用户名: 密码: 验证码:
电化学沉积法制备Ⅱ-Ⅵ族金属硫化物纳米粒子及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ⅱ-Ⅵ族金属硫化物(CdS、ZnS)纳米粒子是一种重要的半导体化合物,具有独特的光电特性,在光电传感器、荧光探针、光电催化、太阳能电池及其他光电元器件上都有着重要用途。随着纳米科技的发展,近年来CdS和ZnS量子点的重要地位引起了人们的广泛关注,各种制备方法也由此应运而生。因制备的方法不同,所得的纳米粒子的粒径、密度、均匀性及结构也不同,进而影响了它们的性质。
     本论文中,我们首先研究了一种制备硫化镉(CdS)纳米粒子的简便方法。以氧化铟锡(ITO)透明导电玻璃为基底,以氯化镉和硫代硫酸钠溶液为电解液,应用循环伏安法,电沉积制得了CdS纳米粒子。通过改变沉积的电位、反应物浓度和沉积圈数,研究了制备条件对CdS纳米粒子的形状、大小、密度和结构的影响。并采用扫描电镜(SEM)、紫外-可见吸收光谱和X-射线衍射(XRD)对制得的纳米粒子进行了表征。结果表明,在电镀液组成为0.1M CdCl2和0.02M Na2S2O3,电位范围为-0.2V~-0.8V,沉积40圈,温度50℃的条件下,制得的CdS纳米粒子大小均匀,分散性好,平均粒径约为60nm。
     其次,我们采用电化学沉积法在ITO表面制备了ZnS纳米粒子、CdS与ZnS纳米粒子的核壳结构和合金结构的纳米修饰电极。研究了这几种电极对典型有机污染物甲基橙的光电催化降解作用。结果表明,用电化学沉积法制得的CdS, ZnS及其核壳、合金结构组成的电极对甲基橙都有不同程度的光电催化效应,光照后的循环伏安电流和I-T电流比不光照条件下都有明显的增加,其中,ITO/CdS电极光照前和光照后的电流均最大,而ITO/ZnS纳米修饰电极光照后催化电流增加的最多,达到89%,说明ITO/ZnS光电催化效应最明显。
     最后,采用溶胶-凝胶法将葡萄糖氧化酶(GOD)固定在ITO/ZnS纳米修饰电极表面,实现了GOD与修饰电极之间的直接电子转移。ITO/ZnS/SG-GOD酶电极的循环伏安响应明显,在-0.429V和-0.398V处出现了一对明显的可逆氧化还原峰, Eo为-0.414V,峰电位之差△Ep为31mV。优化了实验条件,在最佳条件下探讨了ITO/ZnS/SG-GOD酶电极的电化学行为,酶电极的电子转移速率常数为5.73s-1。
TheⅡ-Ⅵmetallic sulfide(CdS、ZnS) nanoparticle is one kind of an important semiconductor material with some particular photoelectrical properties. It is of great importance for photoelectrochemical biosensors, luminescent probes, photoelectrocatalysis, solar cells and other opo-electronic products. Recently, with the development of nanotechnology, the significant status of CdS and ZnS Quantum Dots has drawn much attention and a great number of synthetic methods have been developed. The diameter, density, uniformity, structure and other properties of particles depend on the preparing conditons and methods.
     In this paper, we firstly explored a convenient route to prepare cadmium sulfide (CdS) nanoparticle. CdS nanoparticle was directly deposited on the ITO surface by cyclic voltammetry (CV) using CdCl2 and Na2S2O3 as electrolyte. We studied several factors, including the potential range, the concentration of electrolyte and the sweep segment of CV,that influence the diameter, density, uniformity and structure of the nanoparticles. The prepared CdS nanoparticle was characterized by scanning electron microscope (SEM), UV-Vis spectroscopy and X-ray diffraction (XRD). When the CdS nanoparticle was electrodeposited from 0.1M CdCl2 and 0.02M Na2S2O3 mixed electrolyte in the range of -0.2V to -0.8V for 40 segment at 50℃, the average diameter of CdS nanoparticles are about 60 nm with uniformity and dispersibility.
     Secondly, Zinc sulfide (ZnS) nanoparticle was prepared using ZnCl2 and Na2S2O3 as electrolyte according to the preparation method of CdS. At the same time, the core-shell and alloy nano-modified electrodes of CdS and ZnS were also fabricated. Afterwards, these QDs modified electrodes were used to study the photoelectrocatalytic reaction to methyl orange (MeO) which is a typical organic pollutant. The results indicate that ITO/CdS, ITO/ZnS electrode, their core-shell and alloy nano-modified electrode all have a photoelectrocatalytic effect on MeO more or less. The current of CV and I-T both increased significantly after illuminating. And the ITO/CdS electrode has the highest current both before and after illuminating. The I-T current of ITO/ZnS modified electrode increased about 89% when light was on, which is the highest among those electrodes. It reveals that the ITO/ZnS modified electrode has the most apparent photoelectrocatalytic effect on MeO.
     Finally, the glucose oxidase (GOD) was immobilized on the ITO/ZnS nano-modified electrode using sol-gol method. The direct electron transfer between GOD and electrode was realized. Besides, we studied the CV effect of different enzyme electrodes. The result revealed that the ITO/ZnS/SG-GOD electrode has the most significant CV effect among these electrodes. ITO/ZnS/SG-GOD electrode appears a pair of an evident oxidation-reduction peak at -0.429V and -0.398V. The difference between the cathodic and anodic peak potentials is 31mV and the Eo is -0.414V. The electrochemical behaviors of the ITO/ZnS/SG-GOD electrode were studied under the optimized condition and the ks was evaluated to be 5.73s-1.
引文
1 Andrew M, Nie S. Analyst, 2004, 129, 672.
    2 Han M, Gao X, Su J Z, Nie S. Nature biotechnol, 2001, 19, 631.
    3何春萍,傅昕,黄可龙.怀化学院学报, 2007, 26(5), 58.
    4 Chan W C, Nie S M. Science, 1998, 281(5385), 2016.
    5 Colvin V L, Schlamp M C, Alivisatos A P. Nature, 1994, 370(6488), 354.
    6 Peng X, Manna L, Alivisatos A P. Nature, 2000, 404(6773), 59.
    7 Whaley S R, Hu E L, Belcher A M. Nature, 2000, 405 (6787), 665.
    8 Seth C, Wing K W, Bulovic V. Nature, 2002, 420(6917), 800.
    9 Murray C B, Norris D J, Bawendi M G. J.Am.Chem.Soc. 1993, 115, 8706.
    10 Dawnay E J, Fardad M A, Green M. J. Mater. Res., 1997, 12(11), 3115.
    11 Bruchez M J, Moronne M, Gin P. Science, 1998, 281:2013-2016.
    12 Salata O V, Dobson P J, Sabesan S. Thin Solid Films. 1996, 288, 235.
    13 Peng Z A, Peng X G. J.Am.Chem.Soc. 2001, 123, 183.
    14张辉.黄山学院学报, 2006, 8(5), 25.
    15 Nosaka Y. Langmuir. 1997, 13(4), 708.
    16杜娟,李越湘,彭绍琴.功能材料, 2005, 36(10), 1603.
    17陈友存,叶信宇.安庆师范学院学报, 2003, 9(2), 1.
    18 Gao F, Lu Q Y, Xie S H, Zhao D Y. Adv. Mater. 2002, (14), 1537.
    19 Zhang H, Yang D, Ma X Y. Mater. Lett. 2006, 12, 123.
    20 Gao F, Lu Q Y, Xie S H, Zhao D Y. Adv. Mater. 2002, (14), 1537.
    21 Chen M, Xie Y, Chen H Y. J. Colloid Interface Sci. 2000, 229, 217.
    22 Deng H, Chen C. Mater. Chem. Phys., 2006, 100, 224.
    23 Liu S H, Qian X F, Ma X D. Phys. Chem Solids, 2003, 64, 455.
    24丁云峰,余锡宾.上海师范大学学报, 2002, 31(4), 47.
    25 Vacassy R, Scholz S M, Dutta J, John C, Plummer G, Houriet R, Hofmann H. J. Am. Ceram. Soc. 1998, 81(10), 2699.
    26贺颖,刘鹏,朱刚强,边小兵.陕西师范大学学报(自然科学版). 2007, 35(2), 80.
    27郭莉,王丹军,李东升,黄静,王继武.材料工程. 2008, 10, 287.
    28郑梅琴,颜桂炀,郑柳萍,叶金花.广州化学, 2007, 32(2), 7.
    29常鹏,刘肃,王秀华,唐莹.人工晶体学报. 2007, 36(4), 817.
    30 Xu Y J, Xu D S, Chen D P, Guo L, Li C J. Acta Physico-Chimica Sinica, 1999, 15(7), 577.
    31姚素薇,韩玉鑫,赵培忠,张卫国.纳米技术与精密工程, 2004, 2(4), 243.
    32池玉娟,付宏刚,张恒彬,潘凯,齐乐辉.黑龙江大学自然科学学报, 2007, 24(6),766.
    33栾野梅,安茂忠,孙明仁.高校化学工程学报. 2004, 18(6), 745.
    34栾野梅.半导体光电, 2007, 28(2), 213.
    35黄剑锋,朱辉,曹丽云,吴建鹏,贺海燕.人工晶体学报. 2008, 37(4), 862.
    36翁晴,程树英.福州大学学报(自然科学版), 2008, 36(1), 73.
    37 Chaure N B, Chaure S, Kim H G, Lee J S. J. Am. Chem. Soc., 2004, 126 (29), 8912.
    38于灵敏,祁立军,范新会.西安交通大学学报, 2006, 40(1), 75.
    39刘春霞,严文,范新会.材料科学与工程学报, 2005, 23(1), 102.
    40丛日敏,罗运军,李国平.无机化学学报, 2005, 21(11), 1763.
    41 Wang D, Cao Y, Zhang X. Chem. Mater., 1999, 11, 392.
    42冯新星,陈建勇,张建春.功能高分子学报, 2003, 16(4), 513.
    43王银海,许彦旗,蔡维理.物理化学学报, 2002, 18(10), 943.
    44桑文斌,彭小雷,史伟民.功能材料, 2000, 31(5), 508.
    45翟庆洲,蔡建岩,于淼.稀有金属材料与工程, 2006, 31(5), 146.
    46李彦,张庆敏,黄福志,万景华,顾镇南.无机化学学报, 2002, 18(1), 79.
    47张俊松,马娟,周益明.无机化学学报, 2005, 21(2), 295.
    48许小青,陈元涛.云南大学学报, 2005, 27(3), 178.
    49唐文华,邹洪涛,蒋天智.无机盐工业, 2006, 38(4), 22.
    50曹洁明,房宝青,刘劲松,常树全,张防.无机化学学报, 2005, 21(1), 105.
    51 Wang L P. Mater. Res. Bull. 2002, 35, 695.
    52马娟,张俊松,周耀明.应用化学, 2006, 23(12), 1368.
    53庄云龙,张学峰.分析仪器, 2004, 1, 22.
    54李文戈,戴洁,卞国庆.化学世界, 2002, 1, 13.
    55周锋,马强,唐亚平.材料工程, 2004, 10, 42.
    56娄向东,刘淑萍,王晓兵.功能材料与器件学报, 2005, 11(4), 485.
    57张鹏,高濂.无机材料学报, 2003, 18(4), 772.
    58李永红.分子催化, 2005, 19(6), 495.
    59孙玉凤,沈丽霞.有色矿冶, 2006, 22(5), 38.
    60曾贵玉,聂福德,尹莉莎.化学研究与应用, 2001, 13(4), 442.
    61黄宵滨,马季铭,程虎民.应用化学, 1997, 14(1), 117.
    62张海明,王之建,张立功.发光学报, 2002, 23(40), 369.
    63张震雷,吴庆生,丁亚平.应用化学, 2004, 21(8), 762.
    64张海明,元金山,阎圣刚.化工新型材料, 2000, 28(11), 16.
    65 Zhang J L, Xiao M, Liu Z M. J. Colloid and Interface Sci, 2004, 73, 160.
    66 Manjunaths P, Jayashecla U. Sol. Energy Mater. Sol. cells, 2000, 63, 309.
    67张军,孙聆东,钱程.科学通报, 2001, 46(7), 1423.
    68李恒达,徐占林,翟宏菊,李文连.动能材料, 2008, 6(39), 1040.
    69仲飞,叶勤,刘彭义,翟琳,吴敬,张靖垒.发光学报, 2006, 27(6), 877.
    70张晓松,李岚,陶怡,徐征,邹开顺.光电子激光, 2005, 16(9), 1040.
    71石华强,蔺玉胜,周晓东,傅洵.青岛科技大学学报(自然科学版), 2008, 29(1), 5.
    72 Wu X, Qu F Y, Shen G Z, Cai W. J. Alloys Compd., 2009, 48, 32.
    73 Moriguchi I, Ni H, Hanai K, Nagaoka H, Teraoka Y, Kagawa S. Colloids Surf., A 1995, 103, 173.
    74 Stanic V. Mater. Lett., 1997, 31(2), 35.
    75 Bruchez J M, Moronne M, Alivisatos A P. Science, 1998, 281(5385), 2013.
    76 Chan W C W, Nie S M. Science, 1998, 281(5385), 2016.
    77李平,刘梅川,张成林,程欲晓.化学学报, 2005, 63(12), 1075.
    78王乐余,周运友,朱昌青.高等学校化学学报, 2003, 24(4), 612.
    79徐力,郭轶,解仁国.功能材料与器件学报, 2003, 9(2), 201.
    80李于善,郭玲芝,李菲菲,徐丽.化学世界, 2009, 11, 657.
    81 Huang C P, Liu S W, Chen T M, Li Y K. Sens. Actuators. B, 2008, 130, 338.
    82 Curri M L, Agostianoa G, Leoc A, Mallardia P, Cosmab, M. Mater. Sci. Eng., C, 2002, 22, 449.
    83 Ping Du Li H X, Mei Z H, Liu S F. Bioelectrochem. Bioenerg., 2009, 75, 37.
    84 Chen Y F, Rosenzweig Z. Anal Chem, 2002, 74(19), 5132.
    85 Gattas K M, Leblanc R M. Chem. Commun., 2003, 7(21), 2684.
    86严拯宇,庞代文,邵秀芬,胡育筑.中国医科大学学报, 2005, 36(3), 230.
    87 Chan W C W, Nie S M. Science, 1998, 28 (5385), 2016.
    88 Han W, Maxwell D, Gao X. Anal. Biotechnol., 2002, 13, 40.
    89 Gao X, Cui Y, Levenson R M. Nature Biotechnol, 2004, 22, 969.
    90 Han M Y, Gao X H, Su J Z, Nie S M. Nature Biotechnol, 2001, 19, 631.
    91岳利青,周禾丰,郝玉英.发光学报, 2005, 26(2), 189.
    92 Qian X M, Qin D Q, Bai Y B. J Solid State Electrochem., 2001, 5, 562.
    93 Fujishima A, Honda K. Nature, 1972, 238, 37.
    94 Cary J H. Bull. Environ. Contam.Toxic., 1976, 16(6), 697.
    95 Kondo M M. Jardim W F. Water. Res., 1991, 25(7), 823.
    96岳林海.环境污染与防治, 1994, 16(4), 2.
    97方艳菊,丁红春,张中海,潘振声,金利通.化学传感器, 2005, 25(4), 16.
    98 Bac W, Abdullah R, Mehra R K. Chemosphere, 1998, 37(2), 363.
    99杨佑浩,任楠,杨志剑,张亚红,唐颐.复旦学报(自然科学版), 2008, 47(4),
    524.
    100 Pal B, Torimoto T, Iwasaki K. J. Phys. Chem. B., 2004, 108(48), 18670.
    101王文保,岳永德,花日茂.安徽农业大学学报, 1997, 24(4), 401.
    102郑梅琴,颜桂炀,郑柳萍.福建农林大学学报(自然科学版), 2008, 38(4), 439.
    103陈峰.南阳师范学院学报, 2006, 5(6), 57.
    104胡劲松,郭玉国,任玲玲.电子显微学报, 2005, 24(4), 366.
    105 Iwasaki K, Torimoto T, Shibayama T. J. Phys. Chem. B, 2004, 108(32), 11946.
    106 Smith P R, Hdmas J D, Richardson D J. J. Chem Soc. Faraday. Trans., 1998, 94(9), 1235.
    107 Yu I L, Isobe T, Mnmoru A. J. Phys. Chem. Solid, 1996, 57, 373.
    108刘艳丽,牛新书.功能材料, 2002, 33(4), 425.
    109陈爽.润滑与密封, 2007, 32(2), 108.
    110邵忠宝,牛盾,马国峰.材料研究学报, 2006, 20(1), 20.
    111 Offmann M R, Martin S T, Choiw Y. Chem. Rev., 1995, 95(1), 69.
    112 Kbol M, Balciogh I I. Water. Sci. Tech., 1996, 34(9), 73.
    113 Eggins B R, Pamler F L, Byrne J A. Water Res., 1997, 31(5), 1223.
    114 Carl A, Allen J B. Phy. Chem., 1997, 101(14), 2611.
    115 Byrne J A, Eggins B R. J. Electroana. Chem., 1998, 457, 59.
    116 Kim D H, Anderson M A. Envir. Sci. Technol., 1994, 28(3), 479.
    117 Hidaka H, Nagaoka H, Nohara K, Imura T S, Ikosh I S, Zhao J, Serpone N. J. Photochem. Photobiol., A:Chem., 1996, 98, 73.
    118 Fujish I A, Honda K. Nature, 1972, 238 (6), 37.
    119 Batkhande D S, Pangarkar V G, Beenackers C M. J. Chem. Technol. Biotechnol., 2001, 77(1), 102.
    120余倩,孔祥晋,潘湛昌,张环华,肖楚民,余林.化工新型材料, 2005, 33(8), 52.
    121 ZanonV B, Sene J J, Anderson M A. J. Photochem. Photobiol., A:Chem., 2003, 157, 55.
    122 Xie Q, Shuo C, Jing S. Sep. Purif. Technol, 2004, 34(13), 73.
    123 Iamar S N, Alves J I, Jeosa D J, Sene D, Iovaldo A, De O I, Florentino I. J. Photochem. Photobiol., A, 2005, 174 (1), 71.
    124王艳,任衍燕,郝春燕,贾世芳,侯红串,樊彩梅.太原科技大学学报, 2009, 30(4), 350.
    125张永强,李慧灵.河南教育学院学报(自然科学版), 2009, 18(1), 22.
    126陈中儒.科技资讯, 2008, 2, 6.
    127彭芳,朱德荣,司士辉.化学进展, 2008, 20(4), 586.
    128 Jia H M, Xu H, Hu Y, Tang Y, Zhang L Z. Electrochem. Commun., 2007, 9, 354.
    129 Lu W, Jin Y, Wang G, Chen D, Li J H. Biosens. Bioelectron., 2008, 23, 1534.
    130 Peter L M, Riley D J. Chem. Commun., 2002, 10, 1030.
    131 Harper J C, Christensen P A, Egerton T A. J. Appl. Electrochem, 2001, 31(3), 267.
    132 Zhang F, Zheng Z H, Liu D. Nucl. Instrum. Methods Phys. Res., Sect. B, 1997, 132, 620.
    133 Mhaidat I, Hamilakis S, Kollia C, Tsolomitis A, Loizos Z. Mater. Lett., 2008, 62, 4198.
    134 Gill R, Patolsky F, Katz E, Willner I. Angew. Chem. Int. Ed. 2005, 44, 4554.
    135 Freeman R, Gill R, Beissenhirtz M, Willner I. Photochem. Photobiol. Sci., 2007, 6, 416.
    136 Katz E, Zayats M, Willner I, Lisdat F. Chem. Commun., 2006, 13, 1395.
    137 Zayats M, Willner I. Adv. Biochem. Engin. Biotechnol, 2008, 109, 255.
    138 Vastarella W, Nicatri R. Talanta, 2005, 66, 627.
    139 Lu W, Jin Y, Wang G, Chen D, Li J H. Biosens. Bioelectron., 2008, 23, 1534.
    140 Stoll C, Gehring C, Schubert K, Zanella M, Parak W J, Lisdat F. Biosens. Bioelectron., 2008, 24, 260.
    [1]何春萍,傅昕,黄可龙.怀化学院学报, 2007, 26(5), 58.
    [2] Salata O V, Dobson P J, Sabesan S, Hull P I, Hutchison J L. Thin Solid Films, 1996, 288(1-2), 235.
    [3] Nanda K K, Sarangi S N, Mohanty S, Sahu S N. Thin Solid Films, 1998, 322(1-2), 21.
    [4] Andrea M, Leonardo A, Alessandra M, Stefano T, Andrea P, Sergio C. J. Photochem. Photobiol., A, 2000, 133 (1-2), 129.
    [5] Golovnanov V, Smyntyna V, Mattoqno G, Kaciulis S, Lantto V. Sens. Actuators, B, 1995, 26(1-3), 108.
    [6] Curri M L, Agostiano A, Leo G, Mallardi A, Cosma P, Della Monica M. Mater. Sci. Eng., C, 2002, 22(2), 449.
    [7] Peng Z A, Peng X G. J. Am. Chem. Soc. 2001, 123, 183.
    [8] Wing K W, Vladimir B. Nature, 2002, 420 (6917), 800.
    [9] Wang L C, Chen LY, Luo T, Qian Y T. Mater. Lett. 2006, 60: 3627-3630.
    [10] Xu Y J, Xu D S, Chen D P, Guo L L, Chong J. Acta Physico-Chimica Sinica, 1999, 15(7), 577.
    [11]于灵敏,祁立军,范新会.西安交通大学学报, 2006, 40(1), 75.
    [12]张俊松,马娟,周益明.无机化学学报, 2005, 21(2), 295.
    [13] Wang D, Cao Y, Zhang X. Chem. Mater., 1999, 11, 392.
    [14]黄宵滨,马季铭,程虎民.应用化学, 1997, 14(1), 117.
    [15] Chaure N B, Chaure Shweta, Pandey R K. Sol. Energy Mater. Sol. Cells, 2004, 81, 39.
    [16]许迪,高爱梅,邓文礼.物理化学学报, 2008, 24(7), 1219.
    [17]李林刚,谢红璐,高福雨,张留柱.化学世界, 2008, 8, 754.
    [18]池玉娟,付宏刚,史克英.高等学校化学学报, 2007, 28, 2364.
    [19] Jia H M, Hu Y, Tang Y W. Electrochem. Commun. 2006, 8, 1381.
    [1]胡晓洪,安太成,张茂林,盛国英,傅家谟.中国陶瓷研究与开发, 2006, 42(12), 21.
    [2] Carey J H. Bull. Environ. Contam. Toxicol., 1976, 16(6), 697.
    [3] Li J Y. Sci. China, Ser. B, 2002, 45(4), 445.
    [4] Yin X H. J. Chem. Ind. Eng., 2002, 53(5), 528.
    [5]岳林海.环境污染与防治. 1994, 16(4), 2.
    [6]方艳菊,丁红春,张中海,潘振声,金利通.化学传感器, 2005, 25(4), 16.
    [7]杨佑浩,任楠,杨志剑,张亚红,唐颐.复旦学报(自然科学版), 2008, 47(4), 524. [ 8] Zhang Y H. Chin. J. catalysis, 1999, 20 (3), 305. [ 9] Zhang F. Nucl. Instrum. Methods Phys. Res., B, 1997, 132, 620.
    [10]孔祥晋,潘湛昌,张环华,肖楚民.工业水处理, 2005, 25(12), 24.
    [11]王艳,任衍燕,郝春燕,贾世芳,侯红串,樊彩梅.太原科技大学学报, 2009, 30(4), 350.
    [12]余倩,孔祥晋,潘湛昌,张环华,肖楚民,余林.化工新型材料, 2005, 33(8), 524.
    [1] Leech D. Chem. Soc. Rev. 1994, 23, 205.
    [2] Clark L C, Lyons C. Ann. N Y Acad. Sci., 1962, 102, 29.
    [3] Updike S J, Hicks G P. Nature, 1967, 214(92), 986.
    [4] Koryta J. Electrochim.Acta., 1986, 31(5), 515.
    [5] Jochum P, Kowalski B R. Anal. Chim. Acta, 1982, 144, 25.
    [5] Liu S Q, Ju H X. Biosens. Bioelectron., 2003, 19, 177.
    [7]赵晓芳,张宏福.广东饲料, 2007, 16(1), 34.
    [8] Lin Y, Lu F, Tu Y, Ren Z. Nano. Lett., 2004, 4, 191.
    [9] Tang H, Chen J H, Yao S Z, Nie L H, Deng G H, Kuang Y F, Anal. Biochem., 2004, 331, 89.
    [10] Zhao H T, Ju H X, Anal. Biochem., 2006, 350, 138.
    [11] Cai C X, Chen J, Anal. Biochem., 2004, 332, 75.
    [12] Lim S H, Wei J, Lin J Y. Biosens. Bioelectron., 2005, 20 (11), 2341.
    [13]唐芳琼,沈继峰,张金芳,张改莲.高等学校化学学报, 1999, 20(4), 634
    [14] Kernaghan D, Ola B, Fraser R B, Farrell T, Owen P. Eur. J. Mineral., 2007, 132(2), 189.
    [15] White S F, Tohill I E, Newman J D, Turner A P F. Anal. Chim. Acta., 1996, 321, 165.
    [16] Terry L A, White S F, Tigwell L J. J. Agric. Food Chem., 2005, 53(5), 1309.
    [17] Jin W, Brennan J D, Anal. Chim. Acta, 2002, 461, 1.
    [18] Wang J, Li L, Deng Q, Dong S, Anal. Chem., 1998, 70, 3170.
    [19]陈晓君,张敏,杨,屠一锋,分析化学,2002, 30, 972.
    [20]陈晓君,张敏,杨,屠一锋,分析科学学报,2002, 18, 338.
    [21] Wu Y H, Hu S S. Bioelectrochem., 2007, 70, 335.
    [22] Laviron E J. Electroanal. Chem., 1979, 101, 19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700