用户名: 密码: 验证码:
甘肃黄河灌区马铃薯不同品种对连作逆境的响应机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马铃薯(Solanum tuberosum L.)是仅次于水稻、小麦、玉米的世界第四大作物。中国是世界马铃薯生产大国,种植面积和总产量均位居世界第一位。马铃薯产业发展存在一些问题,如干旱缺水和连作逆境导致产量和品质下降、专用品种的育种效率低下、贮藏生理研究不足导致烂窖率较高等等,其中连作障碍问题目前已成为影响我国马铃薯主产区生产的重要制约因素之一。本研究选择西北乃至全国主栽的马铃薯优良品种,进行连作逆境下马铃薯形态特征、生理特性及产品质量的评价和研究,明确连作抗性品种及敏感性品种,分析根系分泌有机物的类型和含量,解析酚酸类化感物质对马铃薯植株生长发育影响的机理,探究钙信号分子对连作马铃薯抗性变化的作用,评价有机肥与生物菌肥混合对连作障碍缓解的效应,为西北干旱区连作逆境下马铃薯生产及农田生态系统健康和可持续性发展提供理论依据。取得的主要研究结果如下:
     1、连作6年田中,马铃薯8个品种的株高较正茬田明显下降,苗期降幅最大(46.57%)、现蕾期降幅最小(28.69%),且连作对植株茎的横向生长的影响小于纵向生长;8个品种中,‘大西洋’株高受连作逆境的影响最小,表现为4个发育时期株高平均降幅为21.22%,‘费乌瑞它’受到的影响最大(44.45%);连作6年地块中,8个品种均严重减产,减幅达78.14%~97.84%,其中低产品种‘费乌瑞它’减产幅度最大(97.84%),高产品种‘青薯2号’减产幅度最小(78.14%),且显著低于其它品种,但结合商品薯率指标发现,‘青薯2号’薯块商品薯率较低,其基本失去了经济效益,故在总产一定量的前提下,商品薯率为更为重要的评价指标;综合评价认为,高连作田块中,‘大西洋’为较好的抗连作品种。且连作6年田对马铃薯产量影响十分严重,‘费乌瑞它’品种单位面积上产量大幅降低,甚至绝收。因此,连作6年田已失去种植马铃薯的能力。
     2、连作5年田中,5个品种的株高变化均呈现随植株发育进程的延长,受抑制程度加剧,降幅最大品种是‘夏波蒂’(33.17%)和‘克新1号’(31.69%);根总长、根表面积和根体积较对照也均呈下降趋势;结合株高、根变化(总长、表面积、体积)及产量和商品薯率分析,确定‘克新1号’为连作敏感型品种。
     3、与轮作地块相比,连作1年和2年马铃薯产量无显著变化,连作3年后出现显著下降,降幅达44%~56%,说明连作两年后应是当地‘大西洋’品种连作的最佳终止时间;连作马铃薯植株的光合生理受影响显著,其中Pn、Gs和Tr随连作年限的延长显著下降,Ci则表现上升趋势,叶绿体荧光特征则表现为F0随连作年限的延长而逐渐下降,Fv/Fm、ΦPSII和qP逐渐上升;叶片SOD、POD和CAT活性表现出随连作年限的延长先上升后下降的特征,与不连作相比,连作1年和2年叶片的MDA含量无显著变化,但连作3~5年增加了4~6倍;随连作年限延长,根系活力和总吸收面积及活跃吸收面积显著下降。结果初步表明,马铃薯连作障碍产生的原因是植株光合生理及抗氧化生理系统发生了改变,导致植株形态特性随之改变,加之根系生理活力和吸收面积的显著下降,直接导致其对根-土界面养分物质和水分的吸收能力降低,从而影响了块茎产量的形成和地上部植株的正常生长和发育,最终导致马铃薯连作障碍产生。
     4、马铃薯在出苗期和落花期分别提取连作3年和轮作(前3年均为玉米)的马铃薯根际土壤溶液进行GC-MS分析,对匹配度80%以上的40多种有机物进行连作和轮作的比对分析。发现出苗期连作3年土壤中,壬C9H20、N,N-二甲基甲酰胺、2-辛烯醛、辛醛、十一烷、乙酸-2-乙基己基酯、2-十一烯醛、1-十二烯、1-十三烷醇、1-十五碳烯、二丁基羟基甲苯、1,2-苯二甲酸二(2-甲基丙基)酯、5-十八烯14种化合物为连作根际土壤中所存在的物质。但与落花期连作和轮作土壤的化合物比对分析后发现,除N,N-二甲基甲酰胺外,其他物质落花期在两种根际土壤溶液中均存在,故初步认为它们均不是化感自毒物质,但N,N-二甲基甲酰胺的作用尚需进一步研究。落花期又发现10种独有的化合物(甲酰胺-N,N-二甲基、醛、正辛烷-3-乙基、1-十六碳烯、8-十七碳烯、十六烷酸丙基酯、二十烷、3,3-二甲基-辛烷),其中十六烷酸丙基酯也称棕榈酸丙基酯,是已知的植物自毒物质,但其在马铃薯中的作用尚待进一步验证,其他9种化合物的作用也需进一步分析。
     5、由于对羟基苯甲酸、香草酸和阿魏酸是连作土壤中3种重要的化感自毒物质,通过分别浇灌这三种酚酸溶液及其混合液发现其对马铃薯植株的株高、茎粗、地上分茎数、匍匐茎数和根长皆有显著抑制作用,且混合酚酸溶液的抑制效果大于相同浓度的这三种酚酸中任一溶液;上述酚酸物质还显著抑制了马铃薯植株的根系活力和叶绿素含量,减低了叶片净光合速率,而且上述作用随酚酸溶液浓度增加而显著增加,这些影响对马铃薯植株的生长发育可能具有直接且重要的作用。外源酚酸还显著提高了叶片MDA含量,并对应着抗氧化酶活性的整体下降,这一效果随着外源酚酸溶液浓度的增加而加强,并以混合酚酸的效果最为显著。
     6、叶面喷施氯化钙可显著减轻连作对马铃薯幼苗生长发育的抑制,提高马铃薯块茎淀粉、维生素C和可溶性蛋白的含量,提高块茎硬度及单株产量;氯化钙处理还显著减小了连作引起的叶片叶绿素、脯氨酸和可溶性糖含量下降的幅度,提高了SOD和CAT活性,同时降低MDA含量和活性氧水平。表明叶面喷施氯化钙可显著提高马铃薯植株对连作逆境的整体抗性,减轻连作所造成的生理障碍,促进连作马铃薯植株的生长发育,并改善马铃薯块茎营养和产量。
     7、马铃薯连作田在常规施肥的基础上增加有机肥、腐殖酸铵复合肥和微生物肥的混合有机肥,无论是产量还是经济效益均优于仅常规施肥,且混合有机肥的不同施用量对轮作和连作下的马铃薯产量和经济效益有不同影响,其中有机肥、腐殖酸铵、微生物肥的施用量分别为800㎏/667m2、75㎏/667m2、5㎏/667m2时,轮作和连作田的马铃薯产量和经济效益均最高。
Follow the rice, wheat and maize, potato (Solanum tuberosum L.) is the fourth-mostimportant food crop worldwide. It is one of the major crops in China as well. To date, theplanting acreage and production of potato in China ranked as top one worldwide. However,the shortage of the irrigation water and the continuous cropping significantly impacted theyield, quality, commercialization rate and the storage life of the potato tuber in China. Thecontinuous cropping currently is the main factor that affect the potato production in thepotato growing. In this study, the morphological, physiological characteristics and the tuberquality under the continuous cropping were analyzed. The genotypes that showed resistanceagainst the continuous cropping were characterized. The composition and characteristics ofthe root secretion were analyzed. The impact of phenolic acids on the growth of potato wasdiscussed. The effects of Ca signaling on the resistanse of potato to the continuous croppingwere also analyzed. The effects of organic fertilizer and biological fertilizer on easingcontinuous cropping stress were evaluated. The outcomes of this study should provide thetheoretical foundation for the sustainable development of the potato production as well asthe farming land ecological system in arid land of Northwest Continuous Cropping Region.The main conclusions were summarized as follow:
     1、In the field of6years continuous cropping, the plant height of8varieties wassignificantly lower than those from non-continuous cropping field. The maximumdifference was observed during the seeding stage, while the minimum difference showedduring the squaring stage. The continuous cropping affected the longitudinal developmentof the tuber. Among8varieties, the plant height of Atlantic is the least affected, the averagedecrease of the height during the4growth stage is21.22%. Favorita is the most affected(44.45%). All tested varieties showed significant yield reduction in the6year continuouscropping field, the reduction is ranged from78.14%(Qingshu-9)-to97.84%(Favorita). Thecommercialization rate of Qiangshu-9is extremely low, suggesting that the harvested tuberdid not have any economic value. The commercialization rate usually is one of theimportant evaluation indexes when the yield is fixed. Therefore, the results indicated thatAtlantic is relatively resistant to the continuous cropping, six years continuous croppingseverely reduced the yield of potato, the harvest index of unit area was significantly declined. As conclusion, the6years continuous cropping land is not suitable for growingpotato.
     2、In the5years continuous cropping field, the plant height of5varieties wasgradually reduced with the development of the plant. The plant height of shepody andKexin-1was decreased33.17%and31.69%, respectively. The root length, root surface areaand root volume showed slightly reduction when compared with those from the controlfield. The physiological data combined with the commercialization rate index indicated thatKexin-1is sensitive to the continuous cropping.
     3、When compared to the rotation field, one or two years continuous cropping did notaffect the yield of potato. After3years continuous cropping, the yield reduced to44-56%.The results suggested that Atlantic should not be continuous cropped more than2years.The photosynthetic activities of potato plant was significantly affected by the continuouscropping. Pn、Gsand Trwere declined with the increasing of continuous years, Ciwasincreased. F0of chlorophyll fluorescence were declined with the increasing of continuousyears,Fv/Fm、ΦPSIIand qP were increased. SOD, POD and CAT of leaves showed increasingat early years and decreased with the increasing of continuous years. When compared withthe non-continuous cropping, the MDA content of leave did not affected by1or2yearscontinuous cropping, but increased4-6folds when continuous cropping last3-5years. Theroot activities, total absorption surface and active absorption area were significantlyreduced with the increasing of continuous year. The results thus suggested that the potatocontinuous cropping obstacle was caused by the variation of photosynthetic and antioxidantsystems, the change of the morphological characteristics of the plant, the reduction of rootphysiological activities and absorption area. as a results, the absorption ability of root touptake nutrient and water from the root-soil interface was reduced, and therefore the growthof tuber and dry matter accumulation in tuber were also affected. The yield formation oftuber and the normal growth of above ground part of plant were further affected, and thepotato continuous cropping obstacle was formed as a result.
     4、The soil solutions from3year continuous cropping field and rotation field duringthe seedling and the falling flower stage were against the GC-MS analysis, a total of40organic chemicals were analyzed for both continuous cropping and rotation. During theseedling stage, about14organic chemicals were detected in the soil of the continuous cropping field: Pelargonic C9H20, N, n-dimethyl formamide,2-octenal, octenal, undecane,Acetic acid-ethyl-Hexyl ester,2-11allyl aldehyde,1-dodecene,1–13OL,1-15-Ene, dibutylhydroxy toluene,1,2-acid22-methylpropyl ester,5-18Ene. During falling flower stage, allorganic chemcials except N, n-dimethyl formamide were detected in both continuouscropping and rotation field soil solution, suggesting that N, n-dimethyl formamide is theautointoxication of allelopathic substance, but the inhibition activities of N, n-dimethylformamide need to be studied in the future. About10more chemicals were detected duringthe falling flower stage, Formamide-n, N-dimethyl, aldehyde, Are octan-ethyl, cetene,8-17Ene,16acid propyl ester, eicosane, octane,3-3Dimethyl. hexadecanoic acid also calledpalmitinic acid, it is a known autointoxication substance. The roles of hexadecanoic acidand other nine chemicals in affecting potato growth need to be studied in the future.
     5、Para-hydroxybenzoic acid, vanillic acid and ferulic acid are three importantautointoxication of allelopathic substances. Application of these three solution and mixtureon the potato plant showed inhibition effects on plant height, stem diameter, above groundstem numbers, creeping stem numbers and root length. The mixture that include all threechemical showed greater effects than individual application. The root activity andchloroplast content of potato also affected by the chemicals, the net photosynthetic rate wasdeclined as a result. The inhibition activities were enhanced with the increasedconcentration of solution. Those effects might directly involved in the development ofpotato plants. With the addition of phenol acid, especially the mixture of three chemicals,the MDA content of leaves were increased and the activities of antioxidant enzymes weredecreased.
     6、The direct spraying of CaCl2on the leaves can significantly ease the inhibitionactivities of the continuous cropping on the potato seedlings. The starch content, vitamin C,soluable protein content, hardness of tuber, and tubers per plant were also increased whenCaCl2was sprayed. The continuous cropping caused the reduction on chloroplast content,while proline and soluble sugar content were significantly restored. The SOD and CATactivities were increased, the MDA content and the active oxygen were declined. Theresults indicated that the spraying of CaCl2could significantly increase the continuouscropping resistance of potato plant, ease the physiological obstacle caused by continuouscropping, benefit the growth of the potato plant, as a result improve the nutrient and yield of tubers.
     7、Addition of mixture fertilizer includes organic fertilizer, ammonium humic acid,compound fertilizer and microbal fertilizer showed significant effects on the yield and theeconomical value of tuber. The optimized mixture of organic fertilizer, ammonium humicacid compound fertilizer and microbal fertilizer is800kg/667m2、75kg/667m2、5kg/667m2,respectively.
引文
1、 Arancon N Q,Edwards CA,Bierman P,Welch C,Metzger J D.Influences of vermicompostson field strawberries:1.Effects on growth and yields[J].Bioresource Technology,2004,93(2):145~153
    2、 Arancon N Q,Edwards CA,Bierman P.Influences of vermicomposts on field strawberries:Part2.Effects on soil microbiological and chemical properties[J].Bioresource Technology,2006,97(6):831~840
    3、 Baziramakenga R,Leroux G D,Simard R R.Effects of benzoic and cinnamic acids on membranepermeability of rice roots[J].Chem Ecol,1995,21:1271~1285
    4、 Benizri E,Piutti S,Verger S,Pages L,Vercambre G,Poessel J L,Michelot P.Replant diseases:Bacterial community structure and diversity in peach rhizosphere as determined by metabolic andgenetic fingerprinting[J].Soil Biology and Biochemistry,2005,37(9):1738~1746
    5、 Birkett M A,Chamberlain K,HooperAM,et al.Does allelopathy offer real promise for practicalweed management and for explaining rhizosphere interactions involving higher plants?[J].Plantand Soil,2001,232:31~39
    6、 Blum U,Rebbeck J.Inhibition and recovery of cucumber roots given multiple treatments offerulic acid in nutrient culture[J].J Chem Ecol,1989,15(3):917~928.
    7、 Blum U,Gerig T M.Relationships between phenolic acid concentrations,transpiration, waterutilization,leaf area expansion,and uptake of phenolic acids:nutrient culture studies[J].J ChemEcol,2005,31(8):1907~1932.
    8、 Chance B,MaehlyAC.Assay of catalase and peroxidases[J].Methods in Enzymology,1955,2:764~775.
    9、 Chon S U,Kim Y M.Allelopathic potential in lettuce(Lactuca sativa L)plants[J].ScientiaHorticulture,2005,106:309~317
    10、 Chung I M,Miller D A.Differences in autotoxicity among seven alfalfa cultivars.AgronomyJournal,1995,87(3):596~600
    11、 Compant S,Duffy B,Nowak E,Clément C.Use of plant growth promoting bacteria for biocontrolof plant diseases: principles, mechanisms of action, and future prospects[J]. Appl EnvironMicrobiol,2005,71:4951~4959
    12、 Conway W S,Sams C E,McGuire R G.Calcium treatment of apples and potatoes to reducepostharvest decay[J].Plant disease,1992,76:329~334.
    13、 Daniel LM,Peter D S,Effrey S B.Microbial biomarkers as an indicator of ecosystem recoveryfollowing surface mine reclamation[J].Applied Soil Ecology,2002,21:251~259
    14、 Dick R P,Rasmussen P E,Kerle E A.Influence of long-term residue management on soil enzymeactivities in relation to soil chemical properties of a wheat-fallow system[J].Biol. Fertil. Soils,1988,6:159~164
    15、 Einhellig FA,Kuan L.Effects of scopoletin and chlorogenic acid on stomatal aperture in tobaccoand sunflower[J].Bull Torrey Bot Club,1971,98:155~162
    16、 Einhellig FA.Mechanism of action of allelochemical in allelopathy[J].Allelophy,1995,(1):97~115
    17、 Fazio G,Aldwinckle H S,Volk G M,Richards C M,Janisiewicz W J,Forsline P L.Progressin evaluating Malus sieversii for disease resistance and horticultural traits[J].Acta Horticulturae,2009,814(1):59~66
    18、 Farquhar G D,Sharkey T D.Stomatal conductance and photosynthesis[J].Ann Rev PlantPhysiol,1982,33:317~345
    19、 Fu J M,Huang B.Involvement of antioxidants and lipid peroxidation in the adaptation of twocool-season grasses to localized drought stress[J].Environmental and Experimental Botany,2001,45:105~114
    20、 Gattas H AM,Davide L C,Souza LF.Effects of sorghum (Sorghub bicolor L)root exudates onthe cell cycle of the bean plant(Phaselus vulgarisL)root[J].Genet and Mole Biol,1999,22:95~99
    21、 Giannopolitis C N,Ries S K.Superoxide dismutases.I.Occurrence in higher plants[J].PlantPhysiology,1977,59:309~314
    22、 He Z L,Yao H Y,Chen G C.Relationship of crop yield to microbial biomass in highly-weatheredsoils of China[C]//AndoY[M].Plant Nutrition.Kokyo:Kluwer Acadmic Publishers,1997:751~752
    23、 Hill A R. Nitrate and chloride distribution and balance under continuous potatoCropping[J].Agriculture,Ecosystems&Environment,1986,15(4):267~280
    24、 Insam H,Mitchell C C,Dormaar J F.Relationship of soil microbial biomass and activity withfertilization practice and crop yield of three Ultisols[J].Soil Biol. Biochem.,1991,23:459~464
    25、 Jose C L,María de los A B,Osvaldo P,et al.Sugarcane micropropagation and phenolicexcretion[J].Plant Cell,2001,65:1~8
    26、 Kong C H,Xu X H,Zhou B,et al.Two compounds fromallelopathic rice accession and theirinhibitory activity onweeds and fungalpatho gens[J].Phytochemistry,2004,65:1123~1128
    27、 Larkin R P.Characterization of soil microbial communities under different potato croppingsystems by microbial population dynamics,substrate utilization,and fatty acid profiles[J].SoilBiology and Biochemistry,2003,35(11):1451~1466
    28、 Lehman M E,Blum U.Evaluation of ferulic acid uptake as a measurement of allelochemicaldose:effective concentration[J].J Chem Ecol,1999,25(11):2585~2600
    29、 Li Chao-zhou,Wang Gen-xuan.Interactions between reactive oxygen species,ethylene andpolyamines in leaves of Glycyrrhiza inflata seedlings under root osmotic stress[J].Plant GrowthRegulation,2004,42:55~60
    30、 Lisa B,Klein S C,Nell I.Effect of magnesium fertilization on the quality of potatoes:totalnitrogen, nonprotein nitrogen, protein, amino acids, minerals and firmness[J].J Agri Food Chem,1982,30:754~757
    31、 LIU Yong-qiang,MA Ting-rui,YANG Mou,LI Zhang,GAO Yan-ping.Effect ofPotato Extracton its PhenolicMetabolism,SAGs Accumulation and Allelopathic Autotoxicity[J].AgriculturaScience&Technology,2011,12(5):647~650,658
    32、 Maniével S,Thierry D,Franois P.Effect of phenolic acids in soil under and between rows of aprior sorghum (Sorghum bicolor)crop on germination,emergence,and seedling growth ofpeanut(Arachis hypogea)[J].Journal of Chemical Ecology,2000,26(3):625~637
    33、 Meyer M C,Paschke M W,Mclendon T D.Decreases in soil microbial function and functionaldiversity in response to depleted uranium[J].J Envir Qual,1998,27:1306~1311
    34、 Mubyana T,Krah M,Totolo O,Bonyongo M.Influence of seasonal flooding on soil totalnitrogen,organic phosphorus and microbial populations in the Okavango Delta,Botswana[J].JArid Enviro,2003,54:359~369
    35、 Murphy C E,Lemerle D.Continuous cropping systems and weed selection[J].Euphytica,2006,148:61~73
    36、 OhnoT.Oxidation of phenolic acid derivatives by soiland its relevance to allelopathicactivity[J].Environ Qual,2001,30:1631~1635
    37、 Olsen J K,Lyons PJ,Kelly M M.Nitrogen uptake and utilization by bell pepper in subtropicalaustralia[J].Plant Nutri,1993,16:177
    38、 Particka C A and Hancock J F.Field evaluation of strawberry genotypes for tolerance to blackroot rot on fumigated and non fumigated soil[J].Journal of theAmerican Society for HorticulturalScience,2005,130(5):688~693
    39、 Patterson D T.Effect of allelopathic chemicals on growth and physiological responses of soybean(glycine max)[J].Weed Sci,1981,29:53~58
    40、 Politycka B.Free and glucosylated Phenolics, phenol-beta-glucisyl-trans-ferase ativity andmembrane permability in cucumber roots affected by derivatives of cinnamic acid[J].ActaPhysiologiae Plantarum,1997,19(3):311~317
    41、 Qasen J R,Foy C L.Weed allelopathy, its ecological impacts and future prospects:Areview[J].Journal of Crop Production,2001,4(2)43~119.
    42、 Qu X H,Wang J G.Effect of amendments with different phenolic acids on soil microbialbiomass,activity,and community diversity[J].Applied Soil Ecology,2008,39:172~179
    43、 Reeves D W.The role of soil organic matter in maintaining soil quality in continuous croppingsystems[J].Soil and Tillage Research,1997,43(1/2):131~167
    44、 Rice E L.Allelopathy [M].2nd Ed.Orlando:Academic Press,1984
    45、 RimandoAM,Olofsdotter M,Dayan F E,et al.Searching for rice allelochemicals: an exampleofbioassay-guided isolation[J].Agron J,2001,93:16~20
    46、 Russo V M.Effects of fertilizer rate,application timing and plant spacing on yield and nutrientcontent of bell pepper[J].Plant Nutri,1991,14:1047~1056
    47、 Schutter M E,Sandeno J M,Dick R P.Seasonal,soil type,alternative management influenceson microbial communities of vegetable cropping systems[J].Biology Fertility Soils,2001,34:397~410
    48、 Shiomi Y,Nishiyama M,Onizuka T,Marumoto T.Comparison of bacterial communitystructuresin the rhizoplane of tomato plants grown in soils suppressive and conducive towardsbacterial wilt[J].Appl Environ Microbiol,1999,65:3996~4001
    49、 Szadak L.Phenolic acids in brown soils under continuous cropping of rye and croprotation[J].Polish J Soil Sci,1994,27:113~121
    50、 Tang C S,Young C C.Collection and Identification of Allelopathic Compound from theUndisturbed Root system of bigalta Limpograss[J].Plant Physiol,1982,69:155~160
    51、 Uren N C,Reisenauer H M.The role of root exudates in nutrient acquisition(J).In:Tinker Band LauchliA.(eds). Advaunces in Plant Nutrition.Vol3.Praeger Publishers,New York:1988,79~114
    52、 Wang Q M,Zhang LM,Guan YA.Endogenous hormone concentration in developing tuberousroots of different sweet potato genotypes[J].Agri Sci in China,2006,5:919~927
    53、 Yao H,He Z,Wilson M,Campbell C D.Microbial biomass and community structure inasequence of soils with increasing fertility and changing land use[J].Microb Ecol,2000,40:223~237
    54、 Ye S F,Yu J Q,PengY H,Zheng J H,Zou LY.Incidence of Fusarium wilt in Cucumis sativusL.is promoted by cinnamic acid,an autotoxin in root exudates[J].Plant and Soil,2004,263:143~150
    55、 Ye S F,Zhou Y H,SunY,Zou LY,Yu J Q.Cinnamic acid causes oxidative stress in cucumberroots,and promotes incidence of Fusarium wilt[J].Environmental and Experimental Botany,2006,56:255~262.
    56、 Yoshitaka S,Masaya N,Tomoko O,Takuya M.Comparison of bacterial community structuresinthe rhizoplane of tomato plants grown in soils suppressive and conducive towards bacterialwilt[J].Appl Environ Microbiol,1999,65:3996~4001
    57、 Yu J Q,Mstsui Y.Effect of root exudates of cucumber and allelochemicals onion uptake bycucumber seedlings[J].Chem Ecol,1997,23:817~827
    58、 Yu J Q,Matsui.Autointoxication of Root Exudates in Pisum sativus[J].Acta HorticulturaeSinica,1999,26(3):175~179
    59、 Yu J Q,Ye S F,Zhang M F,Hu W H.Effects of root exudates,aqueous extracts andallelochemicals of cucumber on antioxidant system and photosynthesisin cucumber[J].Envir andExp Bot,2001,31:129~139
    60、白茹.苹果连作障碍中自毒作用的研究[D].西北农林科技大学博士学位论文,2009
    61、白艳茹,马建华,樊明寿.马铃薯连作对土壤酶活性的影响[J].作物杂志,2010,(3):34~36
    62、鲍士旦.土壤农化分析[M].第三版.北京:中国农业出版社,2000:25~106
    63、陈海山,李春杰,刘新晶,孙玉秋,郭荣利,董楠,刁琢,赵清艳,许艳丽.抗(耐)连作大豆品种筛选[J].大豆通报,2008,(3):26~28
    64、陈慧,郝慧荣,熊君.地黄连作对根际微生物区系及土壤酶活性的影响[J].应用生态学报,2007,18:2755~2759
    65、陈磊,郝明德,张少民.黄土高原旱地长期施肥对小麦养分吸收和土壤肥力的影响[J].植物营养与肥料学报,2007,2:230~235
    66、陈丽华,李云海,李俊良.马铃薯新品系还原糖含量与油炸片片色关系研究[J].现代农业科技,2006,22:23~24
    67、陈懿,薛小平,王茂胜等.连作对植烟土壤及烟株中微量元素含量的影响[J].江西农业学报,2009,21:13~15
    68、陈宗泽,殷勤燕,王旭明.土壤病原菌对连作大豆的致病性初探[J].吉林农业大学学报,1999,21:29~32
    69、董小艳,程智慧,张亮.百合根系分泌物对四种观赏植物的化感作用[J].西北农林科技大学学报,2008,36:113~117
    70、杜长玉,李东明,庞全国.大豆连作对植株营养水平,叶绿素含量、光合速率及其产物影响的研究[J].大豆科学,2003,22(2):146~150
    71、杜茜,卢迪,马琨.马铃薯连作对土壤微生物群落结构和功能的影响[J].生态环境学报,2012,21(7):1252~1256
    72、杜茜,童娟,卢迪.马铃薯连作对茄科作物的化感效应[J].北方园艺,2010,(20):1~4
    73、杜社妮.种植模式对日光温室黄瓜、番茄生长发育及土壤生物学特性的影响[D].西北农林科技大学硕士学位论文,2005
    74、杜英君,靳月华.连作大豆化感作用的模拟研究[J].应用生态学报,1999,10:209~212
    75、邓晓,李勤奋,等.香蕉枯萎病区土壤中培养微生物生态特征[J].热带作物学报,2011,32(2):283~288
    76、范君华,龚明福,刘明.棉花连作对土壤养分、微生物及酶活性的影响[J].塔里木大学学报,2008,20:36~40
    77、范亚娜,赵国栋.陇东地区设施蔬菜连作土壤性质变化趋势[J].水土保持通报,2007,27:116~119
    78、冯伟,管涛,王晓宇等.沼液追施量对小麦叶绿素荧光动力学参数及产量的影响[J].华北农学报,2011,26(2):157~162
    79、付慧兰,邹永久,杨振明,等.大豆连作土壤pH与土壤酶活性[J].大豆科学,1997,2:156~161
    80、甘肃发展年鉴(2012年),下载网址:http://ishare.iask.sina.com.cn/download/explain.php?fileid=35793772
    81、高慧娟,陈年来,黄海霞.甜瓜光合特性对土壤水分条件的响应[J].甘肃农业大学学报,2010,45:72~78
    82、高群,孟宪志,于洪飞.连作障碍原因分析及防治途径研究[J].山东农业科学,2006,34:60~63
    83、贡璐,张海峰,吕光辉.塔里木河上游典型绿洲不同连作年限棉田土壤质量评价[J].生态学报,2011,31:4136~4143
    84、耿士均,王波,刘刊等.专用微生物肥对不同连作障碍强度土壤上辣椒生长发育的影响[J].江苏农业科学,2012,40(8):134~137
    85、关军锋,郑桂珍,李广敏.渗透胁迫下钙对小麦胚芽鞘和根系生长的影响[J].中国农业科学,2005,38:486~491
    86、和文祥,朱铭娥.陕西土壤脲酶与土壤肥力关系研究Ⅱ:土壤脲酶的动力学特征[J].土壤学报,1997,34(1):42~52
    87、何萍,杨金,周卫.腐殖酸复混肥对番茄产量、品质及生理活性的影响[J].土壤通报,1997,28(6):277~279
    88、郝再彬,苍晶,徐仲.植物生理实验[M].哈尔滨:哈尔滨大学出版社,2004:101~108
    89、侯永侠,周宝利,吴晓玲.不同辣椒品种抗连作障碍的效果[J].中国蔬菜,2009,(18):41~45
    90、胡宇,郭天文,张绪成.旱地马铃薯连作对土壤养分的影响[J].安徽农业科学,2009,37(12):5436~5439,5610
    91、胡元森,吴坤.黄瓜不同生育期根系微生物区系变化研究[J].中国农业科学,2004,47:1521~1526
    92、黄冲平,王爱华,胡秉民.马铃薯生育期和干物质积累的动态模拟研究[J].生物数学学报,2003,18:314~320
    93、黄素芳,朱育菁,肖荣凤.辣椒枯萎病原菌分离鉴定及其在植株体内的分布[J].厦门大学学报(自然科学版),2004,43:71~73
    94、黄玉茜,韩立思,韩晓日.辽宁风沙土区连作年限对花生光合特性和产量的影响[J].沈阳农业大学学报,2011,42:43
    95、黄玉茜,韩立思,韩梅等.花生连作对土壤酶活性的影响[J].中国油料作物学报,2012,34(1):096~100
    96、回振龙,马兰,李朝周. CoCl2对酸胁迫下多花黑麦草种子萌发及幼苗抗性的影响[J].草业科学,2012,29:753~758
    97、焦健,李朝周,黄高宝.钴对干旱胁迫下大豆幼苗叶片的保护作用及其机理[J].应用生态学报,2006a,17:796~800
    98、焦健,李朝周,黄高宝.乙烯产生抑制剂对高温胁迫下蚕豆幼苗叶片的保护作用[J].植物生态学报,2006b,30:465~471
    99、晋艳,杨宇虹,段玉琪等.烤烟连作对烟叶产量和质量的影响研究初报[J].烟草科技,2002,1:41~45
    100、晋艳,杨宇红,段玉琪等.烤烟轮作、连作对烟叶产量质量的影响[J].西南农业学报,2004,17:267~271
    101、金扬秀,谢关林等.大蒜轮作与瓜类枯萎病发病的关系[J].上海交通大学学报(农业科学版),2003,21(1):9~12
    102、李朝周. CoCl2对Na2CO3胁迫下苜蓿幼苗叶片细胞膜的保护作用[J].草业学报,2007,16:49~54
    103、李春格,李晓鸣,王敬国.番茄连作对土体和根际微生物群落功能的影响[J].生态学报,,2006,26:1144~1150
    104、李春杰,许艳丽,陈海山等.耕作方式对连作大豆生长发育及产量的影响[J].中国油料作物学报,2008,30(4):455~459
    105、李精超.微生物肥在水稻上的应用效果与能值分析[J].现代农业科技,2008,(3):131~132
    106、李培栋,王兴祥,李奕林等.连作花生土壤中酚酸类物质的检测及其对花生的化感作用[J].生态学报,2010,30(8):2128~2134
    107、李琼芳.不同连作年限麦冬根际微生物区系动态研究[J].土壤通报,2006,37:563~565
    108、李胜华,谷丽萍,刘可星等.有机肥配施对番茄土传病害的防治及土壤微生物多样性的调控[J].植物营养与肥料学报,2009,15(4):965~969
    109、李向荣,方晓.果蔬与饮品中Vc的碘化钾萃取分光光度测定[J].浙江农业大学报,1994,20:522~524
    110、李雪利,李正,等.植物化感作用研究进展[J].中国农学通报,2009,25(23):142~146
    111、林文雄,何华勤,董章杭.不同环境下水稻对受体植物化感作用的动态遗传研究[J].作物学报,2004,30(4):348~353
    112、林文雄,熊君,周军建,等.化感植物根际生物学特性研究现状与展望[J].中国生态农业学报,2007,15(4):1~8
    113、林植芳,李双顺,林桂珠.衰老叶片和叶绿体中H2O2的累积与膜脂过氧化的关系[J].植物生理学报,1988,14:16~22
    114、蔺琰东,秦舒浩,王丽等.外源邻苯二甲酸二甲酯和苯甲酸对马铃薯组培苗生长的化感效应[J].广东农业科学,2011,(9):17~20
    115、刘程惠,胡文忠,姜爱丽.不同贮藏温度下鲜切马铃薯的生理生化变化[J].食品与机械,2008,24:38~42
    116、刘方,何腾兵,刘元生.长期连作黄壤烟地养分变化及其施肥效应分析[J].烟草科技,2002,179:30~33
    117、刘建国,卞新民,李彦斌.长期连作和秸秆还田对棉田土壤生物活性的影响[J].应用生态学报,2008,19:1027~1032
    118、刘建国,张伟,李彦斌.新疆绿洲棉花长期连作对土壤理化性状与土壤酶活性的影响[J].中国农业科学,2009,42:725~733
    119、刘明霞,陈年来,李喜娥.诱导剂处理及白粉菌接种对甜瓜叶片叶绿素荧光参数的影响[J].干旱区资源与环境,2012,26:150~154
    120、刘娜,周宝利,李轶修等.化感物质己二酸二异丁酯对茄子黄萎病及幼苗生长的效应[J].园艺学报,2009,36(7):1065~1070
    121、刘苹,江丽华,万书波等.花生根系分泌物对根腐镰刀菌和固氮菌的化感作用研究[J].中国农业科技导报,2009,11(4):107~111
    122、刘素慧,刘世琦.大蒜连作对其根际土壤微生物和酶活性的影响[J].中国农业科学,2010,43(5):1000~1006.
    123、刘芷宇.根际微环境研究[J].土壤,1993,25:225~229
    124、刘亚锋,孙富林,周毅等.黄瓜连作对土壤微生物区系的影响Ⅰ——基于可培养微生物种群的数量分析[J].中国蔬菜,2006,7:4~7
    125、刘彦军,李寿如.我国马铃薯产业化探索[A].陈伊里,马铃薯种植与加工进展[C].哈尔滨:哈尔滨工程大学出版社,2006,31~34
    126、泷岛.防治连作障碍的措施[J].日本土壤肥料学杂志,1983,(2):170~178
    127、吕卫光,余廷园,诸海涛.黄瓜连作对土壤理化性状及生物活性的影响研究[J].中国生态农业学报,2006,14:119~121
    128、马海燕,徐瑾,郑成淑.非洲菊连作对土壤理化性状与生物性状的影响[J].中国农业科学,2011,44:3733~3740
    129、马琨,张丽,杜茜等.马铃薯连作栽培对土壤微生物群落的影响[J].水土保持学报,2010,24(4)229~233
    130、马云华,王秀峰,魏珉等.黄瓜连作土壤酚酸类物质积累对土壤微生物和酶活性的影响[J].应用生态学报,2005,16:2149~2153
    131、孟品品,刘星,邱慧珍,等.连作马铃薯根际土壤真菌种群结构及其生物学效应[J].应用生态学报,2012,11:3079~3086
    132、梅文泉,隋启君,佴注.马铃薯块茎中还原糖测定的一种方法[J].云南农业科技,2003,17:23~24
    133、牛秀群,李金花,张俊莲,.甘肃省干旱灌区连作马铃薯根际土壤中镰刀菌的变化[J].草业学报,2011,20:236~243
    134、牛秀群.甘肃省干旱灌区根际土壤真菌群落结构与马铃薯连作的关系[D].甘肃农业大学硕士学位论文,2010
    135、裴国平,王蒂,张俊莲.连作马铃薯对抗性酶及生物学特性变化的研究[J].湖南农业科学,2010,11:34~37
    136、彭绍峰,赵爱菊,张春强等.应用抗重茬药剂克服马铃薯连作障碍试验初报[J].安徽科技通讯,2010,(1):44~45
    137、齐永志,甄文超,代丽.连作条件下不同品种草莓生长发育和根部病害发生状况的研究[J].植物保护科学,2008,24:374~378
    138、邱莉萍,刘军,王益权等.土壤酶活性与土壤肥力的关系研究[J].植物营养与肥料学报,2004,10:277~280
    139、屈冬玉,卞春松,金黎平,等.实施西部开发战略,培育马铃薯支柱产业[A].陈伊里,面向21世纪的中国马铃薯产业[C].哈尔滨工程大学出版社,2000:1~9
    140、曲运琴,任东植,姚勇.地黄品种间抗连作障碍差异研究初报[J].陕西农业科学,2011,(4):103~105
    141、阮维斌,王敬国,张福锁,等.根际微生态系统理论在连作障碍中的应用[J].中国农业科技导报,1999,1(4):53~58
    142、阮维斌,王敬国,张福锁.连作障碍因素对大豆养分吸收和固氮作用的影响[J].生态学报,2003,23:22~29
    143、世界粮农组织数据库网址:faostat3.fao.org/home/index.html#DOWNLOAD
    144、邵孝侯,刘旭,周永波,等.生物有机肥改良连作土壤及烤烟生长发育的效应[J].中国土壤与肥料,2011,(2):65~67
    145、沈宝云,余斌,王文,等.腐植酸铵、有机肥、微生物肥配施在克服甘肃干旱地区马铃薯连作障碍上的应用研究[J].中国土壤与肥料,2011,34:68~70
    146、孙会军,孙令强,王倩.苯甲酸、肉桂酸对西瓜幼根生长、显微及超微结构的影响[J].华北农学报,2006,21(增刊):77~80
    147、孙金利,程智慧,韩玲,等.大棚黄瓜连作土壤的日光消毒技术效果比较[J].西北农林科技大学学报(自然科学版),2010,38(4):121~126
    148、孙茂林,李先平,赵志坚.云南马铃薯贮存损失的调查和评价[J].中国马铃薯,2002,5:263~266
    149、孙权,陈茹,宋乃平,等.宁南黄土丘陵区马铃薯连作土壤养分、酶活性和微生物区系的演变[J].水土保持学报,2010,24(6):208~212
    150、孙小妹,张涛,陈年来.土壤水分和氮素对春小麦叶片抗氧化系统的影响[J].干旱区研究,2011,28:205~214
    151、孙秀山,封海胜,万书波,等.连作花生田主要微生物类群与土壤酶活性变化及其交互作用[J].作物学报,2001,27:816~820
    152、孙跃春,林淑芳,黄璐琦等.药用植物自毒作用及调控措施.中国中药杂志,2011,36(4):387~390
    153、谭雪莲,郭晓冬,马明生,等.连作对马铃薯土壤微生物区系和产量的影响[J].核农学报,2012,26(9):1322~1325
    154、谭亚男,马汇泉,温学森,等.一株克服地黄连作障碍有益菌的鉴定及其LuxAB基因标记[J].安徽农业科学,2010,38(17)8967~8969
    155、王爱国,罗广华.植物的超氧物自由基与羟胺的定量关系[J].植物生理通讯,1990,45:55~57
    156、王爱华,张文芳,黄冲平.马铃薯干物质分配与器官建成的动态模拟研究[J].生物数学学报,2005,20:356~362
    157、王泊理,高学彪.噬线虫真菌研究进展[J].华南农业大学学报,1998,19(4):113~117
    158、王闯,徐公义,葛长城,等.酚酸类物质和植物连作障碍的研究进展[J].北方园艺,2009,(3):134~137
    159、王菲,曹翠玲.磷水平对不同磷效率小麦叶绿素荧光参数的影响[J].植物营养与肥料学报,2010,16:758~762
    160、王晶英,郑桂萍,张红燕.连作大豆根冠比增大原因的研究[J].大豆科学,1997,16:136~142
    161、王利,杨洪强,范伟国.平邑甜茶叶片光合速率及叶绿素荧光参数对氯化镉处理的响应[J].中国农业科学,2010,43:3176~3183
    162、王茂胜,姜超英,潘文杰.不同连作年限的植烟土壤理化性质与微生物群落动态研究[J].安徽农业科学,2008,36:5033~5034
    163、王树起,韩晓增,乔云发,等.寒地黑土大豆轮作与连作不同年限土壤酶活性及相关肥力因子的变化[J].大豆科学,2009,28(4):611~615
    164、王元征,尹承苗,陈强,等.苹果5种砧木幼苗对连作土壤的适应性差异研究[J].园艺学报,2011,38(10):1955~1962
    165、王钟,马永清,贾锦楠,等.马铃薯对瓜列当种子萌发的化感作用研究[J].中国生态农业学报,2013,21(3):333~339
    166、尉辉,张自坤,刘素慧,等.连作对大蒜生长及生理生化指标的影响[J].中国农学通报,2010,26:239~242
    167、吴桂本.论小麦全蚀病的防治[J].植物保护,1979,04
    168、吴凤芝,刘德,王东凯,等.大棚番茄不同连作年限对根系活力及其品质的影响[J].东北农业大学学报,1997,28(1):33~38
    169、吴凤芝,黄彩红,赵凤艳.酚酸类物质对黄瓜幼苗生长及保护酶活性的影响[J].中国农业科学,2002,35:821~825
    170、吴凤芝,孟立君,王学征.设施蔬菜轮作和连作土壤酶活性的研究[J].植物营养与肥料学报,2006,12:554~558
    171、吴凤芝,王学征.黄瓜与小麦和大豆轮作对土壤微生物群落物种多样性的影响[J].园艺学报,2007,34(6):1543~1546
    172、吴凤芝,黄彩红,邓旭红.酚酸类物质对黄瓜幼苗养分吸收的化感作用[J].内蒙古农业大学学报,2007,28(3):131~133
    173、吴凤芝,王学征,潘凯.小麦和大豆茬口对黄瓜土壤微生物生态特征的影响[J].应用生态学报,2008,19(4):794~798
    174、吴龙华,骆永明.根际土壤溶液取样器——介绍一种新型原位土壤溶液采集装置.土壤,1999,(1):54~56,27
    175、吴艳飞,张雪艳,李元,等.轮作对黄瓜连作土壤环境和产量的影响[J].园艺学报,2008,35(3):357~362
    176、吴正锋,成波,王才斌.连作对花生幼苗生理特性及荚果产量的影响[J].花生学报,2006,35:29~33
    177、谢奎忠,陆立银,罗爱花.不同栽培措施对连作马铃薯土壤真菌、真菌性病害和产量的影响[J].中国蔬菜,2013,(2):70~75
    178、辛建华.钙素对马铃薯生长发育、光合作用及物质代谢影响的研究[D].沈阳农业大学硕士论文,2008
    179、颜艳伟,张红,刘露等.连作花生田根际土壤优势微生物的分离和鉴定[J].微生物学报,2011,51(6):835~842
    180、杨桂丽,童娟,张丽等.熏蒸灭菌对连作马铃薯生长发育及土壤微生物的影响[J].农业科学研究,2012,33(1):36~40,56
    181、杨进荣,王成社,李景琦.2004.马铃薯干物质积累及分配规律研究[J].西北农业学报,13:118~120
    182、杨卫兵,王振林,尹燕.外源ABA和GA对小麦籽粒内源激素含量及其灌浆进程的影响[J].中国农业科学,2011,44:2673~2682
    183、尤孟阳,韩晓增,李海波.作物连作与自然恢复下黑土密度组分中碳、氮分布特征[J].中国生态农业学报,2011,19:1301~1306
    184、喻景权,松井佳久.豌豆根系分泌物自毒作用的研究[J].园艺学报,1999,26:175~179
    185、余叔文.植物间的相互作用——相生相克现象[J].植物生理与分子生物学,1992,1376~3941
    186、余叔文,汤章城.植物生理与分子生物学[M].北京:科学出版社,1998
    187、袁光林,马瑞霞,刘秀芬,等.化感物质对土壤脲酶活性的影响[J].环境科学,1998,19(2):55~57
    188、张凤军,张永成,田丰.不同生态环境马铃薯维生素C含量分析[J].种子,2006,25:24~27
    189、张付斗,徐高峰,单芹丽,等.4种酚酸类化感物质与丁草胺混用对稗草生长抑制的互作效应[J].南京农业大学学报,2010,33(3)62~66
    190、张会慧,金微微,毛卫佳.水杨酸对干旱下烤烟幼苗膜质和叶绿素荧光特性的影响[J].中国沙漠,2012,32:117~121
    191、张瑞明,朱建华,高善民,沪郊设施菜地连作土壤盐分积累及离子组成变化的研究[J].上海农业学报,2011,27:76~79
    192、张淑香,高子勤.连作障碍与根际微生态系统II.根系分泌物与酚酸物质[J].应用生态学报,2000a,11(1):152~156
    193、张淑香,高子勤,刘海玲连作障碍与根际微生态研究Ⅲ.土壤酚酸物质及其生物学效应[J].应用生态学报,.2000b,11:741~744
    194、张宪政.作物生理研究法[M].北京:中国农业出版社,1992
    195、张晓玲,潘振刚,周晓锋,等.自毒作用与连作障碍[J].土壤通报,2007,38(4):781~784
    196、张新慧,张恩和,王惠珍.连作对当归生长的障碍效应及机制研究[J].中国中药杂志,2010,35:1231~1234
    197、张永成,田丰.马铃薯实验研究方法[M].北京:中国农业科学技术出版社,2007:190~191
    198、张玉兰,陈利军,张丽莉.土壤质量的酶学指标研究[J].土壤通报,2005,36(4):598~602
    199、张重义,尹文佳,李娟.地黄连作的生理生态特性[J].植物生态学报,2010,34:47~554
    200、张重义,李改玲,牛苗苗.连作地黄的生理生态响应与品质评价[J].中国中药杂志,2011,36:1133~1136
    201、章明清,李娟,孔庆波,等.菜-稻轮作对菜田氮、磷利用特性和富集状况的影响[J].植物营养与肥料学报,2013,19(1):117~126
    202、张子龙,王文全.植物连作障碍的形成机制及其调控技术研究进展[J].生物学杂志,2010,27:69~72
    203、赵玲,柴兆祥,李金花.四株胡萝卜软腐欧氏杆菌胡萝卜亚种新菌株的分离鉴定[J].草业学报,2011,20:244~251
    204、赵萌,李敏,王淼焱,等.西瓜连作对土壤主要微生物类群和土壤酶活性的影响[J].微生物学通报,2008,35:1251~1254
    205、赵淑英,赵九洲,陈洁敏,等.连作对大豆生理生化特性的影响[J].大豆科学,1995,14:113~118
    206、赵晓萌,张雪松,祁建军,等.连作对西洋参根系生长及酶活性的影响[J].中国农学通报,2009,25(13):103~107
    207、甄文超,代丽,胡同乐,等.连作对草莓生长发育和根部病害发生的影响[J].河北农业大学学报,2004b,27(5):68~71
    208、郑桂萍,赵九洲.连作大豆根际土及根系、冠部三要素含量变化动态的研究[J].大豆科学,1995,14:310~315
    209、郑雅楠,吕国忠,杨宇.玉米细菌性茎腐病鉴别与防治[J].安徽农业科学,2006,34:2128~2133
    210、郑亚萍,王才斌,黄顺之,吴正锋.花生连作障碍及其缓解措施研究进展[J].中国油料作物学报,2008,30(3):384~388
    211、周惠萍,范静华,徐自怀.云南连作水稻细菌性基腐病的致病性及病原生物学特性研究[J].云南农业大学学报,2004.19:532~535
    212、中国农村统计年鉴(2012年):下载网址:http://ishare.iask.sina.com.cn/download/explain.php?fileid=35872412
    213、周丽霞,丁明懋.土壤微生物生物学特性对土壤健康的指示作用[J].生物多样性,2007,15(2):162~171
    214、朱四元,刘头明,汤清明,等.连作苎麻的部分生理生态特征及细胞学观察[J].湖南农业大学学报(自然科学版),2012,38(4):360~365
    215、朱晓军,杨劲松,梁永超.盐胁迫下钙对水稻幼苗光合作用及相关生理特性的影响[J].中国农业科学,2004,37:1497~1503
    216、邹琦.植物生理学实验指导[M].中国农业出版社,2000:72~75,62~63,173~174

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700