用户名: 密码: 验证码:
分数阶可动边界问题及其在药物控释系统中的某些应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文由彼此相关而又独立的四章构成。第一章为序言,简要介绍了本文所需的数学工具,也即分数阶微积分的发展历史、基本概念、性质及应用。在§1.1和§1.2节,简要的介绍了分数阶微积分的历史,给出了Riemann-Liouville型分数阶积分算子(?)、微分算子(?)和Caputo型分数阶算子(?)的定义及主要性质,并讨论了分数阶积分和微分算子的Laplace变换。在§1.3节中,给出了Mittag-Leffler函数、广义Mittag-Leffler函数E_(α,β)(z)、Wright函数W_(ρ,β)(z)和广义Wright函数W_((μ,a),(v,b))(z)的定义及其某些重要公式。在§1.4节中,给出了H-Fox函数(?)的定义、级数表达式、渐近性态及其基本性质,并讨论了H-Fox函数的特例,如广义Mittag-Leffler函数既E_(α,β)(z)和(?)。Fox-H函数是求解分数阶微分方程的有力工具。在§1.5节,从非牛顿流体、反常扩散等几个方面简要阐述了分数阶微积分理论在几个领域内的研究进展状况。§1.6节简要介绍了可动边界问题及其在药物控释系统中的某些应用.本章是以后各章的基础。
     接下来的几章研究了溶质从高分子基质中溶出的不同模型。在§2.2节给出了上述问题的详细介绍,并且应用时间-空间分数阶扩散方程作为描述扩散的主控方程。再应用推广了的通量方程并假设一个完全汇条件,得到了如下的边界条件:和在§2.3节,应用Laplace和Fourier变换,得到了以Fox-H函数表述的上述方程的解,其中,基质中溶质浓度的表达式为溶蚀边界S(t)可以写作上面两式中的常数q和p可由和这两个方程确定。§2.4节对所得解做了讨论,可以看出,之前的一些结果是本文结果的特殊情况。
     在第3章,我们应用Riemman-Liouville和Caputo型的分数阶微分算子作为模型中的空间分数阶算子。在§3.2节,通过Lie群分析的方法,得到了一个相似变量z=xt~(-α/β)和溶蚀边界的函数表达式S(t) = pt~(α/β)。相应的,主控方程变成了如下的分数阶常微分方程在§3.3节,给出了对应于Riemman-Liouville和Caputo型算子的方程组的解,它们分别是f(z)=(?)和f(z)=(?)。C_1,C_2和p通过两组方程和分别确定。在证明所得结果的过程中,应用了Caputo型的修正Erderlyi-Kober分数阶微分算子的等价形式和Fox-H函数的级数形式。在§3.4节,列出了常数p在不同情形下的的取值,通过比较可以看出,用Caputo型算子描述的快于用Riemann-Liouville型算子所描述的扩散过程。p的不同取值同时也通过图像的形式给予了展示。
     在第4章,同伦摄动的方法被成功应用到求解带有一个可动边条件的时间分数阶扩散方程并且得到了一个近似解。精确解和近似解的比较显示,近似解在大多数情况下对实际应用来说足够精确。§3.2节引入了同伦摄动的方法,通过引进一个参数p∈[0,1],我们可以建立如下的方程:或者写作并且假设为了得到参数p的显式表达式,本章应用的技巧是将边界条件展成其相应的泰勒级数形式:通过比较参数p的相同幂次,可以得到一系列的容易求解的方程组。通过简单的计算,我们可以得到问题的一阶近似解其中引进释放分数我们可以比较近似解和精确解。表格和图像的比较显示,近似解更加简洁,并且具有很好的精确度。
This paper is composed of four chapters, which are independent and correlative to one another. In chapter 1 i.e. introduction, the history, definitions, properties and applications of fractional calculus are introduced. In section§1.1 and§1.2, the development history and some definitions of the fractional calculus are introduced concisely. The definitions and the main properties of the Riemann-Liouville fractional integral operator (?) and differential operator (?) and the Caputo fractional derivative (?) are given. Some important properties of fractional integral and derivative operators are also discussed. In section§1.3, the definitions and some important formulae of the generalized Mittag-Leffler function E_(α,β)(z), the Wright function W_(ρ,β) and the generalized Wright function W_((μ,a),(v,b)) are given. In section§1.4, the definition, series expression, asymptotic behavior and some basic properties of H-Fox function (?) are given. The special cases of the Fox function are discussed, such as the generalized Mittag-Leffler function E_(α,β)(z) and H_(1,2)~(1,1)(z). H-Fox function is a powerful tool for the solving of the fractional differential equations. In section§1.5, the developments and applications of fractional calculus in various fields are discussed, respectively. Section§1.6 gives a short introduction about the moving boundary problems and some of its application in drug release devices. This chapter is the basis for the following chapters of this thesis.
     In the following chapters, different models of a solute release from a planar polymer matrix are studied. In section§2.2, we give a detailed introduction about the mathematic model of the problem. We use the space-time fractional diffusion equation as the governing equation. Using a generalized flux equationand assuming a perfect sink, we obtain the following boundary conditions:andIn section§2.3, the solution of the model in form of Fox-H function is obtained with the help of Laplace and Fourier transforms. The concentration of the solute in the matrix isThe diffusion front S(t) can be written asThe constants q and p can be determined using the following equationsandA discussion is given in section§2.4, we can see that some results obtained previously are special cases of the model in this chapter.
     In chapter 3, we use the Riemman-Liouville and the Caputo fractional derivatives as the space fractional derivative in the model. In section§3.2, a scale-invariant variable z=xt~(-α/β) and the function of the diffusion front S(t) = pt~(α/β) are obtained by the Lie group method. The governing equation reduces to a fractional ordinary equationIn section§3.3, the solutions to the equations respect to the Riemman-Liouville and the Caputo fractional derivatives as the space fractional derivative are f(z) = (?) and f(z) = (?) correspondingly. C_1,C_2 and p can be decided byandIn the processing of the proof of our results, a alter form of the Caputo-type modification of Erderlyi-Kober fractional derivative operatorand the series expansion of Fox-H function are used. In section§3.4, the values of p in different cases are listed and we can see that the diffusion process described by the Caputo derivative is much faster than the one by the Riemann-Liouville derivative. The values of p in some cases are also shown in form of figures.
     In chapter 4, Homotopy perturbation method is successfully extended to solve time-fractional diffusion equation with a moving boundary condition and an approximate solution is obtained. The comparison with the exact solution shows that the approximate solution is sufficiently accurate for practical application in most cases. In section§3.2, the Homotopy perturbation method was introduced. By introducing a parameter p∈[0,1], we can construct the following homotopy:orand assume thatIn order to get the explicit form of p, the technique we used here is expanding the boundary conditions in its Taloy's seriesEquating the terms with identical powers of p, we can obtain a series of equations which are easier to solve. By pen-and-paper calculating, we can obtain the first order approximate solution written aswhere Introducing the fractional releasewe can give a comparison between the approximate with the exact solutions. Through the comparisons by the table and the figures. We can see that this approximate solution is concise and has a good degree of accuracy.
引文
[1] M.J. Abdekhodaie and Y.L Cheng. Diffusional release of a dispersed solute from a spherical polymer matrix. J. Memb. Sci., 115:171-178, 1996.
    [2] M.J. Abdekhodaie and Y.L Cheng. Diffusional release of a dispersed solute from planar and spherical matrices into finite external volume. J. Contr. Release, 43:175-182, 1997.
    [3] B.N. Achar, J.W. Hanneken, and T. Clarke. Damping characteristics ofa fractional oscillator. Physica A, 339:311-319, 2004.
    [4] F.B. Adda and J. Cresson. Fractional differential equations and the Schrodinger equation. Applied Mathematics and Computation, 161:323-345, 2005.
    [5] R.P. Agarwal. A propos d'une note de M. Pierre Humbert. C.R. Seances Acad Sci, 236:2031-2032, 1953.
    [6] O P Agrawal. Formulation of Eular-Lagrange equations for fractional variational problems. Journal of Mathematical Analysis and Applications, 272:368-379, 2002.
    [7] O P Agrawal. A general finite element formulation for fractional variational problems. J. Phys. A: Math. Gen., 39:10375-10384, 2006.
    [8] O P Agrawal. Fractional variational calculus and the transversality conditions. Journal of Mathematical Analysis and Applications, 337:1-12, 2008.
    [9] Y. Al-Assaf, R. El-Khazali, and W. Ahmad. Dentification of fractional chaotic system parameters. Chaos, Solitons and Fractals, 22:897-905, 2004.
    [10] L.L. An. Two Mathematical Models for the Release of Medicaments from Matrices Containing Drug in Suspension. M.S. Thesis, Shandong University, Jinan, 1996.
    [11] V. V. Anh and N. N. Leonenkoo. Scaling laws for fractional diffusion-wave equations with singular data. Statistics and Probability Letters, 48(3):239-252, 2000.
    [12] V.V. Anh and N.N. Leonenko. Harmonic analysis of random fractional diffusion-wave equations. Applied Mathematics and Computation, 141:77-85, 2003.
    [13] M. Axtell and E.M. Bise. Fractional calculus applications in control systems. Proceedings of the IEEE 1990 Nat. Aerospace and Electronics Conf., 17:563-566, 1990.
    [14] A. Aziz and T.Y. Na. Perturbation Methods in Heat Transfer. Hemisphere, Washington, DC, 1984.
    [15] R.L. Bagley and R.A. Calico. Fractional-order state equations for the control of viscoelastic damped structures. J. Guidance, Control and Dynamics, 14:304-311, 1991.
    [16] R.L. Bagley and P. J. Torvik. Fractional calculus-a different approach to the analysis of viscoelastically damped structures. AIAA Journal, 21:741-748, 1983.
    [17] R.L. Bagley and P.J. Torvik. A theoretical basis for the application of fractional calculus to viscoelasticity. Journal of Rheology, 27:201-210, 1983.
    [18] R.L. Bagley and P.J. Torvik. On the fractional calculus model of viscoelastic behavior. J. Rheol, 30(1):133-155, 1986.
    [19] D. Baleanu. New applications of fractional variational principles. Reports on Mathematical Physics, 61:199-206, 2008.
    [20] D. Baleanu and Om. P. Agrawal. Fractional hamilton formalism within Caputo' s derivative. Czechoslovak Journal of Physics, 56:1087-1092, 2006.
    [21] D. Baleanu, Sami I. Muslih, and k. Ta. Fractional Hamiltonian analysis of higher order derivatives systems. J. Math. Phys., 47:103503, 2006.
    [22] D. Baleanu and S.I. Muslih. About fractional supersymmetric quantum mechanics. Czechoslovak Journal of Physics, 55(9):1063-1066, 2005.
    [23] D.A. Benson and Coworkers. Radial frational-order dispersion through fractured rock. Water Resource Research, 40:W12416, 2004.
    [24] G. W. Scott Blair. Analytical and integraltive aspects of the stress-strain-time problem. Journal of Scientific Instruments, 21:80-84, 1994.
    [25] B.L.J. Braaksma. Asymptotic expansions and analytic continuations for a class of Barnes-integrals. Compos. Math., 15:239-341, 1964.
    [26] E. Buckwar and Y. Luchko. Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. J. Math. Anal. Appl., 227:81-97, 1998.
    [27] S.V. Buldyrev and Coworkers. Average time spent by Levy flights and walks on an interval with absorbing boundaryies. Phys. Rev. E, 64:041108, 2001.
    [28] S.V. Buldyrev and Coworkers. Properties of Levy flights on an interval with absorbing boundaryies. Phys. Rev. E, 64:041108, 2001.
    [29] H. Takayasu (Translated by Shen Burning and Chang Ziwen). Fractal (Chinese Version). Earthquake Press, Beijing, 1989.
    [30] B.B.Mandelbrot (Translated by Wen Zhiying and Su Hong). LesObjets Fractals: Forme, Hasard et Dimension. World Publishing Corporation, Beijing, 1999.
    [31] M. Caputo. Linear models of dissipation whose Q is almost frequency independent-Ⅱ. The Geophysical Journal of the Royal Astronomical Society, 13:529-539, 1967.
    [32] A. Carpinteri and F. Mainardi. Fractals and Fractional Calculus in Continuum Mechan- ics. Springer, New York, 1997.
    [33] B.D. Carter and M.D. Springer. The distribution of products quotients and powers of independent H-function variates. SIAM, J. Appl. Math., 33(4):542-558, 1977.
    [34] A. Chatterjee. Statistical origins of fractional derivatives in viscoelasticity. Journal of Sound and Vibration, 284:1239-1245, 2005.
    [35] A.S. Chaves. A fractional diffusion to describe Levy flights. Phys. Lett. A, 239:13-16, 1998.
    [36] J.R. Chen. Aproblem with Two Moving Boundaries in Controlled-Release Problem System of Drug-Swelling Controlled Release. M.S. Thesis, Shandong University, Jinan, 1998.
    [37] K. Y. Chen and H. M. Srivastava. Some infinite series and functional relations that arose in the context of fractional calculus. Journal of Mathematical Analysis and Applications, 252:376-388, 2000.
    [38] L.M. Chen. A Kind of Moving Boundary Problems in Controlled Release System of Drug-Release of Medicaments from Spherical Matrices Containing Drug in Suspension. M.S. Thesis, Shandong University, Jinan, 1997.
    [39] Y.Q. Chen. Applied fractional calculus (AFC) and FOC (fractional order control, or fractional order calculus). http://mechatronics.ece.usu.edu/foc/.
    [40] W. T. Coffey, Y. P. Kalmykov, and S. V. Titov. Inertial effects in anomalous dielectric relaxation. Journal of Molecular Liquids, 114:35-41, 2004.
    [41] D.S. Cohen and T. Erneux. Free boundary problems in controlled release Pharmaceuticals: Ii. swelling-controlled release. SIAM J. Appl. Math., 48:1466-1474, 1988.
    [42] A. Compte. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Physical Review E, 53(4):4191-4193, 1996.
    [43] J. Crank. Free and Moving Boundary Problems. Clarendon Press, Oxford, 1987.
    [44] L. R. da Silva, L. S. Lucena, E. K. Lenzi, R. S. Mendes, and K. S. Fa. Fractional and nonlinear diffusion equation: additional results. Physica A, 344:671-676, 2004.
    [45] G. Dattoli. Operational methods, fractional operators and special polynomials. Applied Mathematics and Computation, 141:151-159, 2003.
    [46] S.S. de Romero and H.M. Srivastava. An application of the N-fractional calculus operator method to a modified Whittaker equation. Applied Mathematics and Computation, 115:11-21, 2000.
    [47] D. del Castillo-Negrete. Fractional diffusion models of nonlocal transport. Physics of Plasmas, 13:082308, 2006.
    [48] J.P. Dong and M.Y. Xu. Some solutions to the space fractional Schr(?)dinger equation using momentum representation method. Journal of Mathematical Physics, 48:072105, 2007.
    [49] J.P. Dong and M.Y. Xu. Applications of continuity and discontinuity of a fractional derivative of the wave functions to fractional quantum mechanics. Journal of Mathematical Physics, 49:052105, 2008.
    [50] J.P. Dong and M.Y. Xu. Space-time fractional Schr(?)dinger equation with time-independent potentials. Journal of Mathematical Analysis and Applications, 344:1005-1017, 2008.
    [51] J.S. Duan. Some Problems of Fractional Anomalous Diffusion Equations and its Solutions. Ph.D. Thesis, Shandong University, Jinan, 2002.
    [52] J.S. Duan and M.Y. Xu. Concentration distribution of fractional anomalous diffusion caused by an instantaneous point source. Applied Math. Mech., 24(11):1302-1308, 2003.
    [53] M. M. El-Borai. Some probability densities and fundamental solutions of fractional evolution equations. Chaos, Solitons and Fractals, 14:433-440, 2002.
    [54] M.M. El-Borai. Semigroups and some nonlinear fractional differential equations. Applied Mathematics and Computation, 149:823-831, 2004.
    [55] A.M.A. El-Sayed and F.M. Gaafar. Fractional calculus and some intermediate physical processes. Applied Mathematics and Computation, 144:117-126, 2003.
    [56] A. Erdelyi. Higher transcendental functions. McGraw-Hill, New York, 1994.
    [57] B.B. Mandelbrot et al. Is nature fractal. Science, 279:5352, 1998.
    [58] R.P. Feynman and A.R. Hibbs. Quantum Mechanics and Path Integrals.Mc Graw-Hill, New York, 1965.
    [59] C. Fox. The G and H functions as symmetrical fourier kernels. Trans. Amer. Math. Soc, 98:395-429, 1961.
    [60] J. Audounet G. Montseny and D. Matignon. Fractional integro-differential boundary control of the Euler-Bernoulli beam. Proceedings of the 36th IEEE Conference on Decision and Control, 5:4973-4978, 1997.
    [61] A. Gemant. A method of analyzing experimental results obtained from elasto-viscous bodies. Physics, 7:311-317, 1936.
    [62] A. N. Gerasimov. A generalization of linear laws of deformation and its application to inner friction problems. Priklandna(?)iia Matematika i Mekhanika, 12:251-260, 1948.
    [63] W.G. Glockle and T.F. Nonnenmacher. A fractional calculus approach to self-similar protein dynamics. Biophysical Journal, 68:46-53, 1995.
    [64] R. Gorenflo, Y. Luchko, and F. Mainardi. Wright function as scale-invariant solutions of the diffusion-wave equation. J. Comp. Appl. Math., 118:175-191, 2000.
    [65] X.Y. Guo and M.Y. Xu. Some physical applications of fractional Schrodinger equation. Journal of Mathematical Physics, 47:082104, 2006.
    [66] J.H He. Homotopy perturbation technique. Comput. Methods Appl. Mech. Engrg., 178:257-262, 1999.
    [67] J.H He. A coupling method of a homotopy technique and a perturbation technique for non-linear problems. Int. J. Non-linear Mech., 35:37-43, 2000.
    [68] J.H He. Homotopy perturbation method: a new nonlinear analytical technique. Appl. Math. Comput., 135:73-79, 2003.
    [69] J.H He. Comparison of homotopy perturbation method and homotopy analysis method. Appl. Math. Comput., 156:527-539, 2004.
    [70] J.H He. The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl. Math. Comput., 151:287-292, 2004.
    [71] J.H He. Application of homotopy perturbation method to nonlinear wave equations. Chaos Solitions Fractals, 26:695-700, 2005.
    [72] B.I. Henry and S.L. Wearne. Fractional reaction-diffusion. Physica A, 276:448-455, 2000.
    [73] T. Higuchi. Mechanism of sustained-action medication: Theoretical analysis of solid drugs dispersed in solid matrices. J. Pharm. Sci., 52:1145-1149, 1963.
    [74] R. Hilfer. Applications of Fractional Calculus in Physics. World Scientific Press, Singapore, 2000.
    [75] R. Hilfer. Fractional diffusion based on Riemann-Liouville fractional derivatives. J. Phys. Chem. B, 104:3914-3917, 2000.
    [76] R. Hilfer. On fractional diffusion and continuous time random walks. Physica A, 329:35-40, 2003.
    [77] Y. Hu and G. Kallianpur. Schrodinger equations with fractional laplacians. Appl. Math. Optim., 42:281-290, 2000.
    [78] H.M. Jiang. Two Mathematical Models in Pharmacokinetics. M.S. Thesis, Shandong University, Jinan, 1996.
    [79] X.Y. Jiang. Analysis of Fractional Anomalous Diffusion Equation and Scattering Function Spectra. Ph.D. Thesis, Shandong University, Jinan, 2004.
    [80] X.Y. Jiang and M.Y. Xu. Analysis of fractional anomalous diffusion caused by an instantaneous point source in disordered fractal media. Int. J. Nonlinear Mechanics, 41:156-165, 2006.
    [81] H. Jin. Some Applications of Methods of Factional Calculus to the Research on Non-Newtonian Fluid Mechanics and Viscoelastic Materials. Ph.D. Thesis, Shandong University, Jinan, 2003.
    [82] G. Kaloyanov and J. M. Dimitrova. Theoretical-experimental determination of the area of apoplicability of a system "PI(Ⅰ)-controller-object with non-interger astaticity. Izv. Vysshykh Utchebnykh Zav. - Elektromekhanika, 2:65-72, 1992.
    [83] S. Kempfle, I. Sch(?)fer, and H. Beyer. Fractional calculus via functional calculus: theory and applications. Nonlinear Dynamics, 29:99-127, 2002.
    [84] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo. Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam, 2006.
    [85] V. S. Kiryakova. Multiple (multiindex) Mittag-Leffer functions and relations to general- ized fractional calculus. J. Comp. Appl. Math., 118:241-259, 2000.
    [86] M. Klimek. Fractional sequential mechanics-model with symmetric fractional derivatives. Czechoslovak Journal of Physics, 51:1348-1354, 2001.
    [87] M. Klimek. Stationary conservation laws for fractional differential equations with variable coefficients. J. Phys. A: Math. Gen., 35:6675-6693, 2002.
    [88] K.M. Kolwankar. Fractals and differential equations of fractional order. J. IndianInst. Sci., 78(4):275-291, 1998.
    [89] M. Kopf and Coworkers. Anomalous diffusion behavior of water in biological tissues. Biophysical Journal, 70:2950-2958, 1996.
    [90] N. Krepysheva, L.D. Pietro, and N.C. Neel. Space-fractional advection-diffusion and reflective boundary conditon. Phys, Rev. E, 73:021104, 2006.
    [91] N. Laskin. Fractals and quantum mechanics. Chaos, 10:780, 2000.
    [92] N. Laskin. Fractional quantum mechanics and Levy path integrals. Physics Letters A, 268:298-305, 2000.
    [93] N. Laskin. Fractional Schrodinger equation. Phys. Rev. E, 66:056108, 2002.
    [94] P.I. Lee. Diffusional release of a solute from a polymeric matrix: Approximate analytical solution. J. Membrane Sci., 7:225-275, 1980.
    [95] G.W. Leibniz. Leibniz an del' Hospital (Letter from Hanover, Germany, Spetember 30, 1695). In Deuvres math' ematiques de Leibniz. Correspon-dance de Leibniz avec Hugens, van Zulichem et le Marquis de L' Hospital., volume 2, pages 297-302. Libr. de A. Franck, Paris, 1853.
    [96] J. R. Leith. Fractal scaling of fractional diffusion processes. Signal Processing, 83:2397-2409, 2003.
    [97] Y. Li and M.Y. Xu. Hysteresis and precondition of viscoelastic solid models. Mechnics of Time-Dependent Materials, 10:113-123, 2006.
    [98] Y. Li and M.Y. Xu. Hysteresis loop and energy dissipation of viscoelastic solid models. Mechnics of Time-Dependent Materials, 11:1-14, 2007.
    [99] J.S. Lin and Y.L. Peng. Swelling controlled release of drug in spherical polymer-penetrant systems. Int. J. Heat Mass Transfer, 48:1186-1194, 2005.
    [100] B.T. Liu and J.P. Hsu. Theoretical analysis on diffusional release from ellipsoidal drug delivery devices. Chem. Eng. Sci., 61:1748-1752, 2006.
    [101] F. Liu, V. Anh, and I. Turner. Numerical solution of fractional Fokker-Planck equation. J. Comput. Appl. Math., 166:209-219, 2004.
    [102] J.G. Liu and M.Y. Xu. Higher-order fractional constitutive equations of viscoelastic materials involving three different parameters and their relaxation and creep functions. Mechnics of Time-Dependent Materials, 10:263-279, 2006.
    [103] J.Y. Liu. Some Mathematical Models in Controlled Drug Release Systems and Applications of Factional Calculus. Ph.D. Thesis, Shandong University, Jinan, 2004.
    [104] J.Y. Liu and M.Y. Xu. An exact solution to the moving boundary problem with fractional anomalous diffusion in drug release devices. Z. Angew. Math. Mech., 84:22-28, 2004.
    [105] J.Y. Liu and M.Y. Xu. Some exact solutions to Stefan problems with fractional differential equations. Journal of Mathematical Analysis and Applications, 351:536-542, 2009.
    [106] I.A. Lopez and W.O. Urbina. Fractional differentiation for the Gaussian measure and applications. Bull. Sci. Math., 128:587-603, 2004.
    [107] Y. Luchko and R. Gorenflo. Scale-invariant solutions of a partial differential equation of fractional order. Fract. Calc. Appl. Anal, 1:63-78, 1998.
    [108] F. Mainardi. Fractional relaxation-oscillation and fractional diffusion-wave phenom- ena. Chaos, Solitons and Fractals, 7:1461-1477, 1996.
    [109] F. Mainardi and R. Gorenflo. On Mittag-Leffer-type function in fractional evolution processes. J. Comput. Appl. Math., 118(2):283-299, 2000.
    [110] F. Mainardi, Y. Luchko, and G. Pagnini. The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal., 4:153-192, 2001.
    [111] F. Mainardi, G. Pagnini, and R.K. Saxena. Fox H functions in fractional diffusion. J. Comp. Appl. Math., 178:321-331, 2005.
    [112] A. Makroglou, R.K. Miller, and S. Skaar. Computational results for a feedback control for a rotating viscoelastic beam. J. Guidance, Control and Dynamics, 17:84-90, 1994.
    [113] S. Manabe. Common representations for logic and nonlinearities. JIEE, 5:339-345, 1973.
    [114] B. B. Mandelbrot. The Fractal Geometry of Nature. Freeman, San Francisco, 1982.
    [115] B. B. Mandelbrot. Topics on fractals in mathematics and physics. In L.H.Y. Chen, editor, Challenges for the 21st Century -Fundamental Sciences (Proceedings of the International Conference on Fundamental Sciences: Mathematics and Theoretical Physics), Singapore, March 2000. World Scientific.
    [116] B. B. Mandelbrot and M. Frame. Fractals: Encyclopedia of Physical Science and Tech- nology, volume 6. 2001.
    [117] A.M. Mathai and R.K. Saxena. The H function with applications in statistics and other disciplines. Wiley Easterm Ltd., New Delhi, 1978.
    [118] D. Matignon. Stability results on fractional differential equations with applications to control processing. Proceedings of the Computational Engineering in Systems Applications, 2:769-771, 1996.
    [119] D. Matignon and B. d'Andrea Novel. Some results on controllability and observability of finite-dimensional fractional differential systems. Proceedings of the Computational Engineering in Systems Applications, 2:952-956, 1996.
    [120] D. Matignon and B. d'Andrea Novel. Observer-based controllers for fractional differential sysems. Proceedings of the 36th IEEE Conference on Decision and Control, 5:4967-4972, 1997.
    [121] B. Mbodje and G. Montseny. Boundary fractional derivative control of the wave equation. IEEE Trans. Aut. Control, 40:378-382, 1995.
    [122] R. Metzler and J. Klafter. Boundary value problems for fractional diffusion. Physica A, 278:107-125, 2000.
    [123] R. Metzler and J. Klafter. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys Reports, 339:1-77, 2000.
    [124] R. Metzler and J. Klafter. The restaurant at the end of the random walk: recent development in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen., 37:161-208, 2004.
    [125] R. Metzler and T. F. Nonnenmacher. Fractional relaxation processes and fractional rheological models for the description of a class of viscoelastic materials. Int. J. Plasticity, 19:941-959, 2003.
    [126] R. Metzler and T.F. Nonnenmacher. Space- and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation. Chem. Phys., 284:161-208, 2002.
    [127] K. S. Miller and B. Ross. An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley & Sons, Inc., New York, 1993.
    [128] S. Momani and Z. Odibat. Homotopy perturbation method for nonlinear partial differential equations of fractional order. Phys. Lett. A, 365:345-350, 2007.
    [129] Sami I. Muslih and D. Baleanu. Formulation of Hamiltonian equations for fractional variational problems. Czechoslovak Journal of Physics, 55:633-642, 2005.
    [130] M. Naber. Time fractional Schrodinger equation. Journal of Mathematical Physics, 45:3339-3352, 2004.
    [131] T. Nakayama and K. Yakubo. Fractal Concepts in Condensed Matter Physics. Springer-Verlag, Berlin Heidelberg, 2003.
    [132] R. R. Nigmatullin and S. I. Osokin. Signal processing and recognition of true kinetic equations containing non-integer derivatives from raw dielectric data. Signal Processing, 83:2433-2453, 2003.
    [133] R.R. Nigmatullin. The realization of the generalized transfer equation in a medium with fractal geometry. Phys. Stat. Sol. (B), 133:425-430, 1986.
    [134] T.F. Nonnenmacher and R. Metzler. On the Riemann-Liouville fractional calculus and some recent applications. Fractals, 3:557-566, 1995.
    [135] Z. Odibat and S. Momani. Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order. Chaos, Solitions and Fractals, 36:167-174, 2008.
    [136] K.B. Oldham and J. Spanier. The Fractional Calculus. Academic Press, New York, 1974.
    [137] M.D. Ortigueira. On the initial conditions in continuous-time fractional linear systems. Signal Processing, 83:2301-2309, 2003.
    [138] A. Oustaloup. Fractional order sinusoidal oscilatours: Optimization and their use in highly linear FM modulatours. IEEE Transactions on Circuits and Systems, 28:1007-1009, 1981.
    [139] A. Oustaloup, F. Levron, B. Mathieu, and F.M. Nanot. Frequencyband complex noninteger differentiator. IEEE Trans. on C (?) S, I: Fundamental Theory and Applications, 47:25-39, 2000.
    [140] V.M. Ovidiu and Coworkers. Universality classes for asymptotic behavior of relaxation process in systems with dynamical disorder: dynamical generalizations of stretched exponential. J. Math. Phys., 37(5):2279-2306, 1996.
    [141] P. Paradisi, R. Cesari, F. Mainardi, and F. Tempieri. The fractional Fick's law for non-local transport processes. physica A, 293:130-142, 2001.
    [142] D.R. Paul and S.K. McSpadden. Diffusional release of a solute from a polymer matrix. J. Memb. Sci., 1:33-48, 1976.
    [143] I. Podlubny. Fractional Differential Equations. Academic Press, New York, 1999.
    [144] H.T. Qi. Some Applications of Fractional Calculus in the Non-Newtonian Fluid Mechanics. Ph.D. Thesis, Shandong University, Jinan, 2003.
    [145] F.Y. Ren, J.R. Liang, and X.T. Wang. The determination of the diffusion kernel on fractals and fractional diffusion equation for transport phenomena in random media. Physics Letter A, 253:535-546, 1999.
    [146] F. Riewe. Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E, 53:1890-1899, 1996.
    [147] F. Riewe. Mechanics with fractional derivatives. Phys. Rev. E, 53:3582-3592, 1997.
    [148] A. Rocco and B.J. West. Fractional calculus and the evolution of fractal phenomena. Physica A, 265:535-546, 1999.
    [149] Y.A. Rossikhin and M.V. Shitikova. Analysis of rheological equations involving more than one fractional parameters by the use of the simplest mechanical systems based on these equations. Mechanics of Time-Dependents Materials, 5:131-175, 2001.
    [150] Y. E. Ryabov and A. Puzenkoa. Damped oscillation in view of the fractional oscillator equation. Phys. Rev. B, 66:184-201, 2002.
    [151] S. G. Samko, A. A. Kilbas, and O. I. Marichev. Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York, 1993.
    [152] S. G. Samko, A.A. Kilbas, and O.I. Marichev. Linear operators. In: The thory of Linea r Operators from the Standpoint of Differential Equations of Infinite Orde. Principia Press, Bloomington, 1936.
    [153] H. Schiessel and A. Blumen. Hierarchical analogues to fractional relaxation equations. J. Phys. A: Math. Gen., 26:5057-5069, 1993.
    [154] H. Schiessel, R. Metzler, A. Blumen, and T.F. Nonnenmacher. Generalized viscoelastic models: their fractional equations with solutions. J. Phys. A: Math. Gen., 28:6567-6584, 1995.
    [155] W.R. Schneider and W. Wyss. Fractional diffusion and wave equation. J. Math. Phys., 30:134-144, 1989.
    [156] J. M. Sixdeniers, K. A. Penson, and A. I. Solomon. Mittag-Leffer coherent states. J. Phys. A: Math. Gen., 32(43):7543-7564, 1999.
    [157] D.Y. Song. Study of rheological characterization of fenugreek gum with modified maxwell. J.Chem. Engn, 8:85-88, 2000.
    [158] G. Srinivas, A. Yethiraj, and B. Bagchi. Nonexponentiality of time dependent survival reactions in polymer chain. J. Chem. Phys., 114:9170-9179, 2001.
    [159] H.M. Srivastava, K.C.Gupta, and S.P.Goyal. The H-function of One and Two Variables with Applications. South Asian Publ., New Delhi, 1982.
    [160] W.C. Tan, W.X. Pan, and M.Y. Xu. A note on unsteady flows of a viscoelastic fluidwith fractional Maxwell model between two parallel plates. Int. J. Non-linear Mech., 38(5):645-650, 2003.
    [161] W.C. Tan, F. Xian, and L. Wei. An exact solution of unsteady Couette flow of generalized second grade fluid. Chinese Science Bulletin, 47(21):1783-1785, 2002.
    [162] W.C. Tan and M.Y. Xu. The impulsive motion of flat plate in a general second grade fluid. Mechanics Research Communication, 29(1):3-9, 2002.
    [163] W.C. Tan and M.Y. Xu. Plane surface suddenly set in motion in a viscoelastic fluid with fractional maxwell model. ACTA Mechanica Sinica, 18(4):342-349, 2002.
    [164] W.C. Tan and M.Y. Xu. Unsteady flows of a generalized second grade fluid with fractional derivative model between two parallel plates. ACTA Mechanica Sinica, 20(5):471-476, 2004.
    [165] V. E Tarasov. Fractional generalization of gradient and Hamiltonian systems. J. Phys. A: Math. Gen., 38:5929-5943, 2005.
    [166] V. E Tarasov. Fractional variantions for dynamical systems: Hamilton and Lagrange approaches. J. Phys. A: Math. Gen., 39:8409-8425, 2006.
    [167] V. E Tarasov and G. M. Zaslavsky. Fractional dynamics of coupled oscillators with long-range interaction. Chaos, 16:023110, 2006.
    [168] D.K. Tong and Y.S. Liu. Exact solutions for the unsteady rotational flow of non-Newtonian fluid in an annular pipe. Inter. J. of Engn Sci., 43:281-289, 2005.
    [169] D.K. Tong and R.H. Wang. Analysis of the flow of non-Newtonian viscoelastic fluids in fractal reservoir with the fractional derivativ. Science in China, Series G, 47:424-441, 2004.
    [170] D.K. Tong, R.H. Wang, and H.S. Yang. Exact solutions for the flow of non-Newtonian fluid with fractional derivative in an annular pipe. Science in China, Series G, 48(4):485-495, 2005.
    [171] B. M. Vinagre and Y. Q. Chen. Fractional calculus applications in automatic control and robotics. In 41st IEEE Conference On Decision and Control, Las Vegas, Dec 2002.
    [172] D. S. Wang and L. Cao. Chaos, Fractal and their Applications (Chinese Version). Science and Technology Press of China, Hefei, 1995.
    [173] Q. Wang. Homotopy perturbation method for fractional Kdv equation. Appl. Math. Comput., 190:1795-1802, 2007.
    [174] Q. Wang. Homotopy perturbation method for fractional Kdv-Burgers equation. Chaos, Solitions and Fractals, 35:843-850, 2008.
    [175] S.W. Wang and M.Y. Xu. Exact solution on unsteady Couette flow of generalized Maxwell fluid with fractional derivative. ACTA Mechanica, 187:103-112, 2006.
    [176] Z. X. Wang and D. R. Guo. Introduction to Special Function (Chinese Version). Peking University Press, Beijing, 2000.
    [177] E. W. Weisstein. CRC Concise Encyclopedia of Mathematics CD-ROM. CRC Press, Boca Raton, FL, 1999.
    [178] S. W. J. Welch, R. A. L. Rorrer, and R. G. Duren. Application of time-based fractional calculus methods to viscoelastic creep and stress relaxation of materials. Mechanics of Time-Dependent Materials, 3:279-303, 1999.
    [179] W.G.Glockle and T.F. Nonnenmacher. Fractional integral operators and Fox functions in the theory of viscoelasticity. Macromolecules, 24:6426-6434, 1991.
    [180] E.M. Wright. The asymptotic expansion of the generalized hypergeometric function. J. London Math Soc, 10:287-293, 1935.
    [181] E.M. Wright. The asymptotic expansion of the generalized Bessel function. Proc. London Math Soc. (SerⅡ), 38:257-270, 1935.
    [182] E.M. Wright. The generalized Bessel function of order greater than one. Quart, J. Math. Oxford Ser, 11:36-48, 1940.
    [183] W. Wyss. The fractional diffusion equation. J. Math. Phys., 27:2782-2785,1986.
    [184] M.Y. Xu and W. C. Tan. Theoretical analysis of the velocity field, stress field and vortex sheet of generalized second order fluid with fractional anomalous diffusion. Sci. China Ser. A: Math. Phys. Astron., 44:1387-1399, 2001.
    [185] M.Y. Xu and W.C. Tan. Representation of the constitutive equation of viscoelastic materials by the generalized fractional element networks and its generalized solutions. Science in China Series G, 46(2):145-157, 2003.
    [186] C. Yin and M.Y. Xu. An asymptotic analytical solution to the problem of two moving boundaries with fractional diffusion in one-dimensional drug release devices. J. Phys. A: Math. Theor., 42:115210, 2009.
    [187] D.H. Zanette. Macroscopic current in fractional anomalous diffusion. Physica A, 252:159-164, 1998.
    [188] G. M. Zaslavsky. Chaos, fractional kinetics, and anomalous transport. Phys Reports, 371:461-580, 2002.
    [189] Y.G. Zhai. Some Results of the Problems of the Fractional Diffusion- Wave Equation. M.S. Thesis, Shandong University, Jinan, 2005.
    [190] X. Zhang. The impact of boundary on the fractional advection-dispersion equation for solute transport in soil: Defining the fractional dispersive flux with Caputo derivatives. Advances in Water Resources, 30:1205-1217, 2007.
    [191] Y. Zhou, J.S. Chu, T. Zhou, and X.Y. Wu. Modeling of dispersed-drug release from two-dimensional matrix tablets. Biomaterials, 26:945-952, 2005.
    [192] Y. Zhou and X.Y. Wu. Modeling and analysis of dispersed-drug release into a finite medium from sphere ensembles with a boundary layer. J. Contr.Release, 90:23-26, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700