用户名: 密码: 验证码:
弯曲微动疲劳失效机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微动疲劳是指结构件在外界疲劳载荷作用下,两个接触表面之间发生微米级的相对运动,从而导致结构件疲劳强度的降低或发生早期断裂的现象。微动疲劳广泛存在于航空、交通运输和海洋工程等领域的各种工程结构件中,比如:涡轮发动机、轮轴过盈配合、高空电力导线和螺栓等,它是这些结构件最主要的失效形式。要合理评估这些结构的安全性和可靠性,必须首先揭示微动疲劳的损伤特性和失效机理。根据外界交变疲劳载荷类型的不同,微动疲劳可分为拉压微动疲劳、弯曲微动疲劳和扭转微动疲劳。近几十年来,各国研究者对微动疲劳进行了许多研究,在实验研究、数值模拟和理论分析方面都取得了诸多的成果。然而目前已有的研究绝大多数都是关于拉压微动疲劳的,对弯曲微动疲劳和扭转微动疲劳的研究还很少,其研究还不够全面和系统。LZ50钢(循环稳定材料)、316L不锈钢(循环硬化材料)、调质42CrMo钢(循环软化材料)和6061-T6铝合金(循环软化材料)这四种材料由于各自良好的力学性能,常被用于制备列车轮轴等零部件,在其服役过程中会承受弯曲载荷而产生弯曲微动疲劳,因此,本文选用这四种材料进行弯曲微动疲劳的相关研究,继而揭示弯曲微动疲劳的失效特性,为弯曲微动疲劳的防护工程提供有力的依据和重要的参考价值。
     为了揭示这四种材料的弯曲微动疲劳的失效特性,本论文主要开展了以下研究工作:
     1.对调质42CrMo钢和6061-T6铝合金进行弯曲微动疲劳与常规弯曲疲劳实验,比较弯曲微动疲劳与常规弯曲疲劳之间的差异。通过系统的弯曲微动疲劳实验,研究疲劳寿命和循环弯曲载荷之间的关系;通过观察弯曲微动疲劳试样在不同弯曲载荷下的形貌和不同阶段的微动损伤情况,揭示弯曲微动过程的损伤演化特性。
     2.将能够合理描述循环硬化、循环稳定和循环软化等特性的循环弹塑性本构模型通过UMAT用户子程序移植到ABAQUS中用于弯曲微动过程的数值模拟。
     3.基于弯曲微动疲劳实验,通过三维有限元模型的等效载荷转换建立了简化的二维平面应变模型,并验证了其合理性。
     4.采用新发展并移植的棘轮循环本构模型对简化的二维有限元模型进行弯曲微动过程的数值模拟,分析接触区的应力和应变状态,并研究循环弯曲载荷、摩擦系数和法向载荷等因素对弯曲微动过程的影响,进一步揭示弯曲微动疲劳的失效过程。
     5.通过弯曲微动疲劳的实验研究和相应的数值分析,分析和总结四种材料弯曲微动疲劳的损伤演化特性和失效机理,为弯曲微动疲劳失效的防护提供充分的依据。进而采用SWT临界面法预测弯曲微动疲劳裂纹萌生的位置和寿命,并与实验结果进行比较。
Fretting fatigue is the process of material damage due to micrometer-scaled movements at the interface between contact bodies caused by cyclic fatigue loads and fretting fatigue may finally result in lower fatigue strength and earlier failure than plain bending fatigue. Fretting fatigue occures widely in various structure components of aviation, transportaion and marine engineering, such as in turbine engine, railway axle, overhead electrical conductors, bolts, and so on. Fretting fatigue is the main failure mode of these structure components, so in order to assess the safety and reliability of these components, the damage characteristics and failure mechanism must be revealed. Fretting fatigue can be devided into three types:the tension and compression fretting fatigue, bending fretting fatigue and torsion fretting fatigue, accoding to different types of fatigue loads. In recent years, the fretting fatigue has been widely studied and some typical achievements have been obtained about the experimental techniques, numerical analysis and mechanism discussion. Howerer, most of the exsited studies focused on the tension and compression fretting fatigue, the bending and torsion fretting fatigue behaviors were rarely discussed. LZ50steel (cyclic stabilizing material),316L stainless steel (cyclic hardening material), tempered42CrMo steel (cyclic softening material) and6061-T6aluminium alloy (cyclic softening material) were widely used in the structure parts, such as train axle, where they would be subjected to bending fretting fatigue in the service. Therefore, the experimental study and finite element analysis were carried out to reveal the failure characteristics of bending fretting fatigue in this paper for these four kinds of metals. The obtained results can provide solid fundamentals for the preventation of bending fretting fatigue failure.
     In order to reveal the failure characteristics of bending fretting fatigue about the four kinds of materials, the following studies have been carried out in this thesis:
     1. The bending fretting fatigue and plain bending fatigue experiments of tempered42CrMo steel and6061-T6aluminium alloy were carried out to analysis the difference between the bending and plain bending fatigue behaviors. The relation of fatigue lives and cyclic bending loads was studied by systematic bending fretting fatigue experiments; the damage evolution characteristics during the bending fretting were revealed by observing the morphology of fracture surfaces under different bending loads and the fretting damage of specimens after different numbers of cycles.
     2. A cyclic elasto-plastic constitutive model which can describe the material characteristic (i.e. cyclic hardening, cyclic stabilizing, cyclic sofetening) reasonably was implemented into ABAQUS finite element software as a UMAT user subroutine.
     3. Based on the experiments of bending fretting fatigue, a simplified two dimensional plane strain finite element model with an equivalent normal force transformation from a three dimensional finite element model was established.
     4. The simplified two dimensional finite element model with the UMAT subroutine of cyclic constitutive model was used to simulate the bending fretting process, and then the stress-strain responses in the contact zone were analyzed. The effects of cyclic bending load, friction coefficient and normal force on the bending fretting were discussed.
     5. The damage evolution characteristics and failure mechanisms of bending fretting fatigue for four materials were analyzed by combining the experimental and numerical analyses, which is helpful to prevent the bending fretting fatigue failure. Finally, the crack iniation locations and lives of bending fretting fatigue were predicted by using a suitable critical plane model and volume average method. The predictions were in agreement with the experimental results.
引文
[1]Waterhouse R B微动磨损与微动疲劳.周仲荣,金雪岩,朱曼吴,等译.成都:西南交通大学出版社.1999.
    [2]周仲荣,Vincent L微动磨损.北京:科学出版社.2002.
    [3]周仲荣,朱曼吴.复合微动磨损.上海交通大学出版社.2004.
    [4]周仲荣.关于微动磨损与微动疲劳的研究.中国机械工程.2000,11(10):1146-1150.
    [5]何明鉴.机械构件的微动疲劳.北京:国防工业出版社.1994.
    [6]飞机结构搭接件微动疲劳研究的关键技术.海军航空工程学院学报.2008,23(4):361-366.
    [7]沈明学,彭金方,郑剑锋,宋川,莫继良,朱曼吴.微动疲劳研究进展.材料工程.2010(12):86-91.
    [8]杨茂胜,陈跃良,郁大照,胡家林.微动疲劳研究的现状与展望.强度与环境.2008,35(6):45-54.
    [9]Nowell D, Dini D, Hills D A. Recent developments in the understanding of fretting fatigue. Engineering Fracture Mechanics.2006,73:207-222.
    [10]徐丽,陈跃良,衣林,岁浩.铝合金微动疲劳研究及展望.装备环境工程.2011,8(4):63-67.
    [11]Chakravarty S, Andrews R G, Patnaik P C, Koul A K. The effect of surface modification on fretting fatigue in Ti alloy turbine-components. Journal of Metals. 1995,47 (3):31-37.
    [12]Matlik J F, Farris T N. High frequency, high temperature fretting fatigue investigations. AIAA-2003-1681,2003.
    [13]陈水生,孙明俊,孙伟明.接触压力和循环应力幅对45号钢微动疲劳特性影响.河南理工大学学报.2008,27(3):299-301.
    [14]Nakazawa K, Maruyama N, Hanawa T. Effect of contact pressure on fretting fatigue of austenitic stainless steel. Tribology.2003,36:79-85.
    [15]Iyer K, Mall S. Analyses of contact pressure and stress amplitude effects on fretting fatigue life. ASME Journal of Engineering Materials and Technology.2001,123:85-93.
    [16]Araujo J A, Nowell D. The effect of rapidly varying contact stress fields on fretting fatigue. International Journal of Fatigue.2002,24:763-775.
    [17]Nishioka K, Hirakawa K. Fundamental investigations of fretting fatigue. Bull JSME. 1969,52(12):397-414.
    [18]Ambrico J M, Begley M. The role of macroscopic plastic deformation in fretting fatigue life predictions. International Journal of Fatigue.2001,23:121-128.
    [19]Christopher D, Lykins, Mall S, Jain V K. An evaluation of parameters for predicting fretting fatigue crack initiation. International Journal of Fatigue.2000,22:703-716.
    [20]Madge J J, Leen S B, McColl I R, Shipway P H. Contact-evolution based prediction of fretting fatigue life:Effect of slip amplitude. Wear.2007,262:1159-1170.
    [21]Ding J, Houghton D, Williams E J, Leen S B. Simple parameters to predict effect of surface damage on fretting fatigue. International Journal of Fatigue.2011, (33):332-342.
    [22]Madge J J, Leen S B, Shipway P H. The critical role of fretting wear in the analysis of fretting fatigue. Wear.2007, (263):542-551.
    [23]刘兵,何国球,蒋小松,朱曼吴.轮轴钢Lz50的单轴微动疲劳失效机理.同济大学学报.2010,38(5):720-724.
    [24]Nowell D. Crack initiation criteria in fretting fatigue. Wear.1990,136:329-334.
    [25]Benhamena A, Amrouche A, Talha A, Benseddiq N. Effect of contact forces on fretting fatigue behavior of bolted plates:Numerical and experimental analysis. Tribology International.2012,48:237-245.
    [26]Golden P J, Millwater H R, Yang X B. Probabilistic fretting fatigue life prediction of Ti-6A1-4V. International Journal of Fatigue.2010,32:1937-1947.
    [27]Jayaprakash M, Mutoh Y, Asai K, Ichikawa K, Sukarai S. Effect of contact pad rigidity on fretting fatigue behavior of NiCrMoV turbine steel. International Journal of Fatigue. 2010,32:1788-1794.
    [28]Mugadu A, Hills D A, Nowell D. Modifications to a fretting-fatigue testing apparatus based upon an analysis of contact stresses at complete and nearly complete contacts. Wear.2002,252:475-483.
    [29]Hutson A L, Nicholas T, Olson S E, Ashbaugh N E. Effect of sample thickness on local contact behavior in a flat-on-flat fretting fatigue apparatus International Journal of Fatigue.2001,23:445-453.
    [30]Mall S, Kim H K, Porter W J, Ownby J F, Traylor A G. High temperature fretting fatigue behavior of IN 100. International Journal of Fatigue.2010, (32):1289-1298.
    [31]刘军,刘道新,刘元镛,唐长斌.微动接触应力的有限元分析.机械强度.2005,27:504-509.
    [32]Sabsabi M, Giner E, Fuenmayor F J. Experimental fatigue testing of a fretting complete contact and numerical life correlation using X-FEM. International Journal of Fatigue. 2011,33:811-822.
    [33]Kubota M, Kuwada K, Tanaka Y, KondoY. Mechanism of reduction of fretting fatigue limit caused by hydrogen gas in SUS304 austenitic stainless steel. Tribology International.2011,44:1495-1502.
    [34]何庆复,刘伟,郭少中,张云,陈善忠.列车车轴抗微动损伤热喷涂层组织结构研究.铁道学报.2001,23(4):102-104.
    [35]毛庆祥.货车断轴机理与失效分析.铁道车辆.1997,35(8):11-15.
    [36]Dobromirski J M. Variables of fretting process. In:Helmi Attia M, Waterhouse R B edited. ASTM STP 1159. Philadelphia:American Society of Testing and Materials. 1992,60-66.
    [37]Waterhouse R B. The problems of Fretting Fatigue Testing. Standardization of fretting tests methods and equipment. American Society for Testing and Materials.1992, 13-19.
    [38]Berthier Y, Colombie C, Vincent L, Godet M. Fretting wear mechanisms and their effects on fretting fatigue. Journal of Tribology.1988,110 (3):517-524.
    [39]Hoeppner D W, Goss G L. A fretting-fatigue damage threshold concept. Wear.1974, 27:61-70.
    [40]Mutoh Y. Mechanisms of fretting fatigue. JSME International Journal.1995,38: 405-415.
    [41]Alic J A, Hawley A L, Urey J M. Formation of fretting fatigue cracks in 7075-T7351 aluminum alloy. Wear.1979,56:351-361.
    [42]Alfredsson B. Fretting fatigue of a shrink-fit pin subjected to rotating bending: experiments and simulations. International Journal of Fatigue.2009,31:1559-1570.
    [43]Fadag H A, Mall S, Jain V K. A finite element analysis of fretting fatigue crack growth behavior in Ti-6A1-4V. Engineering Fracture Mechanics.2008,75:1384-1399.
    [44]Petiot C, Vincent L, Dang V K,.Maouche N, Foulquier J, Journet B. An analysis of fretting-fatigue failure combined with numerical calculations to predict crack nucleation. Wear.1995,181:101-111.
    [45]Christopher D, Lykins, Mall S, Jain V K. Combined experimental-numerial investigation of fretting fatigue crack initiation. International Journal of Fatigue. 2001,23:703-711.
    [46]Nesladek M, Spaniel M, Jurenka J, Ruzicka J, Kuzelka J. Fretting fatigue-Experimental and numerical approaches. International Journal of Fatigue.2012, (44):61-73.
    [47]Yildiz F, Yetim A F, Alsaran A, Celik A,Kaymaz I. Fretting fatigue properties of plasma nitrided AISI 316 L stainless steel:Experiments and finite element analysis. Tribology International.2011, (44):1979-1986.
    [48]Ding J, Sum W S, Sabesan R, Leen S B, McColl I R, Williams E J. Fretting fatigue predictions in a complex coupling. International Journal of Fatigue. 2007,29:1229-1244.
    [49]Tsai C T, Mall S. Elasto-plastic finite element analysis of fretting stresses in pre-stressed strip in contact with cylindrical pad. Finite Element Aalysis and Design. 2000,36:171-187.
    [50]Sum W S, Williams E J, Leen S B. Finite element, critical-plane, fatigue life prediction of simple and complex contact configurations. International Journal of Fatigue. 2005,27:403-416.
    [51]Ding J, McColl I R, Leen S B, Shipway P H. A finite element based approach to simulating the effects of debris on fretting wear. Wear.2007, (263):481-491.
    [52]Hoeppner D, Adibnazari S, Moesser M W. Literature review and preliminary studies of fretting and fretting fatigue including special application to aircraft joints. AD2A 280310,1994.
    [53]Harish Q Farris T N. Modeling of skin/rivet contact application to fretting fatigue. AIAA-97-1340.1997.
    [54]Harish Q Farris T N. Effect of freeting contact stresses on crack nucleation in riveted Lapjoints. AIAA-98-1746,1998.
    [55]Brooks C L, Prost-Domasky, Honeycutt K T. Fretting Fatigue Model. AFRL-VA-WP-TR-2003-3012.
    [56]Guo R, Duan R C, Mesmacque G, Zhang L X. Fretting fatigue behavior of riveted Al 6XXX components. Materials Science and Engineering A.2008,483-484:398-401.
    [57]Feng L, Xu J Q. Evaluation of cyclic inelastic response in fretting based on unified Chaboche model. International Journal of Fatigue.2005, (27):1062-1075.
    [58]Wallace J M, Neu R W. Fretting fatigue crack nucleation in Ti-6A1-4V. Fatigue and Fracture of Engineering Materials and Structures.2003,26:199-214.
    [59]Iyer I. Peak contact pressure, cyclic stress amplitude, contact semi-width and slip amplitude:relative effects on fretting fatigue life. International Journal of fatigue.2001, 23:193-206.
    [60]Massingham M, Irving P E. The effect of variable amplitude loading on stress distribution within a cylindrical contact subjected to fretting fatigue. Tribology International.2006,39:1084-1091.
    [61]Waterhouse R B. Fretting fatigue. London:Applied Science Publishers Ltd.1981.
    [62]Waterhouse R B. The effect of clamping stress distribution on the fretting fatigue of alpha brass and Al-Mg-Zn alloy. Transactions-American Society of Lubrication Engineers.1968,11(1):1-5.
    [63]Abibnazari S, Hoeppner D W. Fertting Fatigue, ESIS 18 Eds.R.B. Waterhouse and Lindley T C, Mechanical Engineering Publications, London.1984:125-133.
    [64]Adibnazari S, Hoeppner D W. A fretting fatigue normal pressure threshold concept. Wear.1993,160(1):33-35.
    [65]Vingsbo O, Soderberg S. On fretting maps. Wear.1988,126(2):131-147.
    [66]Gao H S, Gu H C, Zhou H J. Effeet of slip amplitude on fretting fatigue. Wear. 1991,148:15-23.
    [67]Nakazawa K, Sumita M, Maruyama N. Effect of relative slip amplitude on fretting fatigue of high strength steel. Fatigue and Fracture of Engineering Material and Structure.1994,17(7):751-759.
    [68]Jin O, Mall S. Effects of independent pad displacement on fretting fatigue behavior of Ti-6A1-4V. Wear.2002,253:585-596.
    [69]Lykins C D, Mall S, Jain V K. An evaluation of parameters for predicting fretting fatigue crack initiation. International Journal of Fatigue.2000,22:703-716.
    [70]Endo k, Got O H. Initiation and propagation of fretting fatigue cracks. Wear.1976,38: 311-324.
    [71]Lee S K, Nakazawa K, Sumita M, Maruyama N. Effects of contact load and contact curvature radius of cylindrical pad on fretting fatigue in high strength steel, in Fretting Fatigue:Current Technology and Practices, ASTM STP 1367:199-212.
    [72]Nix K J, Lindley T C. The influence of relative slip range and contact material on the fretting fatigue properties of 3.5NiCrMoVrotor steel. Wear.1988,125:147-162.
    [73]Soderberg S, Bryggman U. Mccullough T. Frequency effects in fretting wear. Wear. 1986,110:19-34.
    [74]Iyer K, Mall S. Effects of cyclic frequency and contact pressure on fretting fatigue under two-level block loading. Fatigue and Fracture of Engineering Materials and Structures.2000,23 (4):335-346.
    [75]Poon C J, Hoeppner D W. The effect of environment on the mechanism of fretting fatigue. Wear.1979,52(1):175-191.
    [76]Zhou Z R, Nakazawa K, Zhu M H, Maruyama N, Kapsa P, Vincent L. Progress in fretting maps. Tribology International.2006,39(10):1068-1073.
    [77]Hoeppner D W. Mechanisms of fretting fatigue. Waterhouse and Lindley T C, Fretting fatigue, ESIS 18 Mechanical Engineering Publications, London 1994:3-19.
    [78]Hills D A. Mechanics of fretting fatigue.Wear.1994,175:107-133.
    [79]Hills D A, Nowell D, Connor J J. On the mechanics of fretting fatigue. Wear.1988,125: 129-146.
    [80]Namjoshi S A, Mall S, Jain V K, Jin O. Fretting fatigue crack initiation mechanisms in Ti-6A1-4V. Fatigue and Fracture of Engineering Materials and Structures.2002,25: 955-964.
    [81]Szolwinski M, Farris T. Mechanics of fretting fatigue crack formation. Wear.1996,198: 93-107.
    [82]Zhang T, McHugh P E, Leen S B. Finite element implementation of multiaxial continuum damage mechanics for plain and fretting fatigue. International Journal of Fatigue.2012,44:260-272.
    [83]Gaul D J, Duquette D J. The effect of fretting and environment on fatigue crack initiation and early propagat ion in a quenched and tempered 4130 steel. Met allurgical Transaction.1980,11(9):1555-1559.
    [84]何明鉴,张德志.确定微动疲劳寿命的附加应力法.航空发动机.2003,29(3):27-29.
    [85]乐晓斌,何明鉴.微动疲劳寿命预测方法的探讨.机械强度.1996,18(3):53-55.
    [86]Ruiz C, Chen K C. Life assessment of dovetail joints between blades and disks in aeroengines. London:1. Mech.E.Conference Publications.1986,187-194.
    [87]Vidner, J, Leidieh E. Enhanced Ruiz criterion for the evaluation of crack initiation in contact subjected to fretting fatigue. International Journal of Fatigue. 2007,29:2040-2049.
    [88]Ziaei M. Analytical study of noncircular profile family and numerical optimization of standardized polygon profiles for shaft-hub connections. Professorial dissertation, Chemnitz University of Technology,2002.
    [89]Szolwinski M P, Farris T N. Observation analysis and prediction of fretting fatigue in 2024-T351 aluminum alloy. Wear.1998,221:24-36.
    [90]Smith R N, Watson P, Topper T H. A stress-strain function for the fatigue of metals. Journal of Material.1970,15:767-778.
    [91]Sum W S, Edward J, Williams, Leen S B. Finite element, critical-plane, fatifue life prediction of simple and complex contact configurations. International Journal of Fatigue.2005,27:403-409.
    [92]Fatemi A, Socie D. A critical plane approach to multiaxial fatigue damage including out of phase loading. Fatigue and Fracture of Engineering Material and Structure. 1988(11):149-165.
    [93]Jin O, Mall S, Sahan O. Fretting fatigue behavior of Ti-6Al-V at elevated temperature. International Journal of Fatigue.2005,27:395-401.
    [94]Brown M W, Miller K J. A theory for fatigue failure under multiaxial stress-strain condition. Proceedings of the Institution of Mechanical Engineers.1973,187:745-755.
    [95]周文.微动疲劳裂纹萌生特性及寿命预测.浙江工业大学硕士学位论文.2007.
    [96]Findley W N. Fatigue of metals under combinations of stresses. Trans ASME,1957,79: 1337-1348.
    [97]Rooke D P, Jones D A. Stress intensity factors in fretting fatigue. Journal of Strain Analysis.1997,14:1-7.
    [98]Kimura T, et al. In:Gaul L, Brebbia CA, editors. Computational methods in contact mechanics IV. Southampton:WIT Press.1999,303-312.
    [99]Giannakoupoulos A E, Lindley T C. Suresh S. Application of fracture mechanics in fretting fatigue life assessment. Fretting fatigue current technology and practices. STP, 1367,2000.
    [100]Hattori T, Nakamura M, Watanabe T. Simulation of fretting-fatigue life by using stress-singularity parameters and fracture mechanics. Tribology International.2003.
    [101]Gordelier S C, Chivers T C. A literature review of palliatives for fretting fatigue. Wear. 1979,56:177-190.
    [102]Beard J. Palliative for fretting fatigue. Fretting Fatigue, ESIS Vol.18. Edited by Waterhouse R B, Lindley T C. London:Machanical Engineering Publication.1994: 419-436.
    [103]Waterhouse R B. The effect of surface treatment on the fatigue and fretting-fatigue of metallicmaterials, Metal Treatments against. Wear, Corrosion, Fretting and Fatigue. Oxford:Pergamon Press,1988:31-40.
    [104]Fu Y Q, Wei J, Batchelor A W. Some considerations on mitigation of retting damage by the application of surface-modification technologies. Journal of Materials Processing Technology.2000,99:231-245.
    [105]Carton J F, Vannes A B, Zambelli G, Vincent L. An investigation of the fretting behavior of low friction coating on steel. Tribology international.1996,29(6):445-455.
    [106]Rajasekaran B, Ganesh Sundara RAMAN S, Joshi S V, Sundararajan G. Performance of plasma sprayed and detonation gun sprayed Cu-Ni-In coatings on Ti-6Al-4V under plain fatigue and fretting fatigue loading. Materials Science and Engineering,2008, 479:83-92.
    [107]King A, Steuwer A, Woodward C, Withers P J. Effects of fatigue and fretting on residual stresses introduced by laser shock peening. Materials Science and Engineering A,2006,435-436:12-18.
    [108]Oskouei R H, Ibrahim R N. Improving fretting fatigue behaviour of Al 7075-T6 bolted plates using electroless Ni-P coatings. International Journal of Fatigue. 2012,44:157-167.
    [109]Ebaraa R, Fujimurab M. Fretting fatigue behaviour of Ti-6Al-4V alloy under plane bending stress and contact stress. Tribology International.2006,(39):1181-1186.
    [110]Kubotaa M, Noyamab N, Sakaea C, Kondoa Y. Fretting fatigue in hydrogen gas. Tribo logy International.2006, (39):1241-1247.
    [111]Peng J F, Song C, Shen M X, Zheng J F, Zhou Z R, Zhu M H. An experimental study on bending fretting fatigue characteristics of 316L austenitic stainless steel. Tribo logy International.2011, (44):1417-1426.
    [112]Peng J F, Shen M X, ZHENG J F, ZHU M H. An experimental study on bending fretting fatigue characteristics of LZ50 railway axle steel. In:FM2009-Transferability and Application of Current Mechanics Approaches, Eds. G.C. Sih, S.T. Tu and Z.D. Wang, East China University of Science and Technology Press, Shanghai, China.2009: 495-499.
    [113]蒋春松.316L不锈钢弯曲微动疲劳特性的数值模拟研究.西南交通大学硕士学位论文.2012.
    [114]郭严,康国政,刘宇杰,丁俊.LZ50钢真应力控制下单轴棘轮行为的实验研究.工程力学.2010,27(9):216-239.
    [115]康国政,高庆,杨显杰,孙亚芳.316L不锈钢室温和高温单轴循环行为实验研究.核动力工程.2001,22(3):252-258.
    [116]Kang G Z, Liu Y J, Ding J, Gao Q. Uniaxial ratcheting and fatigue failure of tempered 42CrMo steel:Damage evolution and damage-coupled visco-plastic constitutive model, International Journal of Plasticity.2009,25(5):838-860.
    [117]Ding J, Kang G Z, Kan Q H, Liu Y J. Constitutive model for uniaxial time-dependent ratcheting of 6061-T6 aluminum alloy. Computational Materials Science. 2012,57:67-72.
    [118]Abdel-Karim M, Ohno N. Kinematic hardening model suitable for ratchetting with steady-state. International Journal of Plasticity.2000,16(3):225-240.
    [119]Kapoor A. Wear by plastic ratchetting. Wear.1997,212(1):119-130.
    [120]Kapoor A, Johnson K L. Plastic ratchetting as a mechanism of erosive wear. Wear.1995,186-187:86-91.
    [121]陈旭,焦荣,田涛.棘轮效应预测及其循环本构模型研究进展.力学进展.2003,33(4):461-470.
    [122]康国政,高庆.棘轮行为及其本构模型和工程应用的研究进展.应用力学学报.2008,25(3):455-461.
    [123]康国政.非弹性本构理论及其有限元实现.西南交通大学出版社.2010.
    [124]Kobayashi M, Ohno N. Implementation of cyclic plasticity models based on a general form of kinematic hardening. International Journal Numerical Methods in Engineering 2002,53:2217-2238.
    [125]王丽英,彭忠义.LZ50车轴钢低周疲劳性能研究.实验室研究与探索.2007,26(11):190-205.
    [126]李钊.考虑棘轮效应的低周疲劳实验与失效模型研究.西南交通大学硕士学位论文.2004.
    [127]Wong Y K, Hu X Z, Norton M P. Plastically elastically dominant fatigue interaction in 316L stainless steel and 6061-T6 aluminium alloy. Fatigue and Fracture of Engineering Material and Structure.2002,25:201-213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700