用户名: 密码: 验证码:
乙炔氢氯化非汞催化反应制取氯乙烯单体研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯乙烯单体(VCM)主要用来合成聚氯乙烯。而聚氯乙烯(PVC)是世界五大工程塑料之一,在各行各业具有十分广泛的应用。目前氯乙烯单体的工业合成方法主要有乙炔氢氯化法和乙烯氧氯化法。在我国,大约70%氯乙烯单体采用乙炔氢氯化法生产。这是由我国的特殊能源结构所决定的。我国石油资源短缺,相对丰富的煤炭资源为乙炔氢氯化法提供充足的乙炔原料。然而,该工艺路线一直采用剧毒的氯化汞/活性炭为催化剂,该催化剂易挥发流失,对工人健康及当地环境造成了严重的危害。如何消除汞触媒污染,实现乙炔氢氯化合成氯乙烯清洁工艺路线,是摆在化学工艺工作者面前关于氯碱行业的亟待解决的问题。
     本论文以绿色催化工艺的开发为导向,以高效非汞触媒的开发为重点,结合多种表征及模拟手段,开发了基于非汞催化剂的乙炔氢氯化反应合成氯乙烯单体的绿色催化工艺。
     通过对多种金属元素催化乙炔氢氯化反应的活性进行考察,筛选出活性相对较好的三种活性组分PdCl2, CuCl2和AuCl3。以此三种活性组分为研究重点,详细研究了不同反应条件下单组分PdCl2, CuCl2和AuCl3催化剂的催化性能和失活原因。结果发现,单组份催化剂的催化性能均不能满足实际生产的要求。通过对上述三组分的复配和活性考察发现氯化金和氯化铜之间存在显著的协同作用,双组份AuCl3-CuCl2催化剂相比单金属催化活性及稳定性显著改善。优选活性炭为载体,Au/Cu=1:6,成功合成了具有良好活性,选择性和稳定性的双组份AuCl3-CuCl2/C催化剂,并借助高等仪器分析对双组份AuCl3-CuCl2催化剂的微观性质进行了表征分析。
     对乙炔氢氯化反应进行了热力学分析,考察了该反应的可行性及反应平衡所能达到的最高转化率,然后以热力学计算结果为参考,考察了双组份AuCl3-CuCl2/C催化剂在不同反应温度、不同配比、不同空速和不同反应气氛下的反应行为,得出了双组份AuCl3-CuCl2/C催化剂的优化反应条件,即:温度140~170℃,氯化氢和乙炔配比应在1.15左右,总空速应在100-150h-1。
     采用密度泛函理论方法研究了乙炔氢氯化反应在非汞催化剂上的催化反应机理。通过模拟计算得到反应路径上的反应物、过渡态、中间体和产物的优化几何构型,提出了可能的乙炔氢氯化反应路径。通过分子轨道计算,研究了双组份催化剂中氯化铜和氯化金之间的作用机理。
     在固定床积分反应器中研究了双组份AuCl3-CuCl2/C非汞催化剂催化乙炔氢氯化反应合成氯乙烯的反应动力学。首先基于DFT模拟结果,假设反应机理遵循Eley-Rideal模型,采用Langmuir吸附等温线方程,推导出动力学方程式。然后在消除内外扩散的情况下,考察了不同温度下,转化率随空速的变化。最后,通过计算机拟合得出了乙炔氢氯化反应的本征动力学方程。实验数据与机理方程基本吻合,进一步验证了假设机理的合理性。基于实验得到的动力学方程,采用二维拟均相模型对基于非汞催化剂的乙炔氢氯化反应实验室固定床反应器进行了模拟计算,考察了床层内浓度分布、温度分布。
     论文还详细考察了双组份AuCl3-CuCl2/C非汞催化剂对不同反应条件的扰动的稳定性,并在优化的反应条件下考察了催化剂的寿命。结果表明:温度在150~180℃范围内,空速在120-480h-1的范围内调变对双组份AuCl3-CuCl2/C非汞催化剂稳定性无明显影响,而原料配比及乙炔气的纯度变化对催化剂的稳定性影响显著。在T=160℃, P=0.1 MPa, GHSV=110h-1, C2H2/HCl=1:1.15的反应条件下,催化剂寿命大于1200h。另外,对使用1200h后的催化剂,在大空速下(3000h-1)进行了加速失活实验,通过失活前后的催化剂表征分析,详细探究了催化剂的失活原因,并提出了可行的再生方法。最后,对非汞催化剂催化乙炔氢氯化反应制氯乙烯的生产成本进行了估算和分析。
Vinyl chloride monomer (VCM) is mainly used for synthesis of polyvinyl chloride (PVC), one of the five engineering plastics, which is widely used in all walks of life. Currently, there are mainly two synthesis methods for vinyl chloride monomer, which are acetylene hydrochlorination and ethylene oxychlorination. In our country, about 70% of vinyl chloride monomer products are produced from the acetylene hydrochlorination. This is determined by our special energy structure. In China, petroleum resources are scarce, while coal resources are relatively rich, which provide adequate acetylene materials for the acetylene hydrochlorination. However, poisonous activated carbon supported HgCl2 catalyst has been used in this process. The toxicity and volatility of the catalyst causes serious damage to the workers and environment. It is a great challenge for the whole chlor-alkali industry to eliminate or reduce the pollution caused by the catalyst.
     In this paper, our research is oriented with the development of a green catalytic process, aiming to develop an efficient non-mercury catalyst. Combining with various characterization and simulation calculation methods, a green catalytic process of the acetylene hydrochlorination based on non-mercury catalyst to produce vinyl chloride monomer is developed successfully.
     PdCl2, CuCl2 and AuCl3 are discovered to be active to the acetylene hydrochlorination. Catalytic performance and deactivation of monocomponent PdCl2, CuCl2 and AuCl3 catalysts are studied in detail using several characterization methods. The results showed that monocomponent catalysts are not favorable for the catalytic acetylene hydrochlorination reaction. With the aim to improve the catalytic performance, two-component catalysts of PdCl2-CuCl2/C, PdCl2-AuCl3/C and AuCl3-CuCl2/C are prepared and their activities for the acetylene hydrochlorination are investigated. It was indicated that activated carbon supported AuCl3-CuCl2 catalyst with Au/Cu=1:6 is not only highly active but also fairly stable. Its microscopic property is characterized using several analysis methods.
     The thermodynamics of acetylene hydrochlorination was studied. The thermodynamic characteristics the acetylene hydrochlorination were discussed. The equilibrium conversion and favorable reaction temperature were obtained. On the basis of the results of thermodynamics calculation, the catalytic performance of AuCl3-CuCl2/C catalyst under various temperatures, feed ratios, space velocities and reation atmospheres were investigated in detail. The optimized reaction conditions were obtained: temperature is no less than 140-170℃, feed ratio of HCl/C2H2 is around 1.15, total gas hourly space velocity is in the range of 100-150h-1.
     The mechanism of the acetylene hydrochlorination was explored using the DFT theoretical calculation. The optimized strucutures of reactants, transition complexes, intermediate products and products were obtained and the possible reaction mechamism was proposed. Moreover, the interation between CuCl2 and AuCl3 was explored by the calculation of molecular orbital.
     Kinetic model of the acetylene hydrochlorination based on the AuCl3-CUCl2/C catalyst was studied in a fixed-bed integral reactor. On the basis of the results of DFT theoretical calculation, the acetylene hydrochlorination was proposed to follow the Eley-Rideal reaction mechanism mode. The kinetics equation was derived based on the Langmuir adsorption model. After the internal and external diffusion were eliminated, the change of conversion with the space velocity under different reaction temperature point was investigated. The reaction kinetic equation was finally obtained by fitting kinetic data. The acetylene hydrochlorination in a fixed-bed microreactor was simulated using Pseudo-homogeneous modal and the distribution of concentration and temperature were investigated.
     The stability of AuCl3-CUCl2/C catalyst under various condition disturbances were studied in detail. The life of AuCl3-CUCl2/C catalyst was tested under the optimized reaction conditions. The results obtained indicated that the AuCl3-CUCl2/C catalyst was stable with the disturbance of temperature (15-180℃) and space velocity (120-480h"1), but sensitive to feed ratio of HCl/C2H2 and the purity of acetylene. Under the reaction conditions of T=160℃, P=0.1 MPa, GHSV=110h"1, C2H2/HC1=1:1.15, the life of the catalyst is more than 1200h. After 1200h reaction, further deactivation test under a big space velocity (3000h-1) was carried out. The deactivation and regeneration of AuCl3-CuCl2/C catalyst was studied in detail and a practical regeneration method was proposed. In the end, the cost of the acetylene hydrochlorination based on the AuCl3-CUCl2/C catalyst was evaluated.
引文
[1]刘光启,马连湘,刘杰.化学化工物性数据手册[M].北京:化学工业出版社,2002
    [2]崔小明.聚氯乙烯生产技术及国内外市场分析[J].江苏氯碱,2008,(1):15~25
    [3]崔小明.我国聚氯乙烯的生产消费现状及发展建议[J].中国氯碱,2008,(11):1-5
    [4]李明,李玉芳.我国PVC树脂的市场现状及2009年展望[J].江苏氯碱,2009,(3):8-14
    [5]李玉芳,伍小明.PVC树脂生产技术进展及市场分析[J].中国氯碱,2008,(9):1-4
    [6]刘自珍.我国聚氯乙烯面临的挑战与发展对策[J].中国氯碱,2008(3):1-6
    [7]梁凤凯,舒均杰.有机化工生产技术[M].北京:化学工业出版社,2003
    [8]刘岭梅.电石法VCM工艺技术优化探讨[J].江苏化工,2002,30(1):40~43
    [9]李宾.关于发展乙烯法聚氯乙烯的探讨[J].辽宁化工,1990(3):11~16
    [10]徐兆渝.全球聚氯乙烯生产、工艺和市场新动态[J].江苏氯碱,2005,(1):1-6
    [11]郑进.乙烷氧氯化制备氯乙烯工艺[J].中国氯碱,2004(3):14~16
    [12]吕学举,费强,程铁欣,等.乙烷氧氯化制氯乙烯的研究[J].高等学校化学学报,2003,24(3):522~524
    [13]张亚雄,杨春苹,吴斌.氯化汞触煤在使用过程中的回收利用[J].聚氯乙烯,2008,36(2):27~36
    [14]温武瑞,李培,李海英,等.我国汞污染防治的研究与思考[J].环境保护.2009,(18):33~35
    [15]薛之化.降低电石法氯乙烯生产过程中氯化汞消耗[J].中国氯碱,2009(1):25~30
    [16]李国栋,周军,张新力.电石法聚氯乙烯生产中汞消耗与汞污染的降低[J].中国氯碱,2009(3):42~49
    [17]张英民,梁锡伟,郎需霞,等.新型环保低汞触媒的开发及应用[J].中国氯碱,2008(4):14~17
    [18]阿庆兴,徐菁蔚.两种PVC生产工艺的比较[J].煤炭经济研究,2006,(6):41~43
    [19]杨惠娣.我国聚氯乙烯行业现状与发展趋势[J].塑料助剂,2008,(9):1-7
    [20]D.M. Smith, P.M. Walsh, T.L. Slager. Studies of Silica-Supported Metal Chloride Catalysts for the Vapor-Phase Hydrochlorination of Acetylene[J]. J. Catal.,1968,11(2): 113-130
    [21]K. Shinoda. The Vapor-phase Hydrochloride of Acetylene Over Metal Chlorides Supported On Actived Carbon[J]. Chem. Lett.,1975,4(3):219-220
    [22]白迺彬.金属氯化物的催化活性与键参数-乙炔与氯化氢气相加成反应[J].中国科学,1978,(1):544~546
    [23]G.J. Hutchings.Vapor Phase Hydrochlorination of Acetylene:Correlation of Catalytic Activity of Supported Metal Chloride Catalysts[J]. J. Catal.,1985,96(1):292-295
    [24]B. Nkosi, G.J. Hutchings. Vapor Phase Hydrochloride of Acetylene with Group VIII and IB Metal Chloride Catalysts[J]. Appl. Catal.,1988,43(1):33-39
    [25]B. Nkosi, N.J. Coville, G.J.Hutchings, M.D.Adams, J.Friedl and F.E.Wanger. Hydrochlorination of Acetylene Using Gold Catalysts:A Study of Catalyst Deactivation[J]. J. Catal,1991,128(2):366-377
    [26]B. Nkosi, N.J.Coville, and G.J. Hutchings. Reactivation of a Supported Gold Catalyst for Acetylene Hydrochlorination[J]. J. Chem. Soc. Chem. Commun.,1988, (6):71-72
    [27]B. Nkosi. Hydrochlorination of Acetylene using Carbon-Supported Gold Catalyst:A Study of Catalyst Reactivation[J]. J. Catal.,1991,128(2):378-386
    [28]M. Conte, A.F. Carley and G.J. Hutchings. Reactivation of a Carbon-supported Gold Catalyst for the Hydrochlorination of Acetylene[J]. Catal. Lett.,2008,124(3-4):165-167
    [29]M. Conte, A. F. Carley, G. Attard, A. A. Herzing, C. J. Kiely, G. J. Hutchings, Hydrochlorination of Acetylene Using Supported Bimetallic Au-based Catalysts [J]. J. Catal.,2008,257(1):190-198
    [30]岩崎孝雄.塩化匕ニルの裂造法[P].JP,昭51-101905,1976-9-8
    [31]S. A. Mitchenko, T. V. Krasnyakova, R. S. Mitchenko, A. N. Korduban. Acetylene Catalytic Hydrochlorination over Power Catalyst Prepared by Pre-milling of K2PtCl4 Salt [J]. J. Mol. Catal. A:Chem.,2007,275(1-2):101-108
    [32]S. A. Mitchenko, E. V. Khomutov, A. A. Shubin, Y. M. Shul'ga. Catalytic Hydrochlorination of Acetylene by Gaseous HCl on the Surface of Mechanically Pre-activated K2PtCl6 Salt [J]. J. Mol. Catal. A:Chem.,2004,212(1-2):345-352
    [33]S. A. Mitchenko, E. V. Khomutov, A. A. Shubin, and Yu. M. Shu'ga, Mechanochemical Activation of K2PtCl6:Heterogeneous Catalyst for Gas-phase Hydrochlorination of Acetylene[J]. Theor. Exp. Chem.,2003,39(4):255-258
    [34]邓国才.乙炔法合成氯乙烯固相非汞催化剂的研制[J].聚氯乙烯,1994,(6):5-9
    [35]杨琴,罗芩,蒋文伟,等.乙炔氢氯化反应气固相非汞催化体系研究[J].四川化工2007,10(5):13~15
    [36]蒋文伟,杨琴,罗芩,李晶晶.可用于乙炔氢氯化反应的非汞催化剂及其制备方法[P].CN 101249451A,2008-8-27
    [37]李群生.一种乙炔氢氯化制氯乙烯的催化剂及其制备方法[P].CN 100998949A,2007-7-18
    [38]魏小波,魏飞,骞伟中等.铋复合盐在乙炔氢氯化反应中的催化作用[J].过程工程学报,2008,8(6):1218~1222
    [39]T. Gerhard, B.Harald, D.Wilhelm, D.Herbert.Verfahren zur Herstellung von Vinylchlorid durch Umsetzung von Acetylen mit Chlorwasserstoff[P]. DE3824634 Al,1989-11-9
    [40]格哈德·特伦,哈拉尔德·巴特尔斯,威廉·德洛斯特,赫伯特·德帕.通过氯化氢转化乙
    炔制造氯乙烯的方法[P].CN 1037501A,1989-11-29
    [41]M. Strebelle, B.A.Devos.Catalytic Hydrochlorination System and Process for the Manufacture of Vinyl Chloride form Acetylene and Hydrogen Chloride in the Presence of this Catalytic System[P]. US5233108,1993-8-3
    [42]斋藤興司,藤井千之,伊藤宏一.塩化匕ニルの裂造法[P].JP,昭52-136103,1977-11-14
    [43]霍玉朋,蒋文伟,罗芩,等.乙炔氢氯化反应液相非汞催化体系研究[J].四川化工2008,11(6):29~32
    [44]张继光.催化剂制备过程技术[M].北京:中国石化出版社,2005.
    [45]尾崎萃.催化剂手册-按元素分类[M].北京:化学工业出版社,1982
    [46]M. Conte, A. F. Carley, C. Heirene, D. J. Willock, P. Johnston, A. A. Herzing, C. J. Kiely, G. J. Hutchings. Hydrochlorination of Acetylene Using a Supported Gold Catalyst:A Study of the Reaction Mechanism[J]. J. Catal.,2007,250(2):231-239
    [47]H. Watanabe and H. Onozuka. Kinetics and Mechanism of the Catalytic Hydrochlorination of Acetylene to Vinyl Chloride[J]. J. Chem. Soc. Japan. Ind. Chem. Sect.,1959,62: 125-127
    [48]R. D. Wesselhoft, J. M. Woods, J. M. Smith.Catalytic Vinyl Chloride from Acetylene and Hydrogen Chloride:Catalytic-rate Studies [J]. A.I.Ch.E. Journal,1959,5(3):361-366
    [49]H. Bremer, H. Lieske. Kinitics of the Hydrochlorination of Acetylene on HgCl2/Active Carbon Catalysts[J]. Appl. Catal.,1985,18(1):191-203
    [50]A.I. Gel'bshtein, G.G. Shcheglova and A.A. Khomenko. Vapor-phase Catalytic Conversions of Acetylene:Ⅲ. Kinetics and Mechanism for the Vapor Phase Hydrochlorination of Acetylene over Chloride Catalysts such as Mercury(II), Cadmium, Zinc and Bismuth [J]. Kinet. Katal.,1963,4(4):625-634
    [51]A.I. Gel'bshtein, M.I. Siling, and G.A. Sergeeva.Vapor-phase Catalytic Conversions of Acetylene:I. Adsorption of Acetylene and Hydrogen Chloride on Catalysts for Vapor Phase Hydrochlorination of Acetylene [J]. Kinet. Katal.,1963,4(1):149-155
    [52]浙江大学化学工程组.氯乙烯合成反应技术的研究[J].石油化工,1973,2(1):24~30
    [53]戴擎镰,徐根良,沈庆扬,等.在HgCl2-(工业)活性炭催化剂上乙炔氢氯化反应动力学和失活动力学的研究[J].化学反应工程与工艺,1985,1(1-2):1-13
    [54]Shengjie Wang, Benxian Shen, Qinglei Song, Kinetics of acetylene hydrochlorination over bimetallic Au-Cu/C catalyst[J]. Catal. Lett.,2010,134(1-2):102-109
    [55]H.P. Boehm. Some Aspects of the Surface Chemistry of Carbon Blacks and other Carbons[J]. Carbon,1994,32(5):759-769
    [56]M.J. Frisch, G.W. Trucks, H.B. Schlegel et al, Gaussian 98, Revision A.06[CP]. Gaussian, Inc., Pittsburgh,1998
    [57]B.F. Straub. Gold(I) or Gold(III) as Active Species in AuCl3-catalyzed Cyclization/ Cycloaddition Reactions? A DFT Study[J]. Chem. Commun.,2004, (15):1726-1728
    [58]H.B. Schlegel. Optimization of Equilibrium Geometries and Transition Structures[J]. J. Comp. Chem.,1982,3(2):214-218
    [59]R. Fletcher and M. J. D. Powell.A Rapidly Convergent Descent Method for Minimization[J]. Comput. J.,1963,6(2):163-168
    [60]B.A. Murtaugh, R.W.H. Sargent. Computational Experience with Quadratically Convergent Minimization Methods [J]. Comput. J.,1970,13(2):185-192
    [61]李玉敏.工业催化原理[M].天津:天津大学出版社,1996
    [62]王声洁,沈本贤,赵基钢,刘纪昌.乙炔氢氯化PdCl2/C催化剂失活原因分析[J].石油化工,2009,38(3):249~253
    [63]G.J. Hutchings, D.T. Grady. Hydrochlorination of Acetylene:The Effect of Mercuric Chloride Concentration on Catalyst Life[J]. Appl. Catal.,1985,17(1):155-160
    [64]G.J. Hutchings, D.T. Grady. Effect of Drying Conditions on Carbon Supported Mercuric Chloride Catalysts[J]. Appl. Catal.,1985,16(3):411-415
    [65]M. S. Han, B. G. Lee, B. S. Ahn, D. J. Moon, S. I. Hong. Surface Properties of CuCl2/AC Catalysts with Various Cu Contents:XRD, SEM, TG/DSC and CO-TPD Analyses[J]. Appl. Surf. Sci.,2003,211(1-4):76-81
    [66]J. Friedl, F.E. Wagner, B. Nkosi, M. Towert, N.J. Coville, M.D. Adams, and G.J. Hutchings. Au Mossbauer Study of the Deactivation and Reactivation of a Carbon-supported AuCl4-1 Hydrochlorination Catalyst[J]. Hyperfine Interact.,1991,69(1-4):767-770
    [67]B. Coqa, F. Figueras. Bimetallic Palladium Catalysts:Influence of the Co-metal on the Catalyst Performance [J]. J. Mol. Catal. A:Chem.,2001,173(1-2):117-134
    [68]E. Smolentseva, N. Bogdanchikova, A. Simakov, A. Pestryakov, I. Tusovskaya, M. Avalos, M.H. Farias, J.A. Di'az, V. Gurin. Influence of Copper Modifying Additive on State of Gold in Zeolites[J]. Surf. Science,2006,600(18):4256-4259
    [69]A.M. Venezia, V. La Parola, G. Deganello, B. Pawelec, and J.L.G. Fierro. Synergetic Effect of Gold in Au/Pd Catalysts during Hydrodesulfurization Reactions of Model Compounds[J]. J. Catal.,2003,215(2):317-325
    [70]P. Landon, P.J. Collier, A.J. Papworth, C.J. Kiely, G.J. Hutchings. Direct Formation of Hydrogen Peroxide from H2/O2 Using a Gold Catalyst[J]. Chem. Commun.,2002(18): 2058-2059
    [71]D.I. Enache, J.K. Edwards, P.Landon, B. Solsona-Espriu, A.F. Carley, A.A. Herzing, M. Watanabe, C.J. Kiely, D.W. Knight, G.J. Hutchings. Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO2 Catalysts[J]. Science,2006,311(5759): 362-365
    [72]朱洪法.催化剂载体制备及应用技术[M].北京:石油工业出版社,2002
    [73]C. L. Bianchi, S. Biella, A. Gervasini, L. Parti and M. Rossi. Gold on carbon: Influence of Support Properties on Catalyst Activity in Liquid-phase Oxidation[J].Catal. Lett.2003, 85(1-2):91-96
    [74]李达刚,邓金源,周士相.催化剂载体表面化学结构的初步探索[J].石油化工.1979,8(7):492~495
    [75]沈曾民,张文辉,张学军,等.活性炭材料的制备与应用[M].北京:化学工业出版社,2006
    [76]郏其庚.活性炭的应用[M].上海:华东理工大学出版社,2002
    [77]单晓梅,朱书全,张文辉,等.氧化法改性煤基活性炭和椰壳活性炭的研究[J].中国矿业大学学报,2003,32(6):729~733
    [78]陈晨,林性贻,于政锡,等.硝酸处理活性炭对醋酸乙烯催化活性的影响[J].石油化工,2004,33(11):1024~1027.
    [79]郑超,王榕,容成,魏可镁.活性炭表面改性对钌基氨合成催化剂的影响[J].工业催化,2005,13(10):31~35.
    [80]J.M.托马斯.催化剂的表征[M].北京:化学工业出版社,1981
    [81]吴越,杨向光.现代催化原理[M].北京:科学出版社,2005
    [82]蒋志茵,杨儒,张建春,等.大麻杆活性炭对染料吸附性能的研究[J].北京化工大学学报(自然科学版),2010,37(2):83~89
    [83]S.X. Chen, H.M. Zeng. Improvement of the Reduction Capacity of Activated Carbon Fiber[J]. Carbon,2003,41(6):1265-1271
    [84]D.A. Bulushev, I. Yuranov, E.I. Suvorova, P.A. Buffat, and L. Kiwi-Minsker. Highly Dispersed Gold on Activated Carbon Fibers for Low-temperature CO Oxidation[J]. J. Catal.,2004,224(1):8-17
    [85]S.R. de Miguel, J.I. Vilella, E.L. Jablonski, O.A. Scelza, C. Salinas-Martinez de Leceaa and A. Linares-Solanob. Preparation of Pt Catalysts Supported on Activated Carbon Felts (ACF)[J]. Appl. Catal. A: Gen.,2002,232(1-2):237-246
    [86]M. Uchida, O. Shinohara, S. Ito, N. Kawasaki, T. Nakamura, S. Tanada. Reduction of Iron(III) Ion by Activated Carbon Fiber[J]. J. Colloid Interface Sci.,2000,224(2): 347-350
    [87]P.A. Simonov, A.V. Romanenko, I.P. Prosvirin, G.N. Kryukova, A.L. Chuvilin, S.V. Bogdanov, E.M. Moroz, V.A. Likholobov. Electrochemical Behaviour of Quasi-graphitic Carbons at Formation of Supported Noble Metal Catalysts[J]. Stud. Surf. Sci. Catal.,1998, 118(1):15-30
    [88]P.A. Simonov, A.V. Romanenko, I.P Prosvirin, E.M. Moroz, A.I. Boronin, A.L. Chuvilin; V.A Likholobov. On the Nature of the Interaction of H2PdCl4 with the Surface of Graphite-like Carbon Materials [J]. Carbon,1997,35(1):73-82
    [89]D.A. Bulusnev, I. Yuranov, E.I. Suvorova, P.A. Buffat, and L. Kiwi-Minsker. Highly Dispersed Gold on Activated Carbon Fibers for Low-temperature CO Oxidation[J]. J. Catal.,2004,224(1):8-17
    [90]L. Prati, G. Martra. New Gold Catalysts for Liquid Phase Oxidation[J]. Gold Bull.,1999, 32(3):96-101
    [91]P. Riello, P. Canton, A. Benedetti. Au/C Catalyst: Experimental Evidence of the Coexistence of Nanoclusters and Larger Au Particles[J]. Langmuir,1998,14(23): 6617-6619
    [92]T.-C. Ou, F.-W. Chang, L.S. Roselin. Production of Hydrogen via Partial Oxidation of Methanol over Bimetallic Au-Cu/TiO2 Catalysts[J]. J. Mol. Catal. A:Chem.,2008, 293(1-2):8-16
    [93]R.J. Chimentao, F. Medina, J.L.G. Fierro, J. Llorca, J.E. Sueiras, Y. Cesteros, P. Salagre. Propene Epoxidation by Nitrous Oxide over Au-Cu/TiO2 Alloy Catalysts [J]. J. Mol. Catal. A: Chem.,2007,274(1-2):159-168
    [94]D. Gelatt, H. Enrenreich. Charge Transfer in Alloys:AgAu[J]. Phys Rev. B,1974,10(2): 398-415
    [95]G.C. Bond. Gold: A Relatively New Catalyst[J]. Catal.Today,2002,72(1-2):5-9
    [96]徐友明.新型石蜡加氢催化剂的研究及应用.华东理工大学博士学位论文,2007
    [97]B. Matas Guell, I. M. Torres de Silva, K. Seshan, L. Lefferts. Sustainable Route to Hydrogen-Design of Stable Catalysts for the Steam Gasification of Biomass Related Oxygenates[J]. Appl. Catal. B:Environ.,2009,88(1-2):59-65
    [98]F.R van den Berg, M. W. J. Craje, A. M. van der Kraan, J. W. Geus. Reduction Behaviour of Fe/ZrO2 and Fe/K/ZrO2 Fischer-Tropsch catalysts[J]. Appl. Catal. A:Gen.,2003,242(2): 403-416
    [99]C.-K. Kuei, J.-F. Lee, M.-D. Lee, J. W. Geus. The Promoter Effect of Alkli Metal to Supported Iron Catalyst in Carbon Monoxide Hydrogenation, The Influence of Alkali on Carbon Depositions[J]. Chem. Eng. Commun.,1991,101(1):77-92
    [100]刘维桥,孙桂大.固体催化剂实用研究方法[M].北京:中国石化出版社,1999
    [101]辛勤.固体催化剂的研究方法[M].北京:科学出版社,2004
    [102]邓云祥,邹永匡,孔宪祥等.聚氯乙烯生产原理[M].北京:科学出版社,1982
    [103]徐寿昌.有机化学(第二版)[M].北京:高等教育出版社,1993
    [104]卢焕章.石油化工基础数据手册[M].北京:化学工业出版社,1982
    [105]胡英.物理化学上册(第四版)[M].北京:高等教育出版社,2001
    [106]邴涓林,黄志明.聚氯乙烯工艺技术[M].北京:化学工业出版社,2008
    [107]严福英.聚氯乙烯工艺学[M].北京:化学工业出版社,1990
    [108]林师沛.聚氯乙烯塑料配方设计指南[M].北京:化学工业出版社,2002
    [109]郑石子.聚氯乙烯生产与操作[M].北京:化学工业出版社,2008
    [110]李群生,刘阳.氯乙烯精馏过程的ASPEN PLUS模拟分析[J].北京化工大学学报(自然科学版),2009,36(1):5-8
    [111]王云龙,郭霖,夏延致,等.对苯二甲酸与乙二醇反应机理的量子化学研究[J].中国材料科技与设备,2007,4(3):93~95
    [112]S.F. Ruzankin, V.F. Anufrienko, S.A. Yashnik and Z.R. Ismagilov. Quantum-chemical analysis of the CuCl2 molecule[J]. J. Struct. Chem.,2006,47(3):404-412
    [113]陈念陔,高坡,乐征宇.量子化学理论基础[M].哈尔滨:哈尔滨工业大学出版社,2002
    [114]徐光宪,黎乐民.量子化学基本原理和从头计算法[M].北京:科学出版社,1980
    [115]吴越.催化化学[M].北京:科学出版社,1995
    [116]李作俊.多相催化反应动力学基础[]M.北京:北京大学版出社,1990
    [117]陈诵英,陈平,李永旺,王建国.催化反应动力学[M].北京:化学工业出版社,2007
    [118]陈甘棠.化学反应工程(第二版)[M].北京:化学工业出版社,1990
    [119]王桂茹.催化剂与催化作用[M].大连:大连理工大学出版社,2004
    [120]陆元鸿.数理统计方法[M].上海:华东理工大学出版社,2005
    [121]朱炳辰.化学反应工程[M].北京:化学工业出版社,1998
    [122]毛在砂,陈家镛.化学反应工程学基础[M].北京:科学出版社,2004
    [123]钟邦克.精细化工过程催化作用[M].北京:中国石化出版社,2002
    [124]王化淳,杨春生.用拟均相二维模型设计固定床反应器[J].化学工程,1985,(1):33~42
    [125]G.F. Froment. Design of Fixed Bed Catalytic Reactors Based on Effective Transport Models [J]. Chem. Eng. Sci.,1962,17(11):849-859
    [126]沈庆扬,陈秉辉.乙炔法合成氯乙烯固定床反应器的数学模拟和工况分析[J].高校化学工程学报,1994,8(4):351~359
    [127]陈裕中,王金波,陈锦文.用正交配置技术估计固定床内的传热参数[J].化工学报,1990,4(2):219~226
    [128]许越.催化剂设计与制备工艺[M].北京:化学工业出版,2003
    [129]赵基钢.均匀薄片状TS-1分子筛制备与丙烯直接环氧化工艺研究.华东理工大学博士论文,2007
    [130]孙立哲,赵秀清.生产乙炔对电石的要求及乙炔清净[J].化工时刊,2004,18(7):57~58
    [131]钱慧娟.活性炭吸附黄金技术的开发与未来[J].国外林业,1994,24(4):42~44
    [132]李延吉,张微,龙振坤.黄金用活性炭再生技术现状及发展趋势[J].黄金,2007, 28(10):32-37
    [133]X.Y. Jiang, G.L. Lu, R.X. Zhou, J.X. Mao, Y. Chen, X.M. Zheng. Studies of Pore Structure, Temperature-programmed Reduction Performance, and Micro-structure of CuO/CeO2 Catalysts [J]. Appl. Surf. Sci.,2001,173(3-4):208-220
    [134]S.D. Robertson, B.D. Mcnicol, J.H. de Baas, S.C. Kloet. Determination of Reducibility and Identification of Alloying in Copper-nickel-on-silica Catalysts by Temperature-programmed Reduction[J]. J. Catal.,1975,37(3):424-431
    [135]C.J.G. van der Grift, A.F.H. Wielers, B.P.J. Jogh, J. Van Beunum, M. De Boer, M. Versluijs-Helder, J.W. Geus. Effect of the Reduction Treatment on the Structure and Reactivity of Silica-Supported Copper Particles [J]. J. Catal.,1991,131(1):178-189
    [136]M. Valden, X. Lai, D.W. Goodman. Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties [J]. Science,1998,281(5383): 1647-1650
    [137]D. Andreeva. Low Temperature Water Gas Shift over Gold Catalysts[J]. Gold Bull.,2002, 35(3):82-88
    [138]P. Konova, A. Naydenov, Cv. Venkov, D. Mehandjiev, D. Andreeva, T. Tabakov. Activity and Deactivation of Au/TiO2 Catalyst in CO Oxidation[J]. J. Mol. Catal. A: Chem.,2004,213(2):235-240
    [139]张叔良,易大年,吴天明.红外光谱分析与新技术[M].北京:中国医药科技出版社,1993
    [140]荆煦瑛.红外光谱实用指南[M].天津:天津科学技术出版社,1992
    [141]C.J. Baddeley, M. Tikhov, C. Hardacre, J.R. Lomas, R.M. Lambert. Ensemble Effects in the Coupling of Acetylene to Benzene on a Bimetallic Surface:A Study with Pd{111}/Au[J]. J. Phys. Chem.,1996,100(6):2189-2194
    [142]C.J. Baddeley, R.M. Ormerod, A.W. Stephenson, R.M. Lambert. Surface Structure and Reactivity in the Cyclization of Acetylene to Benzene with Pd Overlayers and Pd/Au Surface Alloys on Au{111}[J]. J. Phys. Chem.,1995,99(14):5146-5151
    [143]周军,张新力,安志明,李维新.电石法生产PVC树脂的成本分析与控制[J].聚氯乙烯,2001,(3):27~29
    [144]王福权,刘光杰.降低PVC生产成本措施的探讨[J].聚氯乙烯,2005,(7):19~21
    [145]王满庆,孙剑飞.最大限度降低生产成本是电石法生产PVC企业的唯一出路[J].聚氯乙烯,2002,(4):17-2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700