrakis-[(2-Benzimidazolyl Methyl)-1,2-Diaminoethane(L) and the X-ray Crystal Structure of {Ni(EDTB)~(2+)[NiCl_2(H_2O)_3(C_2H_5OH)]}2Cl~-(C_2H_5OH)[J]. Polyhedron, 1987, 6(6): 1457-1461.
    [109] YANG J, MA J F, LIU Y C, ZHENG G L, LI L, LIU J F. Synthesis, Crystal Structure and Characterization of a Cu(Ⅱ) Complex with N,N,N',N'-Tetrakis(2-Benzimidazolylmethyl)-1, 2-Ethanediamine[J]. J Molecu Struct, 2003, 646: 55-60.
    [110] Sun Y, HUO J Z, CHEN K, Su M, SONG H B, LIU X L. Crystal and Electronical Structure of N,N,N',N'-Tetrakis-[(2-Benzimidazolyl)Methyl]-1, 2-Ethanediamine[J]. Acta Chim Sinica, 2004, 62(5): 498-501.
    [111] CHEN Z F, LIAO Z R, LI D F, LI W K, MENG X G. Crystal Structure and Catecholase-like Activity of a Mononuclear Complex [Cu(EDTB)]~(2+) (EDTB=N,N,N',N'-Tetrakis(2'-Benzimidazolyl Methyl)-1,2-Ethanediamine)[J]. J Inorg Biochem, 2004, 98: 1315-1318.
    [112] ZHANG M J, HUANGL, SHI X F, GAODQ, LI SL, CAIGM, HUANGY, YAO G Q, LI J. Synthesis, Characterization and Luminescence of Lanthanide Chloride Complexes with N,N,N'N'-Tetrakis[(2-Benzimidazolyl)Methyl]-1,2-Ethanediamine[J]. Chin Chem Lett, 2001, 12(7): 651-654.
    [113] 廖展如,胡松洲,石巨恩.铜与N,N,N′,N″-四(2-苯并咪唑亚甲基)-1,2乙二胺(EDTB)和N,N,N’,N’-四(2-苯并咪唑甲基)-1,4-二乙氨基乙二醚的双核络合物的合成和性质[J].华中师大学报(自然科学版),1988,22(3):307-311.
    [114] LIU X L, ZHAO R, LIU X H, YUE J J, YIN Y X, SUN Y, SUN M. Synthesis, Structure and Biological Activity of Zn(Ⅱ) Complex with Tris(Benzimidazol-2-yl-Methyl)Amine Ligand[J]. Chin J Chem, 2004, 22(1): 75-79.
    [115] 刘媛媛,岳俊杰,刘小兰.镍超氧化物歧化酶模拟化合物的合成、表征及活性[J].天津

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700