用户名: 密码: 验证码:
碳酸钙晶须的一步碳化法制备及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳酸钙晶须是一种环境友好型晶须材料,具有原料来源广泛、性能优良、无毒、价格低廉等优点,可用于塑料、涂料、橡胶、摩擦材料、造纸、医学等领域,因此碳酸钙晶须的制备及应用技术引起了人们越来越多的关注。然而在我国此种产品却仍然处于研究与开发阶段,与日本、美国相比有较大差距。本文系统研究了碳酸钙晶须的制备、表面改性技术,并将改性后的晶须应用于聚丙烯(PP)树脂中,研究晶须对复合材料的增韧、增强效果。
     以生石灰为原料,在普通重力场中,采用工业上制备轻质碳酸钙的碳化法,以可溶性磷酸盐为晶型控制剂,首次采用一步法合成晶型完整、长径比大、尺寸均匀的碳酸钙晶须。测定晶型控制剂添加量、初始石灰乳浓度、反应温度、二氧化碳通气速度、搅拌转速等合成条件对产品性能的影响,得到合成碳酸钙晶须的适宜条件。结果表明,将消化后的熟石灰配制成3.0wt.%的乳液,控制n(P/Ca)(可溶性磷酸盐与Ca(OH)2物质的量比值)为0.25,反应温度75℃,CO2通入速度16.2L/(h·kgCa(OH)2),搅拌转速2000rpm,可制备出结晶良好、文石相含量88.3%、晶须长度及长径比分别为231μm、15.3的碳酸钙晶须产品,所得产品结晶程度高,稳定性好。
     借助于X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅立叶红外光谱(FTIR)、热重—差示扫描量热分析(TG-DSC)等检测手段,结合晶体化学、物理化学等经典理论,分析碳酸钙晶须结晶过程中可溶性磷酸盐的控制作用机理,研究文石碳酸钙晶须的晶体生长规律。研究结果表明,在最开始的料浆中加入可溶性磷酸盐以后,磷酸盐与Ca(OH)2反应生成了热力学上最稳定的磷酸钙化合物—羟基磷灰石Ca10(P04)6(OH)2(HA),HA呈短柱状,长度约80nm,宽度约20nm。通入CO2初期,[CO32-·(OH)]与[PO43-]发生部分替代,形成B型碳酸羟基磷灰石(B-HA),以此作为结晶中心诱导文石相碳酸钙的异相成核,另有一部分HA选择吸附在碳酸钙的侧面,控制其的生长状态,Ca2+与CO32-不断叠加生长成为文石相碳酸钙晶须。
     采用单因素条件试验方法,选用硬脂酸、硬脂酸钠、十八酸锌、钛酸酯等表面改性剂对碳酸钙晶须进行湿法表面改性。采用活化指数、接触角作为改性效果评价指标。分别考查了改性剂种类、用量、初始料浆浓度、改性温度、改性时间、搅拌转速、烘干温度等因素对表面改性效果的影响,得到了碳酸钙晶须适宜的改性条件。优选出硬脂酸钠进行改性,当改性剂用量3%,初始料浆浓度为8%,改性温度为80℃,改性时间为20min,搅拌转速为1500rpm,烘干温度为100℃,烘干时间为3h时,改性产品的活化指数、接触角、吸油量分别达到100%、146.66°、64ml/100g,晶须的分散性和流动性也明显提高。
     结合SEM、XRD、TG-DSC、FTIR等检测手段,分析了硬脂酸钠对碳酸钙晶须的改性机理。结果表明,硬脂酸钠没有改变文石碳酸钙晶须的物相,当在碳酸钙晶须料浆中加入硬脂酸钠的无水乙醇溶液后,CH3(CH2)16COO-离子和Ca2+、Ca(OH)+、CaHCO3+离子结合生成难溶的(CH3(CH2)16COO)2Ca膜包覆在碳酸钙晶须的表面。在碳酸钙晶须与硬脂酸根的吸附中,存在化学吸附与物理吸附层,化学吸附层非常牢固,物理吸附层比较容易解吸。
     将改性后的碳酸钙晶须按照不同比例添加到PP树脂基体中,考查碳酸钙晶须对复合材料力学性能的影响。选择悬臂梁缺口冲击强度衡量复合材料韧性的改变、拉伸强度和拉伸弹性模量两个参数衡量复合材料刚性的改变、断裂伸长率衡量复合材料塑性的改变。随着晶须添加量的增加,冲击强度先增加后减小,拉伸强度略微减小,拉伸弹性模量增加,断裂伸长率呈下降趋势,当晶须添加量在一定范围内时,可以提高复合材料的韧性和刚性,使综合力学性能有所提高。
     本文的研究成果对于我国丰富石灰石资源的开发、碳酸钙晶须的规模化生产及应用具有一定的指导意义。
Calcium carbonate (CaCO3) whiskers, an environment-friendly whisker material,is characterized by wide raw material sources, good performance, nontoxic and low price, and widely used in various fields such as plastics, coating, rubber, friction, paper-making and pharmaceutics. The synthesis, surface modification and application of CaCO3 whiskers have attracted more and more researches' attention due to low costs, high whiteness, and contamination-free. However, such product still stays in reaserch stage in China, and there is a big gap compared with that in JP and US.Synthesis, and surface modification of CaCO3 whiskers were engaged in this subject, and modified whiskers were added into polypropylene to investigate the toughening and reinforcing effects.
     CaCO3 whiskers were direct synthesized at first time from CaO by carbonization method with soluble phosphate as controlling agents, and additives dosage, initial Ca(OH)2 solid concentration, reaction temperature, CO2 flow rate and agitation speed were investigated to achieve the optimum conditions. The results revealed that initial Ca(OH)2 solid concentration of 3.0wt.%,phosphate dosage of n(p/Ca) of 0.25,reaction temperature of 75℃, low CO2 flow rate of 16.2L/(h·kgCa(OH)2) and agitation speed of 2000rpm are beneficitial to formation of aragonite whiskers. Well crystallized CaCO3 whiskers with aragonite content of 88.3%,length of 23μm and aspect ratio of 15.3 were synthesized.
     The effect mechanism and whiskers growth law were suggested in terms of XRD, SEM, TEM, FTIR and TG-DSC characterization results and related theorys of crystal chemistry and phsical chemistry. It has been indicated that the most stable calcium phosphate in thermodynamics, hydroxyapatite (HA) with length of 80nm and width of 20nm more or less, is formed through the reaction of soluble phosphates and Ca(OH)2 before the introduction of CO2, and then [CO32-(OH)] enters the crystal lattices of HA to replace partially [PO43-] yielding B-carbonate HA in the early stage of CO2 introduction, which induces aragonite to heterogeneously nucleate as nucleation center thereafter, and grows into CaCO3 whiskers by the continuous stack of Ca2+ and CO32-, and other HA selectly adsorbed onto the flanks of CaCO3 to control crystal morphology.
     Wet surface modification was carried out with surfactants such as stearic acid, sodium stearate, zinc stearate and titanate, etc, and modification effects were characterized with activication index and contact angle. Surfactant types, dosage, initial slurry concentration, modification temperature, modification time, agitation speed, and drying temperature were studied to achieve the optimum conditions as following:better surfactant is sodium stearate, srufacant dosage of 3%,initial slurry concentration of 8wt.%,modification temperature of 80℃,modification time of 20min, agitation speed of 1500rpm, drying temperature of 100℃, and drying time of 3h. The activication index, contact angle and oil absorption value of CaCO3 modified under the optimum conditions are 100%,146.66°and 64ml/100g, and the dispersibility and fluidity of CaCO3 whiskers are improved largely.
     The modification mechanism of sodium stearate was suggested in terms of SEM, XRD, TG-DSC,and FTIR characterization results. It has been revealed that sodium stearate had not change the CaCO3 whiskers phase, and the insoluble (CH3(CH2)16COO)2Ca was generated by reactions of CH3(CH2)16COO- and Ca2+,Ca(OH)+,or CaHCO3+ onto the surface of CaCO3 whiskers when ethyl alcohol solution of sodium stearate was added into. Chemical adsorption layer as well as physical adsorption layer existed between CaCO3 and sodium stearate, the former is very strong and steady, while the latter is faint and easy to desorb.
     Modified CaCO3 whiskers of different additions were put into polypropylene to perform effects on mechanical property of composite materials. Cantilever notched impact strength is chosen to evaluate toughening, tensile strength and tensile modulus of elasticity are adopted to estimate rigidity, breaking elongation is introduced to appraise plasticity. Impact strength increased and then decreased, tensile strength slightly reduced, tensile modulus of elasticity increased and breaking elongation decreased with addition of whiskers. The properties of toughening and rigidity of composity materials were improved when certain CaCO3 whiskers were added.
     Research results above have guiding meaning to exploitation of the aboundant lime resources in China and industrialized production of CaCCO3 whiskers.
引文
[1]徐兆瑜.晶须的研究和应用新进展[J],化工技术与开发,2005,34(2):11-17
    [2]许兢,陈庆华,钱庆荣.尿素水解法制备晶须碳酸钙[J],结构化学,2003,22(2):233-237
    [3]曹有名,王德梅.碳酸钙晶须的制备[J],化工新型材料,2001,29(7):33-35
    [4]孟季茹,赵磊,等.无机晶须在聚合物中的应用[J],化工新型材料,2001,29(12):1-6
    [5]金培鹏,周文胜,丁雨田,等.晶须在复合材料中的应用及其作用机理[J],盐湖研究,2005,13(2):1-6
    [6]马晓燕,梁国正,贾巧英.晶须在复合材料中的应用[J],材料导报,2001,15(7):44-46
    [7]戴静,王敏,张金才.硼酸盐晶须在复合材料中的应用[J],化工矿物与加工,2005,(10):36-38
    [8]王黎东,郑馥,费维栋.含锂霞石颗粒和硼酸铝晶须的铝基复合材料[J],材料科学与工艺,2003,11(4):372-374
    [9]靳志良,王武,张志宏.硼酸镁晶须的合成研究[J],无机盐工业,2003,35(3):22-24
    [10]岳涛,朱黎霞,杨荣榛,等.无机镁盐晶须的应用研究进展[J],无机盐工业,2003,35(4):1-13
    [11]胡克伟,李东升,孙彦军.硼酸镁晶须增强材料的制备和应用[J],广东微量元素科学,2006,13(4):14-16
    [12]魏明,王春波,乃学瑛,等.无机晶须研究进展Ⅱ:钛酸钾晶须在复合材料中的应用[J],盐湖研究,2005,13(1):56-60
    [13]魏昶,罗天骄,黄卉,等.四针状氧化锌晶须制备方法及其在复合材料中的应用[J],矿冶,2004,13(1):64-67
    [14]聂立芳,张玉军,魏红康.碳化硅晶须增韧陶瓷基复合材料的研究进展[J],山东陶瓷,2006,29(2):16-19
    [15]时虎,鲁红典,赵华伟.晶须的阻燃防火应用[J],化工科技市场,2005,(11):5-10
    [16]贾巧英,马晓燕,梁国正.晶须及其在高分子材料中的应用[J],高分子通报,2002,(6):71-78
    [17]A. Gutjahr, H. Dabringhaus, R. Lacmann. Studies of the growth and dissolution kinetics of the CaCO3 polymorphs calcite and aragonite 2:The influence of divalent cation additives on the growth and dissolution rates[J],Journal of Crystal Growth,1996,(158):310-315
    [18]J.-W. Ahn, K.-S. Choi. Synthesis of Aragonite by the Carbonation Process[J],Communications of the American Ceramic Society,2004,87 (2):286-288
    [19]谢英惠,何予基,王桂云,等.晶须碳酸钙的合成研究[J],科研开发化工科技,2000,8(6):13-14
    [20]胡克伟,李东升,钟辉.碳酸钙晶须填充材料的合成及应用展望[J],广州化学,2006,31(3):57-63
    [21]M.Kitamura, H.Konno, A. Yasui, et al. Controlling factors and mechanism of reactive crystallization of calcium carbonate polymorphs from calcium hydroxide suspensions[J],Journal of Crystal Growth, 2002,(236):323-332
    [22]刘庆峰,王德生,尚文宇,等.碳酸钙晶须的制备及其对PP增强特性的研究[J],塑料工业,2000,28(1):5-7
    [23]张荣欣.新的工业原料—晶须状碳酸钙[J],中国建材,1996,(3):43
    [24]邹盛欧.晶须碳酸钙的开发及其在塑料中的应用[J],塑料科技,1996,(2):31-33
    [25]碳酸钙产品的用途和市场前景[J],中国粉体工业,2006,(2):42
    [26]王会利,杨娟娟,刘斌,等.碳酸钙晶须在涂料中的应用[J],涂料工业,2004,34(4):52-54
    [27]H.Tamotsu.JP, JP4154886,1992
    [28]N. Mitsuhiko.JP, JP2001011430,2001
    [29]K. Masato.JP, JP5032957,1993
    [30]Y. Eiichi.JP, JP5117632,1993
    [31]贺云果,宋永才.碳酸钙晶须的制备与应用研究进展[J],材料导报,2005,19(7):33-36
    [32]雷东升.我国碳酸钙的加工现状及发展方向[J],矿产保护与利用,1997,(4):14-16
    [33]胡克伟.文石型碳酸钙晶须制备工艺及其形成机理研究[D],成都:成都理工大学,2006
    [34]H.Zeshan, D. Yulin. Supersaturation control in aragonite synthesis using sparingly soluble calcium sulfate as reactants[J],Journal of Colloid and Interface Science,2003,(266):359-365
    [35]H. Konno, Y. Nanri, M. Kitamura. Effect of NaOH on aragonite precipitation in batch and continuous crystallization in causticizing reaction[J],Powder Technology,2003,(129):15-21
    [36]K. Kiyoshi, K. Haruo.Method for producing whisker-like calcium carbonate[P].JP, JP2006028003A, 2006
    [37]Y. Jiaguo, L. Ming, C. Bei, et al. Facile preparation of calcium carbonate particles with unusual morphologies by precipitation reaction[J],Journal of Crystal Growth,2004, (261):566-570
    [38]曹有名.碳酸钙晶须合成及其应用[J],化工新型材料,2001,26(10):23-25
    [39]胡志国,樊风秋.一种新的制备针状碳酸钙的方法[J],化学通报,1997,(1):27-28
    [40]K. Haruo, N. Yasutoku, K. Mitsutaka.Method for producing calcium carbonate whisker[P].JP, JP2002235295A,2002
    [41]张琍,刘兴勇,等.均相法制备文石型碳酸钙晶须[J],四川轻化工学院学报,2003,16(4):58-62
    [42]M. Atsushi, W. Hiroyuki, K. Osamu.Method for producing accicular light precipitated calcium carbonate and paper containing the calcium carbonate[P].JP,JP2003063820A,2003
    [43]陈庆华,许兢,钱庆荣,等.一种晶须碳酸钙的制备方法[P].CN,CN18800451A,2006
    [44]F. GH,H. George, T. RI, et al.A cicular calcite and aragonite calcium carbonate[P].US, US6071336, 2000
    [45]Y. K, A. S, T. Y, et al. Control of crystal shape and modification of calcium carbonate prepared by precipitation from calcium hydrogencarbonate solution[J],Japan Journal of Ceramic Society,1992, 100(9):1145-1153
    [46]T. Iwashita, Y. Ota.Process for producing needle-shaped calcium carbonate particles[P].JP, JP0581981A1,1992
    [47]S. Keiko, H.Takeshi, H.Hironao.Method for manufacturing aragonite type calcium carbonate[P].JP, JP200135446A,2001
    [48]刘庆峰,陈寿田,等.碳酸化工艺参数对碳酸钙结晶习性的影响[J],无机材料学报,2002,17(1):163-166
    [49]李武,张志宏,聂峰,等.碳酸钙晶须的制备工艺[P]China, CN1552959A,2004
    [50]宋永才.一种文石型碳酸钙晶须的制备方法[P].CN,CN1303264C,2007
    [51]张琍,张昭,等.均一文石晶须的制备及机理探讨[J],四川大学学报(工程科学版),2002,34(3):46-49
    [52]李纠,陈华雄.以氯化镁为晶型控制剂制备碳酸钙晶须[J],硅酸盐学报,2005,(9):1153-1156
    [53]H. Katayama, H.Shibata, T. Fujiwara.Process for Producing Aragonite Crystal Form Calcium Carbonate with Acicular Shape [P].JP, JP0406662B1,1995
    [54]H. Shibazaki, S. Edagawa, H.Hasegawa, et al.Calcium Carbonate Particles and Processes for Preparing Same[P].JP, JP4244933,1981
    [55]O. Y, S. T,I. T, et al.Hydroxyapatite calcium carbonate composite particles used as biomaterial having bone repair function are obtained by aggregating fine hydroxyapatite crystal and calcium carbonate crystal containing acicular aragonite crystal[P].JP,JP2005232920A,2005
    [56]Producing needle shaped particles of aragonite-type calcium carbonate[P].JP, JP4224110A,1992
    [57]Tesin compsn. having good balance of impact strength and rigidity[P].JP, JP3279245A,1992
    [58]郭金伙,韩跃新.碳酸钙晶须结晶过程的研究[J],矿冶工程,1999,19(4):58-60
    [59]尚文宇,刘庆峰,陈寿田.气液法合成文石型碳酸钙晶须的研究[J],西安交通大学学报,1999,33(10):10-13
    [60]尚文宇.文石型碳酸钙晶须的合成及其填充聚合物复合体系性能的研究[D],西安:西安交通大学,2000
    [61]朱万诚,陈建峰,王玉红.超重力环境中合成微细晶须碳酸钙及其表征[J],化学物理学报,2004,17(2):175-179
    [62]王敏,邹海魁,陈建峰,等.晶须CaCO3超重力法制备及其在PVC中的应用[J],金属矿山,2005,(1):76-79
    [63]王玉红,陈建峰,朱万诚,等.一种微细晶须状碳酸钙的制备方法[P].CN,CN1442363A,2003
    [64]Y. Ota, g. Norifumi, M.Iwao, et al.Process of Producing Needle-shaped Calcium Carbonate Particles[P].US, US4824654,1989
    [65]O. Yoshio, S. Tetsuo, I. Testsushi.Method for producing acicular calcium carbonate[P].JP, JP200519012A,2005
    [66]F. S. M.,J.Bruce.Seeding of aragonite calcium carbonate and the product thereof[P].US, WO9852870, 1998
    [67]H.Koichi, Y. Hiroyasu, Y. Takashi.Production of aragonite needle crystaaline calcium carbonate[P].JP, JP200272919A,2000
    [68]I. Yaniv.Precipitated aragonite and a process for producing it[P].US, US20030213937A1,2003
    [69]冯臻.文石晶须的研究[J],化工矿物与加工,2002,(8):13-15
    [70]柳海坤.轻质碳酸钙的研究与发展方向[J],黑龙江造纸,2004,(3):29
    [71]S.Toichi.JP, JP7126407,1995
    [72]张琍.均一文石相碳酸钙晶须的制备与生长机理研究[D],成都:四川大学,2002
    [73]刘庆峰.碳酸钙晶须的碳酸化法合成及机理研究[D],西安:西安交通大学,2000
    [74]林有希,高诚辉,李志方.晶须CaCO3和PTFE填充聚醚醚酮复合材料的摩擦学性能[J],材料热处理学报,2006,27(4):20-24
    [75]林有希,高诚辉,李志方.碳酸钙晶须含量对聚醚醚酮复合材料摩擦磨损性能的影响[J],摩擦学学报,2006,26(5):448-451
    [76]K. Haruo, I. Masaya, N. Yasutoku.Matted coated paper and method for producing the same[P].JP, JP2004211219A,2004
    [77]姜立华,范晓东.关于我国水泥目前生产及出口的有关情况[EB/OL], http://cccmc.mofcom.gov.cn/aarticle/fanqingxiao/200504/20050400070345.html, 2005-04-19/2008-5-6
    [78]胡庆福,胡晓湘,宋丽英.中国碳酸钙工业生产现状及其发展对策[J],中国非金属矿工业导刊,2004,(4):3-7
    [79]Prodn. of aragonite crystal from calcium carbonate-by blowing carbon di:oxide gas in calcium hydroxide water slurry, adding phosphorus cpd. and carbonising[P].JP-A-63256514,1989
    [80]H. Enguang, S. Wenyu, C. Shoutian. Effects of Phosphate Ion on the Growth of Aragonite Whisker in Heterogeneous Precipitation from Suspension of Ca(OH)2 [J],稀有金属材料与工程,2000,29(6):398-402
    [81]M.Wang, H.K. Zou, L. Shao, et al. Controlling factors and mechanism of preparing needlelike CaCO3 under high-gravity environment[J],Powder Technology,2004,(142):166-174
    [82]张治华.用氢氧化镁作阻燃剂制备阻燃PP的一些经验[J],塑料助剂,2003,(1):32-35
    [83]周曦亚,等.无机材料显微结构分析[M],北京:化学工业出版社,2007
    [84]胡庆轩,郑怀玉,林文娟.有机粉体流动性的测定[J],中国粉体技术,1999,5(5):11-14
    [85]盛涤伦.用安息角定量测定起爆药的流散性[J],火工品,1996,(2):47-48
    [86]胡庆福,宋丽英,胡晓湘.提高轻质碳酸钙产品质量的几点建议[J],化工矿物与加工,2003,(3):5-9
    [87]杨振祥,蒋凌云,章苏.浅析超细碳酸钙的几项主要指标[J],无机盐工业,2003,35(5):4-6
    [88]钱海燕,叶旭初,张少明.非金属矿粉体改性及其效果评价[J],非金属矿,2001,24(2):10-12
    [89]张凌燕.硅灰石针状粉制备及机械力化学改性研究[D],武汉:武汉理工大学,2003
    [90]杜仕国.填料的改性及其表征[J],塑料工业,1994,(2):48
    [91]刘卫平,周建萍,等.氧化锌晶须表面改性及表征[J],塑料工业,2004,32(5):48-50
    [92]雷芸.绢云母表面改性及机理研究[D],武汉:武汉理工大学,2003
    [93]B. Feng, A. k, H. An. Effect of various factors on the particle size of calcium carbonate formed in a precipitation process[J],Materials Science and Engineering,2007, (445):170-179
    [94]张克从.近代晶体学基础[M],北京:科学出版社,1987
    [95]A.-j. Xie, Y.-h. Shen, X.-y. Li, et al. The role of Mg2+ and Mg2+ /amino acid in controlling polymorph and morphology of calcium carbonate crystal[J],Materials Chemistry and Physics,2007,(101): 87-92
    [96]施尔畏.水热结晶学[M],北京:科学出版社,2004
    [97]张克从,等.晶体生长[M],北京:科学出版社,1981
    [98]林荣毅,张家芸.纳米CaCO3的生长和控制机理[J],中国有色金属学报,2002,12(2):358-362
    [99]杨桦,崔爱莉.不同几何形状CaCO3超微粒子的合成[J],吉林大学自然科学学报,1997,(2):83-85
    [100]白鸽玲,满瑞林.纳米级和特性活性碳酸钙的制备[J],应用化工,2001,(6):10-13
    [101]仲维卓,华素坤.晶体生长形态学[M],北京:科学出版社,1999
    [102]朱一民,韩跃新.晶体化学在矿物材料中的应用[M],北京:冶金工业出版社,2007
    [103]C. Y. Tai, F. B. Chen. Polymorphism of CaCO3 Precipitated in a Constant-Composition Environment [J],AIChE Journal,1998,44(8):1790-1798
    [104]J.C.Jamieson. Phase equilibrium in the system calcite-aragonite[J],J.Chem.Phys,1953,21 (3): 1385-1390
    [105]N.Spanos, P.G.Koutsoukos. The transformation of vaterite to calcite:effect of the conditions of the solutions in contact with the mineral phase[J],Journal of Crystal Growth,1998,(191):783-790
    [106]A. Gutjahr, H. Dabringhaus, R. Lacmann. Studies of the growth and dissolution kinetics of the CaCO3 polymorphs calcite and aragonite 1.Growth and dissolution rates in water[J],Crystal Growth,1996,(158):296-309
    [107]Y. Zhang, G.Yin, etc. Preparation of P-Ca3(PO4)2 bioceramic powder from calcium carbonate and phosphoric acid[J],Current Applied Physics,2005,(5):531-534
    [108]郑昌琼,冉均国.新型无机材料[M],北京:科学出版社,2003
    [109]田从学.水溶液中合成羟基磷灰石的研究[J],攀枝花大学学报,1999,16(4):77-82
    [110]赵珊茸.结晶学及矿物学[M],北京:高等教育出版社,2004
    [111]W. Hou, Q. Feng. Simple method to control the polymorphs of calcium carbonate in CO2 diffusion precipitation[J],Journal of Crystal Growth,2005,(282):214-219
    [112]潘兆橹.结晶学及矿物学[M],北京:地质出版社,1994
    [113]A. D.,R. M.,C. M.,et al. Theoretical equilibrium and growth morphology of CaCO3 polymorphs 1. Aragonite[J], Journal of Growth,1997,(182):168-184
    [114]K. J.Westin, A.C. Rasmuson. Crystal growth of aragonite and calcite in presence of citric acid, DTPA, EDTA and pyromellitic acid[J],Journal of Colloid and Interface Science,2005,(282): 359-369
    [115]黄志良,王大伟,刘羽,等.不同方法制备的CO32-替换磷灰石固溶体晶体化学的FTIR研究[J],光谱学与光谱分析,2002,22(6):949-953
    [116]王峰,李木森,隋金玲,等.纳米羟基磷灰石的制备方法与应用[J],2004,(3):44-47
    [117]刘羽,胥焕岩.磷灰石结构通道离子对晶胞参数的影响[J],矿物岩石,2001,21(1):1-4
    [118]肖丽华,吴建青.在湿CO2气氛中热处理生成碳酸羟基磷灰石的探讨[J],硅酸盐学报,2005,33(9):1110-1114
    [119]王友法,闫玉华,等.水热条件下针状羟基磷灰石单晶体的均相合成[J],硅酸盐通报,2001,(2):30-33
    [120]M. Aizawa, H. Ueno, etc. Syntheses of calcium-deficient fibers by a homogeneous precipitation method and their characterizations[J],Journal of the European Ceramic Society,2006, (26): 501-507
    [121]高燕娇,刘榕芳,肖秀峰.碳磷灰石的制备和性能研究[J],材料导报,2005,19(8):28-31
    [122]刘羽.间接确定磷灰石中碳酸根含量的几种方法对比[J],岩矿测试,1994,13(2):109-112
    [123]张刚生,丁世磊.研磨对文石红外光谱的影响[J],矿产与地质,2005,19(110):429-431
    [124]Q. Yu, H.Ou, R. Song, et al. The effect of polyacrylamide on the crystallization of calcium carbonate:Synthesis of aragonite single-crystal nanorods and hollow vatarite hexagons[J],Journal of Crystal Growth,2006, (286):178-183
    [125]唐艳军,李友明,宋晶,等.纳米/微米碳酸钙的结构表征和热分解行为[J],物理化学学报, 2007,23(5):717-722
    [126]白进伟,邓跃全.电石泥渣分析[J],理化检验-化学分册,2004,40(11):659-661
    [127]黄志良,刘羽,王大伟,等.溶胶—凝胶法合成的择基磷灰石的热稳定性研究[J],汉化化工学院学报,2002,24(2):35-39
    [128]高卫民,陈运法.片状羟基磷灰石纳米晶体的合成研究[C].2004年中国纳米技术应用研讨会.2004 of Conference.37-39
    [129]刘榕芳,肖秀峰,倪军,等.羟基磷灰石粉末的水热合成及动力学研究[J],无机化学学报,2003,(10):1079-1084
    [130]李秀娟.羟基磷灰石的常温常压合成[J],山西大学学报(自然科学版),2006,29(3):287-290
    [131]李建利,武彬,夏风,等.羟基磷灰石粉体的二种制备工艺及比较[J],现代技术陶瓷,2005,(3):6-8
    [132]王德平,黄文旵,周萘.纳米羟基磷灰石球状晶体的合成及其吸附特性的研究[J],功能材料,2003,34(4):476-478
    [133]杨凤,施利毅,张剑平.纳米羟基磷灰石的制备及其吸附性能[J],上海大学学报(自然科学版),2004,10(4):426-429
    [134]张维丽,王臻,李荣先,等.利用液相合成方法制备纳米羟基磷灰石[J],新技术新工艺,2007,(2):80-82
    [135]冉松林,沈上越,宋旭波.绢云母的超细粉碎与表面改性及其应用研究[J],化工矿物与加工,2003,(9):
    [136]郑水林.中国非金属矿深加工技术现状、机遇、挑战和发展趋势[J],中国非金属矿工业导刊,2000,(5):1-8
    [137]E.P普鲁特曼,梁发思,谢世杰.硅烷和钛酸酯偶联剂[M],上海:中国上海科学技术文献出版社,1987
    [138]胡岳华,王淀佐.矿物加工学科的发展——历史、现状与未来[J],矿业工程,1999,19(1):3-7
    [139]刘伯元.中国粉体表面改性的最新进展[C].全国粉体设备—技术—产品信息交流会.2003 ofConference.254-273
    [140]汤爱萍,吴满芳,杨婕.碳酸钙表面改性技术进展[J],江西化工,2002,(4):34-36
    [141]韩秀山.纳米级超细碳酸钙生产和应用前景广泛[J],天然气化工,2001,26(4):59-60
    [142]张士成,韩跃新,等.纳米碳酸钙的制备及应用[J],非金属矿,1997,(4):22-25
    [143]丁浩.矿物表面改性研究的现状与前景展望(Ⅱ)[J],矿产保护与利用,1996,8(4):26-29
    [144]何益艳,杜世国.无机填料的改性及其在复合材料中的应用[J],化工新型材料,2001,29(21):14-17
    [145]郑水林.2000-2001年中国粉体表面改性技术研究进展[J],非金属矿,2002,25(增刊):3-7
    [146]黄洪周.中国表面活性剂总览[M],化学工业出版社,2003
    [147]谷元.粉粒体表面改性技术及其应用[J],化工进展,1994,(1):33-40
    [148]吴崇浩,王世敏.纳米微粒表面修饰的研究进展[J],化工新型材料,2002,30(7):1-8
    [149]钱柏太,郑水林.非金属矿物表面改性技术的新进展[J],中国非金属矿工业导刊,1993,(3):7-13
    [150]田金星.非金属矿物的表面偶联技术[J],表面技术,1996,25(1):32-36
    [151]Hokkaid, Technolo. Surface Modification[M],1990
    [152]林海松,全元.矿物表面改性研究的现状与发展[J],矿产综合利用,1997,5(1):29-31
    [153]杜高翔,郑水林,李杨.阻燃用氢氧化镁及水镁石粉体的表面改性研究现状[J],非金属矿,2002,25(9):10-13
    [154]蒋文贤.特种表面活性剂[M],北京:中国轻工业出版社,1995
    [155]Rosen.M.J, Hua.X.Y. Surface concentrations and molecluar interactions in binary mixtures of surfactants[J],Colloid & Inter,1982,86164-172
    [156]Carcia.R.A, Cotoruelo.L.M, Rodriguez.J.J. Equilibrium study of single-solute adsorption of anionic surfactants with polymeric XAD resins[J],Separation Science and Technology,1992,27 (7): 975-987
    [157]卢寿慈.粉体加工技术[M],北京:中国轻工业出版社,1999
    [158]吉晓莉,陈家炎.粉体表面改性处理设备及其发展[J],湖北化工,1998,(4):37-38
    [159]潘志东,李竟先.超细粉体的制备与表征[J],中国粉体技术,2000,(6):127-129
    [160]丁浩,卢寿慈,等.矿物表面改性研究的现状与前景展望(Ⅲ)——改性效果的预先评价[J],矿产保护与利用,1997,(1):21-25
    [161]董发勤,万朴,等.矿物超细粉体性能检测与评价指标体系探讨[J],非金属矿,1999,2251-53
    [162]郑水林,钱伯太,卢寿慈.非金属矿物填料表面改性研究进展[J],粉体技术,1999,4(2):24-34
    [163]郑水林.粉体表面改性[M],北京:中国建材工业出版社,1995
    [164]钱柏太,郑水林,等.非金属矿物表面改性技术的新进展[J],中国非金属矿工业导刊,1993,(3):7-13
    [165]周祚万,胡书春.晶须的特点及其产业化前景分析[J],新材料产业,2002,(3):19-21
    [166]王训遒,蒋登高.纳米CaCO3表面改性方法综述[J],化工矿物与加工,2007,(1):32-36
    [167]郑水林,卢寿慈.表面活性非金属矿物填料在塑料制品中的应用现状与发展前景[J],中国非金属矿工业导刊,1999,(1):7-13
    [168]徐奉林,方旋,等.矿物填料与高聚物的界面结构研究[J],浙江地质,1998,14(2):74-84
    [169]丁浩,卢寿慈,等.矿物表面改性研究的现状与前景展望(Ⅳ)——非金属矿物的改性实践[J],矿产保护与利用,1997,(2):31-38
    [170]林美娟,章文贡.新型、高效、无毒的钙皂锌皂热稳定剂的研究[J],聚氯乙烯,2000,(1):35-37
    [171]丁浩,卢寿慈.搅拌磨湿法超细磨矿中钛酸酯改性重质碳酸钙的研究(Ⅱ)——钛酸酯与重钙矿物表面的作用机理[J],国外金属矿选矿,1999,(6):18-25
    [172]王宗明,何欣翔,孙殿卿.实用红外光谱学[M],北京:石油工业出版社,1980
    [173]全学军,孙智富.碳酸钙晶须的制备与填充性能[J],武汉理工大学学报,2003,25(8):8-12
    [174]钱军民,金志浩.填料碳酸钙的制备及其形状与晶型控制研究进展[J],化工矿物与加上,2002,(4):1-5
    [175]陈尔凡,田雅娟,周本廉.晶须增强体及其复合材料研究进展[J],高分子材料科学与工程,2002,(7):1-5
    [176]国亮.纳米粉体/PP复合材料的制备及力学性能研究[D],杭州:浙江大学,2002
    [177]任俊,沈健,卢寿慈.颗粒分散科学与技术[M],北京:化学工业出版社,2005
    [178]尚文宇,谢大荣,刘庆峰,等.晶须状碳酸钙填充聚合物材料性能的研究[J],中国塑料,2000,14(3):24-27
    [179]李广宇,李子东.晶须的性能及其应用进展[J],热固性树脂,2000,(4):48-51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700