用户名: 密码: 验证码:
金属板材单点渐进成形数值模拟及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属板材单点渐进成形是一种新型的金属板材数控无模成形技术,是升级传统手工钣金工艺的现代化加工方法。这种成形工艺能够柔性化、低成本、方便快捷地加工出复杂的壳体零件。同时,与传统冲压工艺需要大批量制造以保证成本经济性不同,该工艺适宜于小批量灵活加工,因此,更能满足现代市场日益迫切地个性化生产需求。
     金属板材单点渐进成形工艺在应用中还存在一些迫切需要解决的问题,如何合理选择工艺参数、如何避免成形中的破裂等。要解决这些问题,就需要对金属板材单点渐进成形的变形机理进行深入研究。在常规的物理实验研究中,难以直接获得成形过程中详细的应力、应变等力学参量,仅由间接测量获得的局部数据不能客观全面的反映出渐进成形过程的变形机理。而通过有限元法数值模拟,可以直接、方便、直观地获得这些有价值的数据,应用于成形机理研究。在常规的板材成形工艺研究中,有限元法数值模拟已发挥出举足轻重的作用。
     金属板材单点渐进成形由于自身的特点,如成形过程载荷加载轨迹复杂且长、板材厚度的剧烈减薄变化、以及局部变形累积等,使得对其进行有限元法数值模拟存在建模难度大、计算效率低等难点问题。
     本课题首先基于非线性、弹塑性有限元理论方法,对金属板材单点渐进成形过程的数值模拟的建模方法进行研究。通过建立能够描述邻接单元厚度连续变化的八节点六面体实体单元、涉及材料各向异性的非线性弹塑性材料模型、和工具头运动轨迹动态加载的控制策略等数值模拟中的关键性问题,对适用于金属板材单点渐进成形数值模拟分析的有限元模型的建立进行合理规划。
     根据建模规划,对渐进成形实验中最具代表性的方锥台件和圆锥台件,各自建立两种类型的有限元分析模型,即完整有限元分析模型和局部有限元分析模型。完整有限元分析模型是建立在对渐进成形过程边界条件、力学关系等的真实仿真基础上,而为了提高模拟效率建立的局部有限元分析模型,是通过添加虚拟的边界约束而仿真成形过程。通过四个模型的模拟结果与实验结果的对比研究表明,两类模型均适用于渐进成形的数值模拟分析,其中,方锥台件的局部有限元分析模型具有最高的计算效率。
     基于完整有限元分析模型对渐进成形过程的各阶段进行分析,从而全面认识渐进成形的特点;基于方锥台件局部有限元分析模型,并将板材厚度方向的单元细分为三层,通过成形过程仿真,获取成形中,板材不同区域的应力、应变情况,提出并建立分区域的渐进成形机理解释,即,在不同区域,板材的变形方式是不同的,其中,对体现渐进成形主要特点的方锥台件和圆锥台件的侧壁充分变形区域,其变形方式是拉伸-弯曲复合变形。
     基于方锥台件局部有限元分析模型,对不同工艺参数下的成形过程进行仿真,研究工艺参数板材厚度变化、塑性变形区、以及成形力等的影响关系。从而为渐进成形中合理选用工艺参数提供依据。
     最后,在渐进成形数值分析的基础上,探讨了对工具头磨损进行数值模拟分析的方法和流程,并通过仿真,研究了工艺参数对工具磨损的影响关系。
Single Point Incremental Forming Process (SPIF) is an innovative sheet metal forming technology without dedicated dies used to improve the traditional sheet metal process. By this method, complex shell parts could be manufactured with flexibility, cost reduction and convenient. Traditional stamping processes require the manufacture of large bathches in order to ensure economy of production. But SPIF is suitable to produce very small lot of batches economically and quickly to overcome the market growing demands of highly customized products.
     In the application, SPIF still exist some of the pressing need to address the question of how to select the correct technical parameters and how to avoid cracking in the forming. To solve these problems, the deformation mechanism of SPIF should be studied seriously. By conventional physics experiments, detailed information such as stress distrubution, strain and other mechanical parameters could’t achieved directly. And it’s not objective and comprehensive to understand the deformation mechanism of SPIF by indirect measurement of the partial data. Finite element method (FEM) adopted by the numerical simulation can be direct, convenient and intuitive access to these valuable data used in the studing of forming mechanism. In the conventional sheet metal forming technology research, FEM has played an important role.
     In SPIF process, the loading trajectory is complex and long, the thinning of the sheet thickness is dramatic, and the local deformations are accumulated. So, there are some difficutis in the numeriacla simulation of SPIF. For example, the modeling of SPIF is difficult and the computational efficiency is low.
     Based on the nonlinear, elastic-plastic finite element method theory, the modeling approach of the numerical simulatioin of SPIF was studied firstly in this project. Through the establishment of the eight-node hexahedral elements describing continuous variation of the thickness of adjacent elements, the involved nonlinear anisotropic elasto-plastic material model, the control strategies of the dynamic load of trajectories and so on, the FEM model of SPIF was reasonable planed.
     According to modeling planning, the most representative parts as the truncated cone and the truncated pyramid were used to modling, and each has been established two types of finite element analysis model, that is, the whole part FEM analysis model (WM-Model) and selected partical part FEM analysis model (SM-Model). WM-Model is established based on the realy situation of SPIF process, but SM-mdoel is established throuth adding suppositional bundary conditions. Through the comparative study of the four model simulation results and experimental results, it showed that the two types of models are applicable to the incremental forming the numerical simulation analysis, in which the cone-of the local finite element analysis model with the highest efficiency.
     Based on the WM-model, the various stages of SPIF process was studied and the forming characters have been realized. Based on the SM-model of the truncated cone, the blank thickness element was sub-meshed into three levels. And through the forming simulation of the process, access to the plate stress and strain of the different regions in forming, and proposed the establishment of a sub-regional mechanism to explain the incremental forming, that is, in different regions, sheet deformation is different. In the main region which reflects the major character of SPIF, the deformation pattern is the composition of bending and extrusion.
     Based on the SM-model of the truncated pyramid, the SPIF processes with different parameters were simulated. And the process parameters on changes in the thickness, plastic deformation region, forming force and so on were reseached. Thus, provide a reasonable basis for the selection of process parameters.
     Finally, the numerical simulation approach of tool wear was studid on the basis of numerical simulation of SPIF, and the process parameters on the impact of the tool wear were researched.
引文
[1] N Nakajima.A newly developed technique to fabricate complicated dies and electrodes with wires.Bull. JSME,1969,54(12):1546-1554.
    [2] D E Hardt,M C Boyce,K B Ousterhout,etal.CAD-driven flexible forming system for three-dimensional metal parts.Proceedings of the Sheet Metal and Stamping Symposium, SAE Special Publication No. 994,Warrendale PA,1993,69-76.
    [3] D F Walczyk,J Lakshmikanthan,D Kirk.Development of a reconfigurable tool for forming aircraft body panels.J. Manuf. Syst,1998,17(4):287-296.
    [4] Rao P,Dhande,Sanjay G. .A flexible surface tooling for sheet-forming processes: Conceptual studies and numerical simulation.Journal of Materials Processing Technology,2002,124(1-2):133-143
    [5]李明哲,李淑慧,柳泽.板材多点成形过程起皱现象数值模拟研究.中国机械工程,1998,9(10):34-38.
    [6]蔡中义,李明哲,陈建军.板材多点成形隐式算法数值模拟专用软件及关键技术,哈尔滨工业大学学报,2000,32(4):82-85.
    [7]陈喜娣,蔡中义,李明哲.板材无压边多点成形中回弹的数值模拟.塑性工程学报,2003,10(5):9-12.
    [8]陈喜娣,蔡中义,李明哲.板材无压边多点成形中起皱的数值模拟.农业机械学报,2005,36(4):132-135.
    [9]宋雪松,蔡中义,李明哲.板材多点成形过程中成形力的数值模拟.吉林大学学报(工学版) ,2004,34(2):226-231.
    [10] Homer S E , Vanluchene R D . Aircraft Wing Skin Contouring by Shot Peening.Journal of Materials Shaping Technology,1991,9(2):89-101.
    [11] Levers A,Prior A.Finite Element Analysis of Shot Peening.Journal of Materials Processing Technology,1998,120(4) :304-308.
    [12]康小明.有限元法在机翼整体壁板成形中的应用.中国机械工程,2002,13(2):134-136.
    [13] Kleiner M,Gobel R,Kantz H,etal.Combined methods for the prediction of dynamic instabilities in sheet metal spinning.CIRP Annals - Manufacturing Technology,2002,51(1):209-214.
    [14] Monaghan J , Quigley E . Enhanced finite element models of metal spinning.Journal of Materials Processing Technology,2002,121(1): 43-49.
    [15] Monaghan J,Quigley E.The finite element modelling of conventional spinning using multi-domain models.Journal of Materials Processing Technology,2002, 124 (3):360-365.
    [16] C C Wong,T A Dean,J Lin.Incremental forming of solid cylindrical components usingflow forming principles.Journal of Materials Processing Technology,2004,153–154:60-66.
    [17]刘英伟,吕炎,王成录.一种筒形件强旋三维有限元力学模型的提出.塑性工程学报,1998,5(3):51-56.
    [18]高西成,陈宇,康达昌.锥形件无芯模旋压的静态有限元分析.哈尔滨工业大学学报,2003,35(2):253-256.
    [19]胡福泰,王家勋.封头旋压数值分析.塑性工程学报,1999,6(1):65-68.
    [20]韩志仁,陶华,刘黎明.筒形件强力内旋压有限元模拟.机械科学与技术,2004,23(1):63-65.
    [21] H P Furth,R Waniek.Production and use of high magnetic fields.I. Rev.Sci.Instr,1956,27:195.
    [22] Anter Ei-Azab,Mark Garnich,Ashish Kapoor.Modeling of the electromagnetic forming of sheet metals state-of -the-art and future needs.Journal of Materials Processing Technology,2003,142:744-754.
    [23]舒行军,余本刚,张棋飞等.电磁成形放电电流及磁场的计算机仿真.武汉理工大学学报,2002,24(1):47-50.
    [24]黄尚宇,常志华,吴妮花等.板坯磁脉冲成形系统几何参数对终态变形影响的有限元分析.中国机械工程,1998,9(9):72-74.
    [25]赵志衡,李春峰,李建辉等.电磁胀形磁场力的有限元分析材.料科学与工艺, 2002,10(2):164-166.
    [26]赵志衡,李春峰,李建辉等.管坯电磁胀形磁场特性及磁压力分布.机械工程学报,2005,13(1):53-57.
    [27] Meriched Ali,Feliachi Mouloud,Mohellebi.Hassane Electromagnetic forming of thin metal sheets.IEEE Transactions on Magnetics,2000,36(4):1808-1811.
    [28] Fenton G. K,Daehn G. S.Modeling of electromagnetically formed sheet metal.Journal of Materials Processing Technology,1998,75(1-3):6-16.
    [29] Zhang X,Wang Z R,Song F M,etal.Finite element simulation of the electromagnetic piercing of sheet metal . Journal of Materials Processing Technology,2004,151(1-3):350-354.
    [30] Hu Z,Labudovic M,Wang H,etal.Computer simulation and experimental investigation of sheet metal bending using laser beam scanning.International Journal of Machine Tools and Manufacture,2001,41(4):589-607.
    [31] Kyrsanidi A K,Kermanidis T B,Pantelakis S G.Numerical and experimental investigation of the laser forming process.Journal of Materials Processing Technology,1999,87(1-3):281-290.
    [32]季忠,吴诗惇.板料激光弯曲成形数值腄猓泄す猓?001,28(10):953-956.
    [33]陈彦宾,李俐群,林尚扬.激光弯曲成形温度场的有限元数值模拟.应用激光, 2002,22(2):145-149.
    [34]杨晶,刘顺洪,万鹏腾等.板料激光弯曲成形的温度场三维数值研究.激光技术,2003,27(2):97-100.
    [35] Chen Dunjun,Wu Shichun,Li Miaoquan.Deformation behaviours of laser curve bending of sheet metals.Journal of Materials Processing Technology,2004,148(1):30-34.
    [36]季忠,焦学健,吴诗淳.板料激光弯曲成形动力显式有限元模拟.应用基础与工程科学学报,2001,9(2-3):208-214.
    [37]管延锦,孙胜,赵国群等.预约束应力作用下的激光弯曲成形仿真工艺研究.中国激光,2002,29(8):755-758.
    [38]吕波,张立文,裴继斌等.网格自适应技术在船用钢板激光弯曲成形过程数值模拟中的应用.塑性工程学报,2004,11(5):25-28.
    [39] Hu Z,Kovacevic R,Labudovic M.Experimental and numerical modeling of buckling instability of laser sheet forming.International Journal of Machine Tools and Manufacture,2002,42(13):1126-1131.
    [40]管延锦,张建华,赵国群等.扫描次数对板料激光弯曲成形影响的有限元仿真.研究航空制造技术,2004,1:55-57.
    [41]裴继斌,张立文,吕波等.中厚船舶钢板激光弯曲成形几何效应的数值模拟.塑性工程学报,2005,12(1):34-37.
    [42]松原茂夫.板材の逐次逆张出し·绞り成形.平成7年度塑性加工春季讲演会论文集,1995,209-210.
    [43] Shim M S,Park J J.The formability of aluminum sheet in incremental forming.Journal of Materials Processing Technology,2001,113:654-658.
    [44] Kim Y H,Park J J.Effect of process parameters on formability in incremental forming of sheet metal.Journal of Materials Processing Technology,2002,130-131:42-46.
    [45] Park J J,Kim Y H.Fundamental studies on the incremental sheet metal forming technique.Journal of Materials Processing Technology,2003,140:447-453.
    [46] Iseki H . An approximate deformation analysis and FEM analysis for the incremental bulging of sheet metal using a spherical roller.Journal of Materials Processing Technology,2001,111:150-154.
    [47] Ceretti E,Giardini C,Attanasio.Experimental and simulative results in sheet incremental forming on CNC machines . Journal of Materials Processing Technology,2004,152:176-184.
    [48] Ambrogio G.,Costantino I.,De Napoli L.Influence of some relevant process parameters on the dimensional accuracy in incremental forming: A numerical and experimental investigation.Journal of Materials Processing Technology,2004,153-154:501-507.
    [49] Ambrogio G,Filice L,Fratini L,etal.Process Mechanics Analysis in Single Point Incremental Forming Materials processing and design: modeling, simulation and applications.2004,922-927.
    [50]刘杰,莫健华,黄树槐.金属板材分层渐进成形技术及其有限元模拟.塑性工程学报,2001,8(2):20-22.
    [51]吴胜军,莫健华.基于LS-DYNA软件的单点渐进成形过程的模拟方法.模具制造,2003,10:6-7.
    [52]尹长城,王元勋,吴胜军.金属板材单点渐进成形过程的数值模拟.塑性工程学报,2005,12(2):17-21.
    [53] Kim T J,Yang D Y.Improvement of formability for the incremental sheet metal forming process.International Journal of Mechanical Sciences,2000,42:1271-1286.
    [54] Papstel J,Katalinic B.Simulation of incremental forming of sheet metal products.Proceedings of the 4th international conference of DAAAM national Estonia,2004,149-151.
    [55] Pohlak Meelis,Kuttner Rein,Majak Juri.Modelling and optimal design of sheet metal RP and M processes.Rapid Prototyping Journal,2005,11:304-311.
    [56] Hirt G.,Junk S,Bambach M,etal.Process limits and material behaviour in incremental sheet forming with CNC-tools.Materials Science Forum,2003,5:3825-3830.
    [57] Hirt G.,Ames J,Bambach M,etal.Forming strategies and process modelling for CNC incremental sheet forming.CIRP Annals - Manufacturing Technology,2004,53:203-206.
    [58] Pohlak M,Kuttner R,Majak J,etal.Simulation of incremental forming of sheetmetalproducts.4th International Conference of the DAAAM Tallinn,2004,149-151.
    [59] Duflou J R,Lauwers B,Verbert J,etal.Medical application of single point incremental forming: Cranial plate manufacturing.2nd International Conference on Advanced Research and Rapid Prototyping,Leiria, 2005,161-166.
    [60] Ambrogio G,De Napoli L,Filice L,etal.Application of Incremental Forming process for high customised medical product manufacturing.Journal of Materials Processing Technology,2005,162:156-162.
    [61] Golovashchenko S F,Krause A.Improvement of formability of 6xxx aluminum alloys using incremental forming technology.Journal of Materials Engineering and Performance,2005,14:503-507.
    [62] Pohlak M,Kuttner R,Majak J.Modelling and optimal design of sheet metal RP and M processes.Rapid Prototyping Journal,2005,11:304-311.
    [63] Ambrogio G.,De Napoli L,Filice L,etal.Improvement geometrical precision in sheet incremental forming processes.Proc. Bienn. Conf. Eng. Syst. Des. Anal.,2004,3:339-346.
    [64] Hagan E,Jeswiet J.Analysis of surface roughness for parts formed by computer numerical controlled incremental forming.Proc Inst Mech Eng Part B J Eng Manuf,2004,218:1307-1312.
    [65] Ceretti E,Giardini C,Attanasio A.Experimental and simulative results in sheet incremental forming on CNC machines . Journal of Materials Processing Technology,2004,152:176-184.
    [66] Shim M S,Park J J.The formability of aluminum sheet in incremental forming.Journal of Materials Processing Technology,2001,113:654-658.
    [67] Saotome Y,Okamoto T.An in-situ incremental microforming system for three-dimensional shell structures of foil materials.Journal of Materials Processing Technology,2001,113:636-640.
    [68]胡昌海.论弹性体力学与受范体力学中的一般变分原理.物理学报,1954,10(3):259.
    [69]钱伟长.变分法及有限元.北京:科学出版社,1980.
    [70] Wang N M,Budiansky B.Analysis of sheet metal stamping by the finite element method.Journal of application mechanics,1978,45:63-68.
    [71] Yang D . Comparative investigation into implicit/explicit and iterative implicit/explicit schemes for the simulation of sheet-metal forming processes.Journal of material processing,1995,50:39-53.
    [72] Wang N M , Tang S . Analysis of bending effects in sheet forming operations.International Journal for Numerical Methods in Engineering,1988,25:74-81.
    [73] Belytschko T.Explicit algoritms for nonlinear dynamics of shells.ASME,1981,48:209-231.
    [74] Lee J K,Cho U Y.Recent advances in sheet metal forming analysis.ASME Advances in Finite Deformation Problems in Materials Processing and Structures,1991,125.
    [75] Boubakar M.Finite element modeling of the stamping of anisotropic sheet metals.Engineering Computations,1996,13:143-171.
    [76] Shimizu T.A modified 3-Dimensional finite element model for deep-drawing analysis.ASME Advances in Finite Deformation Problems in Materials Processing and Structures,1991,125.
    [77] Jeffrey F.DEFORM3D Version 5.03 User’s Manual.2003,273-280.
    [78] Wriggers P,Eberlein R,Reese S.A comparison of three-dimensional continuum and shell elements for finite plasticity.Int.J.Solids Str.,1996,33(20-22):3309-3326.
    [79] Lorenzo M S.Solid finite elements for sheet metal forming simulation.Michigan State University,USA,1999.
    [80] T Belytschko,Neal M O.Contact-impact by the Pinball Algorithm with Penalty and Lagrangian Methods.Int.J.Number.Meths.Engng.,1991,31:547-572.
    [81]徐丙坤,施法中,陈中奎.板材冲压成形数值模拟中的几个关键问题.塑性工程学报,2001,8(2):32-35.
    [82]朱谨,阮雪榆.板材变形中两种摩擦模型的比较.上海交通大学学报,1995,29(2):72-78..
    [83] Schafer T,Schraft R.Incremental sheet metal forming by industrial robots.Rapid Prototyping Journal,2005,11:278-286.
    [84] Yoon S J,Yang D Y.An incremental roll forming process for manufacturing doubly curved sheets from general quadrilateral sheet blanks with enhanced process features.CIRP Annals - Manufacturing Technology,2005,54:221-224.
    [85] Kopac J , Kampus Z . Incremental sheet metal forming on CNC milling machine-tool.Journal of Materials Processing Technology,2005,162-163: 622-628.
    [86] Allwood J M,King G.,Duflou J.A structured search for applications of the incremental sheet-forming process by product segmentation.Proc Inst Mech Eng Part B J Eng Manuf,2005,219:239-244.
    [87] Hirt G,Ames J,Bambach M.A new forming strategy to realize parts designed for deep-drawing by incremental CNC sheet forming.Steel Research International,2005,76:160-166.
    [88] Young D,Jeswiet J.Wall thickness variations in single-point incremental forming.Proc Inst Mech Eng Part B J Eng Manuf,2004,218:1453-1459.
    [89] Hagan E,Jeswiet J.Effect of wall angle on Al 3003 strain hardening for parts formed by computer numerical control incremental forming.Proc Inst Mech Eng Part B J Eng Manuf,2003,217:1571-1579.
    [90] Hirt G.,Junk S,Bambach M,etal.Process limits and material behaviour in incremental sheet forming with CNC-tools.Materials Science Forum,2003,426-432:3825-3830.
    [91] Hagan E,Jeswiet J. A review of conventional and modern single-point sheet metal forming methods.Proc Inst Mech Eng Part B J Eng Manuf,2003,217(2):213-225.
    [92] Filice L,Fratini L,Micari F.Analysis of material formability in incremental forming.CIRP Annals - Manufacturing Technology,2002,51(1):199-202.
    [93] Iseki H,Naganawa T.Vertical wall surface forming of rectangular shell using multistage incremental forming with spherical and cylindrical rollers.Journal of aterials Processing Technology,2002,130-131:675-679.
    [94] Jeswiet J,Hagan E,Szekeres A.Forming parameters for incremental forming of aluminium alloy sheet metal.Proc Inst Mech Eng Part B J Eng Manuf,2002,216(10):1367-1371.
    [95] Yoon S,Yang D.Investigation into a new incremental forming process using an adjustable punch set for the manufacture of a doubly curved sheet metal.Proc Inst Mech Eng Part B J Eng Manuf,2001,215(7):991-1004.
    [96] Kitazawa K,Nishibayashi T,Fujino H.Forming limit for incremental stretching of aluminum and aluminum alloy blanks by single-tool-path process.Journal of Japan Institute of Light Metals,2001,51(2):103-107.
    [97] Jeswiet J,Ali A.Incremental single point forming.American Society of Mechanical Engineers-Manufacturing Engineering Division,2001,11:509-513.
    [98]周六如.金属板材数控渐进成形机理及工艺的研究[D].武汉:华中科技大学图书馆, 2004.
    [99] B W Liang,S G Hu.Plastic theory of blank forming.1987,453-480.
    [100] Doege E,Alasti M,Schmidt J R.Accurate friction and heat transfer laws for enhanced simulation models of precision forging processes.Journal of Materials Processing Technology,2004,150(1):92-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700