用户名: 密码: 验证码:
航空发动机榫连接结构微动疲劳寿命研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
被称为“工业癌症”的微动损伤广泛存在于机械构件的各种紧密配合件中,而榫连接结构中的微动疲劳失效则是航空发动机故障高发的原因之一。由于微动疲劳的影响因素众多,目前在试验和理论各方面对微动疲劳的研究还不是很成熟。因此,开展榫连接结构的微动疲劳试验与寿命技术研究具有重要的理论意义和工程实用价值。
     本文采用试验与理论相结合的研究方法,进行了大量的微动疲劳试验,并根据目前微动疲劳理论的最新研究成果,对微动疲劳损伤理论及寿命技术问题进行了深入研究。
     首先,基于临界平面理论和微动促进了裂纹萌生和早期扩展的损伤机理,定义了一种微动损伤参量CSE(considering the multi-factor in the calculating of the Strain Energy),提出了微动疲劳寿命预测模型,开展了微动疲劳寿命的定量化研究。参量CSE考虑了几何特性、材料特性、载荷特性和表面状况等微动疲劳影响因素,不仅能够表征微动损伤中的能量耗散,而且可以解释微动疲劳现象中特有的接触特征。微动疲劳寿命CSE预测模型包含了材料普通疲劳特性,待定参数较少,适用于合金材料连接结构的微动疲劳寿命预测。
     其次,基于封闭力系框架的结构设计,以疲劳试验机为平台,设计并实现了一套微动疲劳试验装置,开展了钛合金TC11与TC11接触、单晶高温合金DD3与粉末高温合金FGH95接触以及定向凝固高温合金DZ125与FGH95接触三种不同材料配对的微动疲劳试验研究,得到了相关的微动疲劳规律。微动疲劳试验研究表明:法向载荷的加载稳定,试验成功率高和可操作性强,所设计的试验装置性能良好;微动疲劳显著降低了材料的疲劳性能和疲劳寿命;法向载荷和轴向载荷对微动疲劳寿命均有影响,其中轴向载荷是微动疲劳寿命最主要的影响因素。
     最后,将微动疲劳寿命的理论和试验研究相结合,开展了相关的数值分析研究,对各向同性材料和各向异性材料微动疲劳裂纹的萌生位置和方向以及寿命预测模型进行验证和对比,探讨了不同材料的微动损伤规律及损伤机理。研究表明:钛合金试验件以及榫连接结构预测结果的误差分散带在2倍因子以内,DD3的误差分散带在2.6倍因子以内,而DZ125的误差分散带则在2.8倍因子以内;新的微动损伤参量CSE能够较好地表征不同材料的微动疲劳特性,有效地预测裂纹萌生位置和生长方向,并且与试验结果基本吻合;各向异性材料的抗微动疲劳特性要优于各向同性材料。
Fretting damage known as "industry cancer", widely occurs to the junction between twomechanical components. Fretting fatigue failure in dovetail joints is one of main causes in aero-enginefailure. However, the experimental and theoretical research is not mature currently because of somany influence factors on fretting fatigue. Therefore, systematical research on fretting fatigueexperiments and life technology of dovetail joints are required and will contribute significant valuesin theoretical study and practical engineering applications.
     The fretting fatigue experiments were conducted by the combination of theoretical andexperimental methods. According to the latest research of current fretting fatigue theories, in-depthresearch has been explored in this paper in order to solve the fretting damage and life technologyproblems.
     First, a new fretting damage parameter CSE(considering the multi-factor in the calculating ofthe Strain Energy) was introduced and the quantitative research on a new fretting fatigue lifeprediction model was carried out, based on the critical plane theory and the damage mechanism, thefretting induced crack initiation and early propagation. The fretting damage parameter CSE considersmany factors including geometry characteristic, material characteristics, load characteristics, surfacecondition and so on,which can represent the energy loss in the fretting damage and explain thephenomenon of stress concentration in the fretting fatigue. The fretting fatigue life prediction modelof CSE contains general fatigue properties and less undetermined parameter, which is suitable for thelife prediction of a link structure of an alloy material.
     Second, employing the concept of the overall balance framework in the structure design, aunique fretting fatigue test apparatus based on a fatigue testing machine has been designed andfabricated to characterize the fretting fatigue damage process with a facility to observe the crackwhich is being initiated in and around the contact zone during the test. There are three types ofcontacting pair among the fretting specimen and the pad including titanium alloy TC11and TC11,single crystal nickel DD3and powder metallurgy superalloy FGH95, directionally solidifiedsuperalloy DZ125and FGH95, and a relevant fretting fatigue law is obtained. The result shows goodloading stability of the normal load, high success rate and strong test maneuverability, and theequipment works well. Fretting fatigue significantly reduces fatigue performance and fatigue life ofthe material. The fretting fatigue life is affected by the normal load and the axial load, and the axialload is the most important influencing factor for the fretting fatigue life.
     Finally, numerical analysis was carried out by the combination of theoretical and experimentalresearch on fretting fatigue life. The initiation location and orientation of the fretting fatigue crack andthe life prediction model for isotropic and anisotropic materials were validated and compared. Thefretting damage laws and damage mechanisms of different materials were also discussed. The resultof the CSE prediction model shows good agreement with experimental results. The CSE critical planeapproach is appropriate for predicting the initiation location and growth orientation of the frettingfatigue crack. The anisotropic material shows better resistance in fretting fatigue than the isotropicmaterial.
引文
[1] D. A. Hills, D. Nowell. Mechanics of fretting fatigue [M]. Dordrecht, The Netherlands:Kluwer Academic Publishers,1994.
    [2]周仲荣, Leo. Vincent.微动磨损[M].北京:科学出版社,2002.
    [3] Orly Leivia. Effects of shear load on fretting fatigue behavior of Ti-6Al-4V [D]. USA:Doctoral dissertation, University of Dayton,2003.
    [4]何明鉴.机械构件的微动疲劳[M].北京:国防工业出版社,1994.
    [5] Waterhouse R B. Fretting Fatigue [M]. London: Applied Science,1981.
    [6] Waterhouse R B. Fretting Corrosion [M]. Oxford: Pergamon Press,1972.
    [7] D. A. Hills. Mechanics of fretting fatigue [J]. Wear,1994,(175):107~113.
    [8] Eden E M,Cunningham. The endurance of metal [C]. Proc.Instn. Mech. Eng.1911,(4):839~94.
    [9] Feng I. M, Rightmire B. G. The mechanism of fretting [R]. Mass. Inst. of Tech. Cambrige,Mass. AD4463,1952.
    [10] Hurricks P L. The mechanism of fretting-A review [J]. Wear,1970,(15):389~409.
    [11] Suh N. P. The delamination theory of wear [J]. Wear,1973,(25):111~114.
    [12] Gaul D. J., Duquette D. J. The effect of fretting and environment on fatigue crack initiationand early propagation in a quenched and tempered4130steel [J]. Metallurgic Trans.,1980,(11):1555~1559.
    [13] Berthier Y, Vincent L. Velocity accommodation in fretting [J]. Wear,1988,(125):25~38.
    [14] Godet M. Third-bodies in tribology [J]. Wear,1990,(136):29~45.
    [15] Vingsbo O, Soderberg S. On Fretting Maps [J]. Wear,1988,(126):131~147.
    [16] Zhou Z R, Fayeulle S, Vincent L. Cracking behavior of various aluminum alloy duringfretting wear [J]. Wear,1992,(155):317~330.
    [17]周仲荣.关于微动磨损与微动疲劳的研究[J].中国机械工程,2000,11(10):1146~1151.
    [18] Zhou Z R, Nakazawa K, Zhu M H, et al. Progress in fretting maps [J]. TribologyInternational,2006,39(10):1068~1073.
    [19] O Vingsbo, M Odfalk, N E Shen. Fretting maps and fretting behavior of some FCC metalalloys [J]. Wear,1989,133:275~282.
    [20] L Vincent, Y Berthier, M C Dubourg, M Godet. Mechanics and materials in fretting [J].Wear,1992,(153):135~148.
    [21] P Blanchard, C Colombie, V Pellerin, S Fayeulle, L Vincent. Material effects in frettingwear: application to iron, titanium and aluminium alloys [J]. Metallurgical Trans.,1991,A22:1535~1544.
    [22] C Petiot, L Vincent, K Dang Van, N Maouche, J Foulquier, B Journet. An analysis offretting-fatigue failure combined with numerical calculations to predict crack nucleation [J].Wear,1995,(181):101~111.
    [23] Zhou Z R, Vincent L. Cracking induced by fretting of aluminium alloys [J]. J. ofTransactions ASME,1997,(119):36~42.
    [24]周仲荣.微动图在抗微动失效中的应用[J].中国表面工程,1998,1(38):41~45.
    [25] K Endo, H Goto. Initiation and propagation of fretting fatigue cracks [J]. Wear,1976,38:311~324.
    [26] U Bryggman, S Soderberg. Contact conditions in fretting [J]. Wear,1986,(110):1~17.
    [27] O Jin, S Mall. Effects of slip on fretting behavior: experiments and analyses [J]. Wear,2004,(256):671~684.
    [28] H Oroudhom, S Fouvry, G R Yantio. Determination and prediction of the fretting crackinitiation:introduction of the (P,Q,N) representation and definition of a variable processvolume [J]. Int. J. of Fatigue,2006,(28):707~713.
    [29]裴先强,王齐华.微动图和能量法在微动研究中的应用[J].润滑与密封,2004,(4):97~101.
    [30] Piran Sioshansi, Eric J Tobin. Surface treatment of biomaterials by ion process [J]. Surfaceand Coatings Technology,1996,(83):175~182.
    [31] Bruyn K D, Celis J P, Roos J R, Stals L M, Stappen M V. Fretting behavior and porosity ofTi2N coating [J]. Wear,1995,(181):856~861.
    [32] Bill R C. Selected fretting wear resistant coatings for Ti-6Al-4V [J]. Wear,1985,(106):283~301.
    [33] Gui-Zhen Xu, Jia-Jun Liu, Zhong-Rong Zhou. Prediction of the fretting fatigue resistance ofvarious surface-modification layers on1045steel: the role of fretting maps [J]. TribologyInternational,2001,(34):569~575.
    [34] Stott F H, Bethune B, Higham P A. Fretting induced damage between contactingsteel-polymer surfaces [J]. Tribology International,1977,(10):211~215.
    [35] Dobromirski, J. M. Variables of fretting process: Are there50of them?[A] in: M. H. Attia&R. B. Waterhouse, eds, Standardization of Fretting Fatigue: Test Methods and Equipment
    [C]. ASTM STP1159, American Society of Testing and Materials, Philadelphia, PA,1992:60~66.
    [36]戴振东,薛群基,王珉.摩擦问题的热力学研究[J].摩擦学进展,1997,2(3):1~9.
    [37]戴振东,薛群基,王珉.摩擦磨损过程的非平衡态热力学研究[J].自然杂志,1998,20(4):220~228.
    [38]戴振东,杨生荣,王珉,薛群基.微动磨损的热力学研究[J].南京航空航天大学学报,2000,32(2):125~131.
    [39]李诗卓,董祥林.材料的冲蚀磨损与微动磨损[M].北京:机械工业出版社,1987.
    [40]李东紫.微动磨损与防护技术[M].西安:陕西科学技术出版社,1992.
    [41]朱如鹏,潘升材,高德平.微动疲劳中的应力状态参数和微动磨损参数的研究[J].工程力学,1998,15(4):116~121.
    [42]冯益华.机械设计中的微动和微动疲劳[J].山东轻工业学院学报,1995,9(3):23~27.
    [43]戴振东,朱如鹏,潘升材,王珉.高温不锈钢与钛合金微动疲劳特性的实验研究[J].航空学报,1999,20(3):245~248.
    [44] Gordelier S C, Chivers T C. A literature review of palliatives for fretting fatigue [J]. Wear,1979,(56):177~190.
    [45]曹大树,吴培远.微动疲劳损伤失效分析[J].材料工程,1996,(12):44~47.
    [46]陶峰,张险峰,欧阳祖行.螺纹连接件的微动损伤研究[J].机械强度,2000,22(2):134~136.
    [47]徐世清.锁片微动疲劳失效分析[J].航空制造技术,1998,(3):42~43.
    [48] Hoeppner D. W., Gates F. L. Fretting fatigue consideration in engineering design [J]. Wear,1981,(70):155~164.
    [49] Chen Y. K., Han L., Chrysanthou A., O'Sullivan J. M. Fretting wear in self-piercing rivetedaluminium alloy sheet [J]. Wear,2003,(255):1463~1470.
    [50] Ruiz C., Boddington P. H. B., Chen K. C. An investigation of fatigue and fretting in adovetail joint [J]. Experimental mechanics,1984,3(24):208~217.
    [51]何明鉴.微动磨损疲劳——燕尾联结应力分布及裂纹位置预测[J].航空动力学报,1989,4(3):205~208.
    [52]黄致建,朱如鹏,潘升财.单向加载疲劳机上燕尾形榫连接微动损伤试验件设计[J].航空学报,1994,15(8):1017~1023.
    [53]朱如鹏,潘升财.燕尾形榫连接修形的数值研究[J].航空学报,1994,15(11):1370~1374.
    [54]古远兴.高低周复合载荷下燕尾榫结构微动疲劳寿命研究[D].南京:南京航空航天大学,2007.
    [55]刘永星,张洪钟,宋翠珍.汽轮机叶片微动失效特例分析[J].电力情报,1995,1:22~24.
    [56]刘伟,何庆复,张云.微动损伤对车轴疲劳寿命的影响[J].铁道学报,1998,20(6):115~118.
    [57] Harris S. J., Waterhouse R. B., McColl I. R. Fretting damage in locked coil steel ropes [J].Wear,1993,(170):63~70.
    [58]唐辉.世界核电设备与结构将长期面临的一个问题——微动磨损[J].核动力工程,2000,21(3):222~231.
    [59] Helmi Atria M. Fretting fatigue and wear damage of structural components in nuclear powerstations-fitness for service and life management perspective [J]. Tribology Int,2006,39(10):1294~1304.
    [60] KIM K. T., SUH J. M. Impact of nuclear fuel assembly design on grid to rod fretting wear[J]. J. Nucl. Sci. Technol.2009,46(2):149~157.
    [61] Zhou Z. R., Cardou A., Fiset M, Goudreau S. Fretting fatigue in electrical transmission lines[J]. Wear,1994,(173):179~188.
    [62] Hoeppner, D., Chandrasekaran V. Fretting in orthopedic implants: a review [J]. Wear,1994,(173):187~189.
    [63] International Symposium on Fretting Fatigue1, Sheffield, London, April,1993.
    [64] International Symposium on Fretting Fatigue2, Salt Lake City, USA, April,1998.
    [65] International Symposium on Fretting Fatigue3, Nagaoka, Japan, May,2001.
    [66] International Symposium on Fretting Fatigue4, Lyon. France. May,2004.
    [67] International Symposium on Fretting Fatigue5, Montreal, Quebec, Canada, April,2007.
    [68] International Symposium on Fretting Fatigue6, Chengdu, China, April,2010.
    [69]翟玉生,李安,张金中.应用摩擦学[M].北京:石油大学出版社,1996.
    [70]葛世荣,朱华.摩擦学复杂系统及其问题的量化研究方法[J].摩擦学学报,2002,22(5):405~408.
    [71] Nowell D, Dini D. Stress gradient effects in fretting fatigue [J]. Tribology International.2003,(36):71~78.
    [72] Johnson, K.L. Surface interaction between elastically loaded bodies under tangential forces
    [C]. Proc. Roy. Soc., Series A,1955,230:531~548.
    [73] Wright, G.P. Studies in fretting fatigue [D]. D.Phil. thesis, University of Oxford,1970.
    [74] Bramhall, R. Studies in fretting fatigue [D]. D.Phil. thesis, University of Oxford,1973.
    [75]温卫东,高德平.接触问题数值分析方法的研究现状与发展[J].南京航空航天大学学报,1994,26(5):664~675.
    [76] J. C. Thomas, J. M. W. Baynham, R. A. Adey. Modeling contact surface edge effects usingboundary elements [C].8th national turbine engine high cycle fatigue conference, HyattRegency Monterey, Monterey, California, April2003.
    [77] Sellgren Ulf, Olofeeon Ulf. Application of a constitutive model for micro-slip in finiteelement analysis [J]. Comput.Methods Appl. Mech. engrg.1999,(170):65~77.
    [78] T. Kimura, K. Sato. Simplified method to determine contact distribution and tress intensityfactors in fretting fatigue [J]. International Journal of Fatigue,2003,(25):633~640.
    [79] Naboulsi S., Mall S. Fretting fatigue crack initiation behavior using process volumeapproach and finite element analysis [J]. Tribology International.2003,(36):121~131.
    [80]刘军,刘道新,刘元镛,唐长斌.微动接触应力的有限元分析[J].机械强度,2005,27(4):504~509.
    [81] P. T. Rajeev, T. N. Farris. Two dimensional contact of dissimilar/anisotropic matericals [R].AIAA-2001-1252.
    [82] P. T. Rajeev, T. N. Farris. Numerical analysis of fretting contacts of dissimilar isotropic andanisotropic materials [J]. Journal of Strain Analysis,2002,(37):503~517.
    [83] T. N. Farris. Mechanics of fretting fatigue tests of contacting dissimilar elastic bodies [J].STLE Tribology Transactions,1992,35(2):346~352.
    [84] Muskhelishvili. Singular Integral Equations [M]. Groningen: Noordhoff,1953.
    [85] Erdogan F., Gupta. On the numerical solution of singular integral equations [J]. Quarterly ofApplied Mathematics,1972,(29):525~534.
    [86] Erdogan F., Nemat Nasser. Mixed boundary value problems in mechanics [J]. Mechanicstoday,1978,(4):44~84.
    [87] Ming-che Lu, Erdogan. Stress intensity factors in two bonded elastic layers containingcracks perpendicular to and on the interface [J]. Engineering Fracture Mechanics.1983,18(3):491~506.
    [88] Theotokoglou. Bonded cracked half planes with an interface and an intersecting crack [J].International Journal of fracture,1999,(98):361~367.
    [89]张建勇,李星.各向异性平面含斜裂纹的奇异积分方程方法[J].力学季刊,2004,25(2):248~255.
    [90] T. N. Farris, Szolwinski. Mechanics of fretting fatigue crack formation [J]. Wear,1996,(198):93~107.
    [91] P. A. McVeigh, T. N. Farris. Finite element analysis of fretting stresses [J]. J. of Tribology,ASME,1997,(119):797~801.
    [92] L. Johansson. Numerical simulation of contact pressure evolution in fretting [J]. J. ofTribology, ASME,1994,(116):247~254.
    [93] A. E. Giannakopoulos and S. Suresh. A three-dimensional analysis of fretting [J]. ActaMaterials,1998,(120):134~139.
    [94] S.Suresh著,王中光等译.材料的疲劳(第2版)[M].北京:国防工业出版社,1999.
    [95] Miller, K. J. Metal fatigue-past, current, and future [C]. Proceedings of the Institution ofMechanical Engineers, Preprint No.3,1991:1~14.
    [96] Ruiz C., Chen K. C. Life assessment of dovetail joints between blades and discs inaero-engines [C]. Proceedings of the International Conference on Fatigue, Sheffield, UK,1986.
    [97] Christopher D. Lykins, Shankar Mall, Vinod K. Jain. Combined experimental–numericalinvestigation of fretting fatigue crack initiation [J]. International Journal of Fatigue,2001,(23):703~711.
    [98] Fellows L., Nowell D., Hills D. On the initiation of fretting fatigue cracks [J]. Wear,1997,(205):120~129.
    [99] Smith K. N., Watson P., H. Topper. A stress function for the fatigue of metals [J]. J Mat,JMLSA,1970,(15):767~778.
    [100] Lykins C.D., Mall S., Jain V. K. An evaluation of parameters for predicting fretting fatiguecrack initiation [J]. Internation Journal of Fatigue,2000,(22):703~716.
    [101] Hernan V. Arrieta, Patrick Wackers, Ky Dang. Van, Andrei Constantinescu, HabibouMaitournam. Modelling attempts to predict fretting fatigue life [R]. A889044,01Jun,2004.
    [102] Xie Y. J., Hills D. A. Crack initiation at contact surface [J]. Theoretical and FractureMechanics,2003,(40):279~283.
    [103] T.N.Farris and H.Murthy. Fundamentals of Fretting Applied to Anisotropic Materials.High-Temperature Fretting Fatigue of Single-Crystal Nickel [R].AFRL-ML-WP-TR-2006-4081.
    [104] Darrel F. Socie, Gary B. Marquis. Multiaxial Fatigue [M]. Warrendale, PA: Society ofAutomotive Engineers, Inc.,1999.
    [105]王雷,王德俊.多轴疲劳寿命预测及验证[J].东北大学学报,2002,23(2):174~177.
    [106]尚德广,王德俊.多轴疲劳强度[M].北京:科学出版社,2007.
    [107] Szolwinski M. P., Harish G., Farris T. N. Comparison of fretting fatigue crack nucleationexperiments to multiaxial fatigue theory life predictions [C]. Proceedings of the ASMESymposium on High Cycle Fatigue,1997,(55):449~457.
    [108] Fatemi A., Socie D. F. A critical plane approach to multiaxial fatigue damage includingout-of-phase loading [J]. Fatigue and Fracture of Engineering Materials and Structures,1988,11(3):149~165.
    [109] C. D. Lykins, S. Mall, V. Jain. A shear stress-based parameter for fretting fatigue crackinitiation [J]. Fatigue and Fracture of Engineering Materials and Structures,2001,(24):461~473.
    [110] Socie, D. Multiaxial fatigue damage models [J]. Journal of Engineering Materials andTechnology,1987,(109):292~298.
    [111] Doner, M., Bain, K. R., Adams, J. H. Evaluation of methods for the treatment of mean stresseffects on low-cycle fatigue [J]. Journal of Engineering for Power,1982,(104):403~411.
    [112] S. A. Namjoshi, S. Mall, V. K. Jain, O. Jin. Fretting fatigue crack initiation mechanism inTi-6Al-4V [J]. Fatigue and Fracture of Engineering Materials and Structures,2002,(25):955~964.
    [113] Findley, W. N. A theory for the effect of mean stress on fatigue of metals under combinedtorsion and axial load or bending [J]. Journal of Engineering for Industry, Trans ASME,1959,81(4):301~307.
    [114] Chu, C. C., Conle, F. A., Bonnen, J. J. F. Critical plane approaches for multiaxial fatiguedamage assessment. Advances in Multiaxial Fatigue, ASTM STP1191, ASTM, Philadelphia,1993:7~36.
    [115] McDiarmid D.L. Fatigue under out-of-phase bending and torsion [J]. Fatigue Fract EngMater Struct,1987,9:457~475.
    [116] Walker, K. The effect of stress ratio during crack propagation and fatigue for2024-T3and7075-T6aluminum [C]. Effects of environment and complex load history on fatigue life.ASTM STP462,1970:1~14.
    [117] Christopher D, Lykins, Shankar M. An evaluation of parameters for fretting fatigue crackinitiation. International Journal of Fatigue,2000,(22):703~716.
    [118] Szolwinski, M.P. The mechanics and tribology of fretting fatigue with application to rivetedlap joints [D]. PhD thesis, School of Aeronautics and Astronautics, Purdue University,1998.
    [119] Szolwinski, M.P., Farris, T.N. Observation, analysis and prediction of fretting fatigue in2024-T351aluminum alloy [J]. Wear,1998,221,(1):24~36.
    [120] ASTM E2789-2010, Standard guide for fretting fatigue testing, West Conshohocken,Pennsylvania, ASTM International,2010.DOI:10.1520/C0033-03.
    [121] Waterhouse RB. The problems of fretting fatigue testing [C]. In: Attia MH, Waterhouse RB,editors. Standardization of fretting fatigue test methods and equipment. ASTM STP,1159.Philadelphia: American Society for Testing and Materials;1992:13~22.
    [122] D Nowell, D Dini, D A Hills. Recent developments in the understanding of fretting fatigue[J]. Engineering Fracture Mechanics,2006,73:207~222.
    [123] Hills, D. A., Nowell, D. Discussion on ‘Crack line and edge Green’s function for stressintensity factors of inclined edge cracks’ by D. P. Rooke, D. B. Rayaprolu, and M. H.Aliabadi [J]. Fatigue Fract. Engng Mater. Struct.,1993,16,2:267~270.
    [124]杜平安.有限元网格划分的基本原则[J].机械设计与制造,2000,1:34~36.
    [125] Johnson, K.L. Contact Mechanics [M]. Cambridge: Cambridge University Press,1985.
    [126] D. W. Hoeppner, C. B. I. Elliot, M. W. Moesser. The role of fretting fatigue on aircraft rivethole cracking [R]. Technical Report DOT/FAA/AR-96/10, FAA,1996.
    [127] R. P. G. Müller. An experimental and analytical investigation on the fatigue behavior offuselage riveted lap joints [D]. PhD thesis, Delft University of Technology, the Netherlands,1995.
    [128] M. Ciavarella and G. Macina. New results for the fretting-induced stress concentration onHertzian and flat rounded contacts [J]. International Journal of Mechanical Sciences,2003,45(3):449~467.
    [129] A.E. Giannakopoulos, T.C. Lindley, S. Suresh and C. Chenut. Similarities of stressconcentration in contact at round punches and fatigue at notches: implication to frettingfatigue crack initiation [J]. Fatigue Fract Eng Mater Struct,2000,23:561~571.
    [130]漆文邦,郑超.基于单元不同长宽比网格划分的有限元误差分析研究[J].中国农村水利水电,2010,2:108~113.
    [131]陈万吉,胡志强.三维摩擦接触问题算法精度和收敛性研究[J].大连理工大学学报,2003,43,(5):541~547.
    [132] G.B.Sinclair, N.G.Cormier, J.H.Griffin, G.Meda. Contact Stresses in Dovetail Attachments:Finite Element Modeling[J]. Journal of Engineering for Gas Turbines and Power,2002,Vol.124:182-189.
    [133]朱晶晶.榫连接结构低周微动疲劳寿命预测方法与试验研究[D].南京:南京航空航天大学,2006.
    [134]中国航空材料手册.第4卷,钛合金铜合金.中国标准出版社,2001.
    [135] H. A. Fadag, S. Mall. V. K. Jain. A finite element analysis of fretting fatigue crack growthbehavior in Ti-6Al-4V [J]. Engineering Fracture Mechanics,2008,75:1384~1399.
    [136] Lykins C D, Mall S, Jain VK. A shear stress based parameter for fretting fatigue crackinitiation. Fatigue Fract Eng Mater Struct,2001,24:461~473.
    [137]徐灏.疲劳强度[M].北京:高等教育出版社,1988.
    [138]中国航空材料手册.第2卷,变形高温合金铸造高温合金.中国标准出版社,2001.
    [139]中国航空材料手册.第5卷,粉末冶金材料精密合金与功能材料.中国标准出版社,2001.
    [140] Brown, M.W., and Miller, K.J. A theory for fatigue under multiaxial stress-strain conditions[C]. Proceedings of the Institute of Mechanical Engineers,1973,187:745~756.
    [141]航空工业部科学技术委员会编.应变疲劳分析手册[M].北京:科学出版社,1987.
    [142] Basquin. O. H. The exponential law of endurance tests [C]. Proceedings of the AmericanSociety for Testing and Materials,1919,10:625~655.
    [143] Coffin L F. A study of the effects of cyclic thermal stresses on a ductile metal [J].Transactions of the American Society of Machanical Engineers.1954,76:931~950.
    [144] Manson S S. Behaviour of materials under condition of thermal stress [R]. NACA TN-2933,1954.
    [145] S. K. Chan and I. S. Tuba. A finite element method for contact problem of solid bodies, PartⅡ,Application to turbing blade fastening [J]. Int. J. Mech. Sci,1971,13:627~639.
    [146] R.W.Broomfield, D.A.Ford, J.K.Bhangu. Development and turbine engine performance ofthree advanced Rhenium containing superalloy for single crystal and directionally solidifiedblades and vanes [J]. Journal of engineering for gas turbines and power,1998,7.
    [147]宋余九.金属材料的设计选用预测[M].北京:机械工业出版社,1998.
    [148] Hill R. The Mathematical Theory of Plasticity [M]. London: Oxford University Press,1950.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700