用户名: 密码: 验证码:
共存污染物对沉积物及其主要组分吸附阿特拉津的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文建立了高效液相色谱法测定阿特拉津及同时测定阿特拉津和马拉硫磷的方法,并分析了其它三种除草剂对阿特拉津测定的干扰;基于水体中表层沉积物(生物膜)是水环境中有机和无机污染物的汇和潜在的污染源,本论文以松花江作为采集表层沉积物和生物膜的自然水体,采用选择性萃取分离技术,结合萃取—吸附—统计分析的方法,研究了表层沉积物(生物膜)及其主要组分对阿特拉津的吸附特征和其主要组分锰氧化物、铁氧化物和有机质吸附阿特拉津的贡献,确定了表层沉积物(生物膜)吸附阿拉特津的吸附位,发现了表层沉积物(生物膜)中锰氧化物对阿拉特津的吸附起抑制作用,比较了表层沉积物和生物膜对阿特拉津吸附能力、吸附特征的差异;此外,还研究了镉—阿特拉津、铜—阿特拉津、马拉硫磷—阿特拉津共存体系中阿特拉津的吸附规律以及共存物质对阿特拉津吸附特性的影响,发现共存污染物与阿拉特津之间存在着协同作用和拮抗作用,并通过红外分析技术对共存体系中吸附机理进行了分析,以期预测复合污染中各组分的作用机理及其阿特拉津在环境水体中的迁移转化规律。本论文的研究成果为处理水环境中复合污染提供了理论支持。
Atrazine ( 2-chloro-4-ethylamino-6-isopropylamine-s-triazine, C8H14ClN5) is one of the most widely used herbicides, which is employed as a selective herbicide for the control of grassy and broadleaf weeds in maize, sorghum, rangeland, sugarcane, and other crops. Atrazine is considered to be persistent due to its water solubility (33 mg/L). Although atrazine is stable in slight acid and alkali solution, it could be hydrolyzed as hydroxyl derivates, losing its weeding activity under alkali or salty condition at high temperature. Nowadays, Atrazine has been listed as global environmental precedence control pollutant. In recent years, more and more researches on impact of atrazine for human health have been conducted because atrazine is considered as a possible human carcinogens and endocrine disrupting substance. Because of its long residue period, about 4-57 weeks, it needs long time to be mineralized by microbe. Herbicides spray on surface soil to pose a potential risk of leaching to under aquierfers, causing contamination of water resources. Moreover, due to its long residue period in soil and accumulation ability in organism, potential threaten on food security may occur.
     Transference of hydrophobic organic compound (HOC) in water is influenced by many chemical processes, in which adsorption-desorption is one of major processes. It is important to predict environmental carrying capacity for releasing HOC precisely, and effectively rehabilitate natural environment as well. Adsorption on sediments is very an important process for transferring atrazine between sediments and water. The initial mechanism of decreasing atrazine concentration and its metabolite in water is adsorption. Wetland, surficial sediments, turf and soil have similar ingredients, for example, high concentration of organic carbon, which is considered as good adsorbent for pesticides. Many scholars began to study adsorption mechanism under coexisting system of organic pollutants. On the other hand, there are very few studies on competitive adsorption among atrazine, other organic pesticides and heavy metals. It is also found that the research on mechanism of atrazine adsorption is very rare.
     This paper studies atrazine adsorption characteristics on the surficial sediments (surface coatings), based upon deeply analysis on chemical composition of surficial sediments and surface coatings taken from natural Songhua River. The adsorption characteristic of atrazine on the surficial sediments (surface coatings) and theirs components is investigated. The relative contribution of its major components, such as manganese oxides, iron oxides and organic materials on the surficial sediments and surface coatings are studied as well. The difference of adsorption capacity and characteristic between surficial sediments and surface coatings is compared.
     Moreover, the influence on atrazine adsorption under atrazine-cadmium, atrazine-copper and atrazine-malathion coexisting systems is studied respectively in this paper, and influence when joined together as well. The interactional mechanism of above three coexisting systems is also analyzed, so as to forecast transfer rule of atrazine in natural water.
     The high performance liquid chromatography (HPLC) method is employed for determining atrazine in water. Without extraction, atrazine is directly detected by HPLC after infiltrated through membrane in water samples. The detection limit is 0.0002 mg/L. This process can be suitable for the simulate study of atrazine adsorption in lab. Herbicides, such as imazethapy, fluazifop-butyl, and dliclofop methyl do not disturb determination of atrazine.
     Selective extraction techniques followed by batch adsorption experiments and statistical analyses were employed to investigate the adsorption behavior of atrazine onto the surficial sediments and surface coatings and to estimate the relative contribution of components to the atrazine adsorption. Result shows that surficial sediments and surface coatings have similar main components, such as manganese oxides, iron oxides and organic materials, among which organic materials has highest concentration, followed by iron oxides and manganese oxides. Under selected condition, the process of atrazine adsorption on surficial sediments and surface coatings is conformed to the first order kinetics. The adsorption rate of surface coatings is much higher than surficial sediments, reaches maximum adsorption amount after 48 hours. It is clear that nonlinear Langmuir model can describe the adsorption behavior of atrazine onto surficial sediments and surface coatings before and after extraction treatments with correlation coefficient above 0.97. But the adsorption capacity of atrazine onto surface coatings is higher than surficial sediments before and after extraction. It is evident that surface coatings have higher impact on transfer of atrazine than surficial sediments. Adsorption contribution of the main components in surficial sediments (surface coatings) is different. It is also found that Fe oxides and OMs facilitate the adsorption of atrazine, but Mn oxides directly or indirectly restrain the interaction of atrazine with surficial sediment (surface coatings) particles. The contribution of Fe oxides to atrazine adsorption is more than that of OMs: the greatest contribution to adsorption on a molar basis is from the Fe oxides.
     The characteristic of atrazine adsorption is also investigated under atrazine-cadmium, atrazine-copper and atrazine-malathion coexisting systems respectively. In atrazine-cadmium coexisting system, Cd of lower concentration (<4.0 mg/L) has a significant synergetic effect on the adsorption of atrazine. However, intensity of synergism is closely related to sequence of which will be adsorbed first. The highest intensity of synergism occurs when adsorbing atrazine and cadmium simultaneously, followed by adsorbing cadmium in ahead. The lowest intensity occurs when adsorbing atrazine first. However, cadmium concentrations (>8.0 mg/L) have an antagonistic effect on the adsorption of atrazine, inhibiting atrazine adsorption. In preloading atrazine system, cadmium inhibits atrazine adsorption when cadmium concentration reaches 4.0mg/L. On the other hand, atrazine can also disturb cadmium adsorption. It is found that atrazine has antagonistic effect on the Cd adsorption in preloading atrazine condition, but atrazine has synergetic effect on Cd adsorption on other two conditions-Cd adsorbed first or adsorbed cadmium and atrazine simultaneously, the synergetic effect of atrazine is less than that of cadmium.
     It is evident that residue of cadmium highly disturbs transference of atrazine in water, and competitive adsorption of cadmium and atrazine may occur in water. Due to higher concentration of Fe oxides and other active components on surface coatings, adsorption capacity of atrazine and cadmium onto surface coatings is higher than surficial sediments. After selective extraction of samples, atrazine adsorption characteristics are similar to original samples without extraction, while adsorbing cadmium and atrazine simultaneously. This indicates that adsorption of cadmium and atrazine is closely related to their active components, such as manganese oxides, iron oxides and organic materials. On the other hand, copper has different chemical characteristic compared with cadmium. The organic materials exert the greatest influence on Cu binding. It is proven that Cu is more prone to chelate with organic materials than other heavy metals, such as cadmium. Cu can form inner-sphere chelate with organic materials. The behavior of copper and cadmium on interfering atrazine adsorption is quite different. Under atrazine-copper coexisting systems, Cu has antagonism effect during atrazine adsorption onto surficial sediments (surface coatings). The more Cu concentration is, the more antagonism of atrazine adsorption is while adsorbing copper and atrazine simultaneously and preloading atrazine. Result shows that, when Cu concentration increases, maximum adsorption amount onto surface coatings decreases faster than onto surficial sediments with Cu concentration increasing. If adsorbing Cu first, Cu will have synergetic effect on atrazine adsorption: the less the concentration of copper is, the more synergetic effect is. On the other hand, atrazine also have antagonism effect on Cu adsorption under above three adsorption conditions, although the maximum adsorption capacity is slightly different. Result indicates that atrazine has more influence on copper adsorption than vice versa. The maximum Cu adsorption amount, with atrazine coexisting, decreases 75% compared with non atrazine coexisted. The antagonistic effect of atrazine on Cu adsorption is slightly different between surficial sediments and surface coatings: the changing adsorption of Cu onto the surficial sediments is small with the different adding sequence of copper and atrazine. For the surface coatings, the sequence for adsorption of atrazine and Cu will strongly interfere the adsorption of copper. The strongest antagonistic effect occurs when adsorbing atrazine first, followed by adsorbing these two materials simultaneously. While adsorbing Cu first, antagonistic effect is the lowest. Result also shows that competitive adsorption of Cu and atrazine may occur on surficial sediments (surface coatings), just as phenomenon in cadmium and atrazine system. It is concluded that heavy metal plays very important role on atrazine transference process in heavy metal-atrazine coexisting system.
     In malathion-atrazine coexisting system, malathion can facilitate atrazine adsorption on both surficial sediments and surface coatings, no matter atrazine is prior adsorbed before malathion, or they are adsorbed simultaneously. It is clear that the higher concentration of malathion is, the more synergism effect is. However, under the above system, the maximum adsorption amount of atrazine onto surface coatings is higher than onto surficial sediments. While adsorbing malathion before adsorbing atrazine, malathion inhibit atrazine adsorption which means that the more malathion, the less inhibition. Moreover, the interference of malathion on atrazine adsorption onto surficial sediments is less than surface coatings.
     In atrazine-heavy metal (copper or cadmium)-malathion coexisting system, atrazine adsorption capacity is slightly different. In atrazine-copper-cadmium coexisting system, the adsorption of atrazine is inhibited; while in atrazine-cadmium-malathion coexisting system, the adsorption of atrazine is facilitated; in atrazine-copper-malathion coexisting system, strong inhibition on atrazine adsorption occurs. Result indicates that atrazine could not be adsorbed on surficial sediments and the maximum adsorption amount of atrazine on surface coatings decreases 77.3% compared with atrazine adsorption only. Results also show that copper can have strongest interference on atrazine adsorption than cadmium and malathion.
     By means of Infrared spectrum, the adsorption mechanism of atrazine on surficial sediments (surface coatings) is studied before and after selective extraction. The adsorption mechanism of atrazine in atrazine-heavy metal (copper or cadmium)-malathion coexisting system is also investigated as well. Result shows that displacement of O-H and C=O characteristic absorption peak occur during above processes. It is evident that carboxyl plays very important role in atrazine adsorption process, and has close relationship with atrazine adsorption on active components in coexisting system.
引文
Abate G, Penteado J C, Cuzzi J D, Vitti G C, Lichtig J, Masini J C. Influence of humic acid on adsorption and desorption of atrazine, hydroxyatrazine, deethylatrazine, and deisopropylatrazine onto a clay-rich soil sample [J]. Journal of Agricultural and Food Chemistry, 2004, 52: 6747-6754.
    Abdel-Halim K Y, Salama A K, El-khateeb E N, Bakry N M. Organophosphorus pollutants (OPP) in aquatic environment at Damietta Governorate, Egypt: Implications for monitoring and biomarker responses[J]. Chemosphere, 2006, 63:1491-1498.
    Alvord H H, Kadlec R H. Atrazine fate and transport in the Des Plaines Wetlands [J]. Ecological Modeling, 1996, 90: 97-107.
    Alvord H H, Kadlec R H. The interaction of atrazine with wetland sorbents [J]. Ecological Engineering, 1995, 5: 469-479.
    Anderson K L, Wheeler K A, Robinson J B, Tuovinen O H. Atrazine mineralization potential in two wetlands[J]. Water Research, 2002, 36: 4785-4794.
    Ashby J, Tinwell H. Uterotrophic activity of bisphenol A in the immature rat [J]. Environmental Health Perspectives, 1998, 106: 719-720.
    Balance S, Phillips P J, McCrohan C R, Powell J J, Jugdaohsingh R, White K N. Influence of sediment biofilm on the behavior of aluminum and its bioavailability to the snail Lymnaea stagnalis in neutral freshwater [J]. Canada Journal of Fisher and Aquatic Sciences, 2001, 58: 1708-1715.
    Baranowska I, Barchańska H, Pyrsz A. Distribution of pesticides and heavy metals in trophic chain [J]. Chemosphere, 2005, 60: 1590-1599.
    Behki R M, Khan S. Degradation of atrazine, propazine, and simazine by Rhodococcus strain B-30 [J]. Journal of Agricultural and Food Chemistry, 1994, 42: 1237-1241.
    Beltran J, López F J, Forcada M, Hernández. Microextraction procedures combined with large volume injection in capillary gas chromatography for the determination of pesticide residues in environmental aqueous samples [J]. Analytica Chimica Acta, 1997, 356: 125-133.
    Bester K. Atmospheric deposition of atrazine herbicides on north Germany and Germany bight [J]. Chemosphere, 1995, 30: 1613-1653.
    Bianchi C I, Pirola C, Ragaini V, Selli E. Mechanism and efficiency of atrazine degradation under combined oxidation processes [J]. Applied Catalysis B: Environmental, 2006, 64: 131-138.
    Bohuss I, Rékasi T, Szikora S, Szikora S, Barkács K, Záray G,ácsé. Interaction of acetochlor and atrazine with natural freshwater biofilms grown on polycarbonate substrate in lake Velence(Hungary) [J]. Microchemical Journal, 2005, 79: 201-205.
    Bohuss I, Bozóki J, Barkács K, Záray G. Comparison of sample preparation methods applied for determination of atrazine in freshwater biofilms by gas chromatograph-mass spectrometer system [J]. Microchemical Journal, 2003, 74: 165-171.
    Boivin A, Cherrier R, Schiavon M. A comparison of five pesticides adsorption and desorption processes in thirteen contrasting field soils [J]. Chemosphere, 2005, 61: 668-676.
    Bouaid A, Ramos L, Gonzalez M J, Fernández P, Cámara C. Solid-phase microextraction method for the determination of atrazine and four organophosphorus pesticides in soil samples by gas chromatography [J]. Journal of Chromatography A, 2001, 939: 13-21.
    Burkhard N, Guth J A. Chemical hydrolysis of 2-chlor-4, 6-bis (alkylamino) -1, 3, 5-triazine herbicides and their breakdown in soil under the influence of adsorption [J]. Pesticide Science, 1981, 12: 45-52.
    Buser H R. Atrazine and other s-triazine herbicides in lakes and in rain in Switzerland [J]. Environmental Science and Technology, 1990, 24: 1049-1058.
    Chung K H, Ro K S, Roy D. Fate and enhancement of atrazine biotransformation in anaerobic wetland sediment [J]. Water Research, 1996, 30(2): 341-346.
    Claver A, Ormad P, Rodríguez L, Ovelleiro J L. Study of the presence of pesticides in surface waters in the Ebro river basin (Spain) [J]. Chemosphere, 2006, 64: 1437-1443.
    Clotaire Y N G. Mineralization of the herbicide atrazine as a carbon source by a Pseudomonas strain [J]. Applied and Environmental Microbiology, 1994, 60: 4297-4302.
    Colborn T V, Saal F S, Soto A M. Developmental effects of endocrine-disrupting chemicals in wildlife and humans [J]. Enviornmental Health Perspectives, 1993, 101: 378-384.
    Colombini M P, Fuoco R, Giannarelli S, Pospí?il L, TrskováR. Protonation and degradation reaction of s-triazine herbicides [J]. Microchemical Journal, 1998, 59: 239-245.
    Costerton J W, Cheng K J, Geesey G.G., Ladd T I, Nickel J C, Dasgupta M, Marrie T J. Bacterial biofilms in nature and disease [J]. Annual Review Microbiology, 1987, 41: 435-464.
    Crespin M A, Gallego M, Valcarcel M. Study of the degradation of the herbicides 2, 4-D and MCPA at different depths in contaminated agricultural soil [J]. Environmental Science and Technology, 2001, 35: 4265-4270.
    Cummins C M, Koivunen M E, Stephanian A, Gee S J, Hammock B D, Kennedy I M. Application of europium (III) chelate-dyed nanoparticle labels in a competitive atrazine fluoroimmunoassay on an ITO waveguide [J]. Biosensors and Bioelectronics, 2006, 21: 1077-1085.
    De Souza M L, Wackett L P, Boundy-mills K L, Mandelbaum R T, Sadowsky M J. Cloning, characterization, and expression of a gene region from Pseudomonas sp. strain ADP involved in the dechlorination of atrazine [J]. Applied and Environmental Microbiology, 1995, 61(9): 3373-3378.
    De Souza M L, Sadowsky M J, Wackett L P. Atrazine chlorohydrolase from pseudomonas sp. strain ADP: gene sequence, enzyme purification, and protein characterization [J]. Journal of Bacteriology, 1996, 178(16): 4894-4900.
    De Souza M L, Seffernick J, Martinez B, Sadowsky M J, Wackett L P. The atrazine catabolism gene atzABC are widespread and highly conserved [J]. Journal of Bacteriology, 1998, 180(7): 1951-1954.
    De Souza M L, Newcombe D, Alvey S, Crowley D E, Hay A, Sadowsky M J, Wackett L P. Molecular basis of a bacterial consortium: interspecies catabolism of atrazine [J]. Applied and Environmental Microbiology, 1998, 64(1): 178-184.
    Dick R P. Long-term effects of agriculture systems on soil biochemical and microbial parameters [J]. Agriculture Ecosystems and Environment, 1992, 40: 25-36.
    Dong D, Li Y, Hua X. Investigation of Fe, Mn oxides and organic material in surface coatings and Pb, Cd adsorption to surfaces coatings developed in different natural waters [J]. Microchemical Journal, 2001, 70(1): 25-33.
    Dong D, Hua X, Li Y. Lead adsorption to metal oxides and organic material of freshwater surface coatings determined using a novel selective extraction [J]. Environmental Pollution, 2002, 119:317-321.
    Dong D, Derry L A, Lion L W. Pb scavenging from a freshwater lake by Mn oxides in heterogeneous surface coating materials [J]. Water Research, 2003a, 37: 1662-1666.
    Dong D, Nelson Y M, Lion L W, Shuler M L, Ghiorse W C. Adsorption of Pb Cd onto metal oxides and organic material in natural surface coatings as determined by selective extractions: new evidence for the importance of Mn and Fe oxides [J]. Water Research, 2000, 34(2): 427-436.
    Dong D, Li Y, Zhang B, Hua X, Yue B. Selective chemical extraction and separation of Mn, Fe oxides and organic material in natural surface coatings: application to the study of trace metal adsorption mechanism in aquatic environments [J]. Microchemical Journal, 2001, 69: 89-94.
    Dong D M, Liu L, Hua X Y, Lu Y Z. Comparison of lead, cadmium, copper and cobalt adsorption onto metal oxides and organic materials in natural surface coatings [J]. Microchemical Journal, 2007, 85(2): 270-275.
    Dong D M, Li Y,Zhang J J, Hua X Y. Comparison of the adsorption of lead, cadmium, copper, zinc and barium to freshwater surface coatings [J]. Chemosphere, 2003b, 51: 369-373.
    Donnelly K C, Claxton L D, Huebner H J, Capizzi J L. Mutagenic interactions of model chemical mixtures [J]. Chemosphere, 1998, 37(7): 1253-1261.
    Drouillard K G, Ciborowski J J H, Lazar R, Haffner G D. Estimation of the uptake of organochlorines by the mayfly Hexagenia limbata (Ephemeroptera: Ephemeridae) [J]. Journal of Great Lakes Research, 1996, 22(1): 26-35.
    Fang H H P, Xu L C, Chan K Y. Effects of toxic metals and chemicals on biofilm and biocorrosion [J]. Water Research, 2002, 36(19): 4709-4716.
    Farag A M,Woodward D F, Goldstein J N, Brumbaugh W, Meyer J S. Concentrations of metals associated with mining waste in sediments, biofilm, benthic macroinvertebrates, and fish from the Coeur d’Alene River Basin, Idaho [J]. Archives of Environmental Contamination Toxicology, 1998, 34: 119-127.
    Farga?ováA, Beinrohr E. Metal-metal interactions in accumulation of V5+, Ni2+, Mo6+ and Cu2+ in under-and above-ground parts of Sinapis alba [J]. Chemosphere, 1998, 36(6) : 1305-1317.
    Ferrer C, Gómez M J, García-Reyes F, Ferrer I, Thurman E M, Fernández-Alba A R. Determination of pesticide residues in olives and olive oil by matrix solid-phasedispersion followed by gas chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry [J]. Journal of Chromatography A, 2005, 1069: 183-194.
    Gamerdinger A P, Wagenet R J, Van G M T. Application of two-site/two-region models for studying simultaneous nonequilibrium transport and degradation of pesticides [J]. Soil Science Society America Journal, 1990, 54: 957-963.
    Gao J P, Maguhn J, Spitzauer P, Kettrup A. Sorption of pesticides in the sediment of the Teufelsweiher Pond (Southern Germany).П: competitive adsorption, desorption of aged residues and effect of dissolved organic carbon [J]. Water Research, 1998, 32(7): 2089-2094.
    Gao Y Z, Xiong W, Liang W T, Xu J M. Sorption of phenanthrene by soils contaminated with heavy metals [J]. Chemosphere, 2006, 65: 1355-1361.
    Gascón J, Oubi?a A, BarcelóD. Detection of endocrine-disrupting pesticide by enzyme-linked immunosorbent assays (ELISA): application to atrazine [J]. Trends in Analytical Chemistry, 1997, 16(10): 554-562.
    Giraud D, Ventura A, Camel V, Bermond A, Arpino P. Determination of traces of pesticides in water by solid-phase extraction and liquid chromatography -ionspray mass spectrometry [J]. Journal of Chromatography A, 1997, 777: 115-125.
    Gong A, Ye C. Analysis of trace atrazine and simazine in environmental samples by liquid chromatography-fluorescence detection with pre-column derivatization reaction [J]. Journal of Chromatography A, 1998, 827: 57-63.
    Graymore M, Stagnitti F, Allinson G. Inpacts of atrazine in aquatic ecosystems [J]. Environment International, 2001, 26(7-8): 483-495.
    Guo L, Jury W A, Wangenent R J, Flury M. Dependence of pesticide degradation on sorption: nonequilibrium model and application to soil reactors [J]. Journal of Contaminant Hydrology, 2000, 43: 45-62.
    Guo S, Wang X, Li Y, Chen J, Yang J. Investigation on Fe, Mn, Zn, Cu, Pb and Cd fractions in the natural surface coating samples and surficial sediments in the Songhua River, China [J]. Journal of Environmental Science, 2006, 18(6): 1193-1198.
    Gupta V K, Jain C K, Ali I, Chandra S, Agarwal S. Removal of lindane and malathion from wastewater using bagasse fly ash—a sugar industry waste[J]. Water Rsearch, 2002, 36: 2483-2490.
    Hall L W, Jr, Ziegenfuss M C, Anderson R D. The influence of salinity and sediment on the loss of atrazine from the water column [J]. Chemosphere, 1995, 31(3): 2919-2944.
    Headley J V, Gandrass J, Kuballa J, Peru K M, Gong Y. Rates of sorption and partitioning of contaminants in river biofilm [J]. Environmental Science and Technology, 1998, 32: 3968-3973.
    Hernández-Soriano M C, Mingorance M D, Pe?a A. Interaction of pesticides with a surfactant-modified soil interface: Effect of soil properties [J]. Colloids and Surfaces A: Physicochemical and engineering aspects, 2007, 306: 49-55.
    Hipólito-Moreno A, León-González M E, Pérez-Arribas L V, Polo-Díez L M. Non-aqueous flow-injection determination of atrazine by inhibition of immobilized tyrosinase [J]. Analytica Chimica Acta, 1998, 362: 187-192.
    Hopenhayn R C,Stump M L, Browning S R Regional assessment of atrazine exposure and incidence of breast and ovarian cancer in Kentucky [J]. Archives of Environmental Contamination and Toxicology, 2002, 42(1): 127-136.
    H?ltt? P, Sittari-Kauppi M, Hakanen M, Tukiainen V. Attempt to model laboratory-scale diffusion and retardation data [J]. Journal of Contaminant Hydrology, 2001, 47: 139-148.
    Jayachandran K, Stolpe N B, Moorman T B, Shea P J. Application of 14C-most-probable-number technique to enumerate atrazine-degrading microorganisms in soil [J]. Soil Biology and Biochemistry, 1998, 30(4): 523-529.
    Jia Y, Wang R, Fang A G. Atrazine adsorption from aqueous solution using powdered activated carbon-Improved mass transfer by air bubbling agitation [J]. Chemical Engineering Journal, 2006, 116: 53-59.
    Kalmokoff M L, Austin J W, Wan X D, Sanders G, Banerjee S, Farber J M. Adsorption, attachment and biofilm formation among isolates of Listeria monocytogenes using model condition [J]. Journal Applied Microbiology, 2001, 91(4): 725-734.
    Kovaios I D, Paraskeva C A, Koutsoukos P G, Payatakes A C. Adsorption of atrazine on soils: Model study [J]. Journal of Colloid and Interface Science, 2006, 299: 88-94.
    Krutz L J, Senseman S A, McInnes K J, Zuberer D A, Tierney D P. Adsorption and desorption of atrazine, desethylatrazine, deisopropylatrazine, and hydroxyatrazie invegetated filter strip and cultivated soil [J]. Journal of Agricultural and Food Chemistry, 2003, 61: 7379-7384.
    Kyrial B M. The atz B gene of Pseudomonas sp. Strain ADP encodes the second enzyme of a novel atrazine degradation pathway [J]. Applied and Environmental Microbiology, 1997, 916-923.
    Larsen L, Aamand J. Degradation of herbicides in two sandy aquifers under different redox conditions [J]. Chemosphere, 2001, 44: 231-236.
    Lawrence J F, Ménard C, Hennion M, Pichon V, LeGoffic F, Durand N. Evaluation of immunoaffinity chromatography as a replacement for organic solvent clean-up of plant extracts for the determination of triazine herbicides by liquid chromatography [J]. Journal of Chromatography A, 1996, 752: 147-154.
    Li Q, Snoeyink V L, Mari?as B J, Campos C. Elucidating competitive adsorption mechanisms of atrazine and NOM using model compounds [J]. Water Research, 2003, 37: 773-784.
    Li Y, Wang X, Guo S, Dong D. Cu and Zn adsorption onto non-residual and residual components in the natural surface coatings samples (NSCSs) in the Songhua River, China [J]. Environmental Pollution, 2006, 143: 221-227.
    Luoma S N, Bryan G M. A statistical assessment of the form of trace metals in oxidized estuarine sediments employing chemical extractants [J]. Science of the Total Environment, 1981, 17: 165-196.
    Macdonald R W, Barrie L A, Bidleman T F. Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways [J]. The Science of the Total Environment, 2000, 254: 193-234.
    Malachlan J A, Korach K S. Symposium on estrogens in the environment, III [J]. Environmental Health Perspectives, 1995, 103: 3-4.
    Mark R. Degradation and mineralization of atrazine by a soil bacterial isolate [J]. Applied and Environmental Microbiology, 1995, 297-302.
    Martínez-Tabche L, Galar M M, Olvera H E, Chehue R A, López E L, Gómez-Oliván L, Sierra O T. Toxic effect and bioavailability of malathion spiked in natural sediments from the lgnacio Ramirez Dam on the snail stagnicola sp [J]. Ecotoxicology and Environmental Safety, 2002, 52: 232-237.
    McMurray T A, Dunlop P S M, Byrne J A. The photocatalytic degradation of atrazine on nanoparticulate TiO2 films [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 182: 43-51.
    Meakins N C, Bubb J M, Lester J N. The mobility, partitioning and degradation of atrazine and simazine in the salt marsh environment [J]. Marine Pollution Bulletin, 1995, 30(12): 812-819.
    Mecozzi R, Palma L D, Merli C. Experimental in situ chemical peroxidation of atrazine in contaminated soil [J]. Chemosphere, 2006, 62: 1481-1489.
    Menda? G, Tkal?evi? B, Drevenkar V. Determination of chloro-and methylthiotriazine compounds in human urine: extraction with diethyl ether and C18 solid-phase extraction for gas chromatographic analysis with nitrogen-selective and electron capture detection [J]. Analytica Chimica Acta, 2000, 424: 7-18.
    Meng Z, Robert C W. Effects of hydration on the molecular structure of metal ion-atrazine dimmer complexes: a MOPAC (PM3) study [J]. Journal of Molecular Structure (Theochem), 2000, 531: 89-98.
    Mersie W, Seybold C. Adsorption and desorption of atrazine, deethylatrazine, deisopropylatrazine, and hydroxyatrazine on Levy wetland soil [J]. Journal of Agriculture and Food Chemistry, 1996, 44: 1925-1929.
    Mersie W, Seybold C, Tierney D, Mcnamee C. Effect of temperature, disturbance and incubation time on release and degradation of atrazine in water columns over two types of sediments [J]. Chemosphere, 1998, 36(8): 1867-1881.
    Mills M S. Preferential dealkylation reactions of s-triazine herbicides in the unsaturated zone [J]. Environmental Science and Technology, 1994, 28: 600-605.
    Minero C, Pramauro E, Pelizzetti E, Dolci M, Marchesini A. Photosensitised transformation of atrazine under simulated sunlight in aqueous humic acid solution [J]. Chemosphere, 1992, 24(11): 1597-1606.
    Moore M T, Rodgers J J H, Cooper C M, Smith J S. Constructed wetlands for mitigation of atrazine-associated agricultural runoff [J]. Environmental Pollution, 2000, 110: 393-399.
    Moore M T, Bennett E R, Cooper C M, Smith J S, Shields J F D, Milam C D, Farris J L. Transport and fate of atrazine and lambda-cyhalothrin in an agricultural drainage ditch in the Mississippi Delta, USA [J]. Agriculture, Ecosystems and Environment, 2001, 87: 309-314.
    Murray J W. Mechanisms controlling the distribution of trace elements in oceans and lake [J]. Advances in Chemistry Series, 1987, 216: 153 -184.
    Nations B K, Hallberg G R. Pesticides in Iowa precipitation [J]. Journal of Environmental Quality, 1992, 21: 486-492.
    Nelson Y M, Lion L W, Shuler M L, Ghiorse M L. Modeling oligotrophic biofilm formation and lead adsorption to biofilm components [J]. Environmental Science and Technology, 1996, 30(6): 2027-2035.
    Paitt J J, Brusseau M L. Rate-limited sorption of hydrophobic organic compounds by soil with well-charactrized organic matter [J]. Environmental Science and Technology, 1998, 32: 1604-1608.
    Pelekani C, Snoeyink V L. Competitive adsorption between atrazine and methylene blue on activated carbon: the importance of pore size distribution [J]. Carbon, 2000, 38: 1423-1436.
    Pelekani C, Snoeyink V L. A kinetic and equilibrium study of competitive adsorption between atrazine and Congo red dye on activated carbon: the importance of pore size distribution [J]. Carbon, 2001, 39: 25-37.
    Pensabene J W, Fiddler W, Donoghue D J. Supercritical fluid extraction of atrazine and other trazine herbicides from fortified and incurred eggs [J]. Journal of Agricultural and Food Chemistry, 2000, 48(5): 1668-1672.
    Pérez M H, Pe?uela G, Maldonado M I, Malato O, Fernández-Ibá?ez P, Oller I, Gernjak W, Malato S. Degradation of pesticides in water using solar advanced oxidation processes [J]. Applied Catalysis B: Environmental, 2006, 64: 272-281.
    Perret D, Gaillard J, Dominik J, Atteia O. The diversity of natural hydrous iron oxides [J]. Environmental Science and Technology, 2000, 34(17): 3540-3546.
    Phyu Y L, Warne M S J, Lim R P. The toxicity and bioavailability of atrazine and molinate to Chironomus tepperi larvae in laboratory and river water in the presence and absence of sediment [J]. Chemosphere, 2005, 58: 1231-1239.
    Phyu Y L, Warne M S J, Lim R P. Toxicity and bioavailability of atrazine and molinate to the freshwater fish (Melanotenia fluviatilis) under laboratory and sumulated field conditions [J]. Science of the Total Environment, 2006, 356: 86-99.
    Phyu Y L, Warne M S J, Lim R P. Toxicity and bioavailability of atrazine and molinate to the freshwater shrimp (Paratya australiensis) under laboratory and simulated field conditions [J]. Ecotoxicology and Environmental Safety, 2005, 60: 113-122.
    Prasad T A V, Srinivas T, Reddy S J, Reddy D C. Arazine toxicity on transport properties of hemocyanin in the crab oziotelphusa senex [J]. Ecotoxicology and environmental safety, 1995, 30: 124-126.
    Protzman R S, Lee P, Ong S K, Moorman T B. Treatment of formulated atrazine rinsate by agrobacterium radiobacter strain J14a in a sequencing batch biofilm reactor [J]. Water Research, 1999, 33(6): 1399-1404.
    Pulgarin C O, Schwizguebel J P, Peringer P A. Abiotic oxidative degradation of atrazine on zero-valent iron activated by visible light [J]. Journal of Advanced Oxidation Technologies, 1996, 1(1): 94-101.
    Pussemier L, Goux S, Vanderheyden V, Debongnie P, Trésinie I, Foucart G. Rapid dissipation of atrazine in soil taken from various maize fields [J]. Weed Research, 1997, 37(3): 171-179.
    Rao T P G., Venugopalan V P, Nair K V K. Biofilm formation in a freshwater environment under photic and aphotic conditions [J]. Biofouling, 1997, 11(4): 265-282.
    Raphi T M. Mineralization of the s-triazine ring of atrazine by stable bacterial mixed cultures [J]. Applied and Environmental Microbiology, 1993, 59: 1695-1701.
    Raymond S H. Microbial co-metabolism and the degradation of organic compounds in nature [J]. Bacteriological Reviews, 1972, 36: 146-155.
    Reiter L W, Derosa C, Kavlock R J, Lucier G, Mac M J, Melillo J, Melnick R L, Sniks T, Walton B T. The U.S. federal framework for research on endocrine disruptors and an analysis of research programs supported during fiscal year 1996 [J]. Environmental Health Perspectives, 1998, 106(3): 105-113.
    Ribeiro A B, Rodriguez-Maroto J M, Mateus E P, Gomes H. Removal of organic contaminants from soils by an electrokinetic process: the case of atrazine. Experimental and modeling [J]. Chemosphere, 2005, 59(9): 1229-1239.
    Runes H B, Jenkins J J, Moore J A, Bottomley P J, Wilson B D. Treatment of atrazine in nursery irrigation runoff by a constructed wetland [J]. Water Research, 2003, 37: 539-550.
    Sabik H, Cooper S, Lafrance P, Fournier J. Determination of atrazine, its degradation products and metolachlor in runoff water and sediments using solid-phase extraction [J]. Talana, 42(5): 717-724.
    Sadowsky M J, Tong Z, De Souza M, Wackett L. AtzC is a new member of the amidohydrolase protein superfamily and is homologous to other atrazine- metabolizing enzymes [J]. Journal of Bacteriology, 1998, 180(1): l52-158.
    Saison C, Perrin G C, Amellal S, Morel J L, Schiavon M. Effect of metals on the adsorption and extractability of 14C-phenanthrene in soils [J]. Chemosphere, 2004,55:477-485.
    Sanchez-Martin M J, Rodriguez-Cruz M S, Andrades M S, Sanchez-Camazano M. Efficiency of different clay minerals modified with a cationic surfactant in the adsorption of pesticides: influence of clay type and pesticide hydrophobic [J]. Applied Clay Science, 2006, 31: 216-228.
    Sauret N, Millet M, Herckes P, Mirabel P, Wortham H. Analytical method using gas chromatography and ion trap tandem mass spectrometry for the determination of S-triazines and their metabolites in the atmosphere [J]. Environmental Pollution, 2000, 110: 243-252.
    Schorer M, Eisele M. Accumulation of Inorganic and Organic Pollutants by Biofilm in the Aquatic Environment [J]. Water Air and Soil Pollution, 1997, 99: 651-659.
    Schottler S P. Atrazine, alchlor, and cyanazine in a large agricultural river system [J]. Environmental Science and Technology, 1994, 28: 1079-1089.
    Scott J A, Karanjkar A M, Rowe D L. Bilfilm covered granular activated carbon for decontamination of streams containing heavy metals and orgnic chemicals [J]. Minerals Engineering, 1995, 8(1/2): 221-230.
    Shapir N, Raphi T M, Pinchas F. Atrazine mineralization by indigenous and introducd Pseudomonas sp. strain ADP in sand irrigated with municipal wastewater and amended with composted sludge [J]. Soil Biology and Biochemistry, 2000, 32: 887-897.
    Shea D. Developing national sediment quality criteria [J]. Environmental Science and Technology, 1988, 11: 1256-1261.
    Smalling K L, Aelion C M. Biological and chemical transformation of atrazine in coastal aquatic sediments [J]. Chemosphere, 2006, 62: 188-196.
    Solomon K R, Baker D B, Richards P. Ecological risk assessment of atrazine in North American surface water [J]. Environmental Toxicology and Chemistry, 1996, 15(1): 71-76.
    Stevens T O, Crawford R L, Crawford D L. Biodegradation of atrazine in several Idaho soils with various atrazine exposure histories [J]. Applied and Environmental Microbiology, 1990, 56(1): 133-139.
    Tao Q, Tang H. Effect of dye compounds on the adsorption of atrazine by natural sediment [J]. Chemosphere, 2004, 56: 31-38.
    Vargha M, Takáts Z, Márialigeti K. Degradation of atrazine in a laboratory scale model system with Danube river sediment [J]. Water Research, 2005, 39: 1560-1568.
    Wallschlaeger D, Desai M V M, Spengler M, Windmoeller C C, Wilken R D . How humic substances dominate mercury geochemistry in contaminated floodplain soils and sediments [J]. Journal of Environmental Quality, 1998, 27(5): 1044-1054.
    Wang M, Zhou Q. Single joint toxicity of chlorimuron-ethyl, cadmium, and copper acting on wheat Triticum aestivum [J]. Ecotoxicology and Environmental Safety, 2005, 60: 169-175.
    Weltje L. Mixture toxicity and tissue interactions of Cd, Cu, Pb and Zn in earthworms (Oligochaeta) in labobratory and field soils: a critical evaluation of data [J]. Chemosphere, 1998, 36(12): 2643-2660.
    White D C. On-line methods bring new insights into mic and microbial biofouling [J]. Biofouling, 1996, 10(1-3): 3-16.
    Xing B, Pignatello J, Gigliotti B. Competitive sorption between atrazine and other organic compounds in soils and model sorbents [J]. Environmental Science and Technology, 1996, 30: 2432-2440.
    Zhang J, Lion L W, Nelson Y M, Shuler M L, Ghiorse W C. Kinetics of Mn (Ⅱ) oxidation by Leptothrix discophora SS1 [J]. Geochimica et Cosmochimica Acta, 2002, 65(5): 773-781.
    安凤春,莫汉宏,郑明辉,张兵。DDT及其主要降解产物污染土壤的植物修复[J]。环境化学,2003,22(1):19-25。
    蔡宝立,黄今勇,石建党,张心平,刘海。阿特拉津降解菌株的分离和鉴定[J]。微生物学通报,2001,28(2):22-26。
    蔡恩义,米长江,郑振华。阿特拉津与农业环境[J]。农业环境与发展,1994,(4):22-26。
    陈宝梁。土壤复合污染中持久性有机物的微界面行为及机理。http://www.zjnsf. net/sjjk /,2006,3。
    董德明,康春莉,李忠华,毕晓辉,郭平。天然水中细菌胞外聚合物对重金属的吸附规律[J]。吉林大学学报(理学版),2003a,41(1):94-96。
    董德明,杨帆,李鱼,陈辉,花修艺,张菁菁。自然水体生物膜上铁、锰氧化物生长速率的研究[J]。重庆环境科学,2003b,25(4):10-13。
    董德明,李鱼,花修艺,张菁菁。自然水体中生物膜不同化学组分与铅、镉最大吸附量的关系[J]。高等学校化学学报,2001,22(8):1379-1381。
    董德明,张菁菁,李鱼,花修艺,杨帆,刘淼,张君枝。自然水体生物膜吸附Mn2+过程中吸附液pH值的变化[J]。吉林大学学报(理学版),2003c,41(2):234-237。
    董德明,李鱼,花修艺,张菁菁,杨帆。pH对湿地水环境中生物膜吸附铅和镉的影响[J]。吉林大学学报(理学版),2002a,40(3):303-307。
    董德明,纪亮,花修艺,李鱼,郑娜。自然水体生物膜吸附Co、Ni、Cu的特征研究[J]。高等学校化学学报,2004a,25(2):247-251。
    董德明,李鱼,花修艺,张菁菁,杨帆。湿地水环境中采集的生物膜吸附铅和镉的特性[J]。环境科学,2003d,24(1):131-134。
    董德明,李鱼,花修艺,张菁菁,邱立民。铁、锰氧化物在自然水体生物膜上的分布[J]。应用化学,2002b,19(9):902-904。
    董德明,李鱼,花修艺,张菁菁,康春莉,姚军。淡水中生物膜主要化学组分选择性萃取分离的比较[J]。吉林大学学报(理学版),2002c,40(2):209-211。
    董德明,李鱼,花修艺,张菁菁。自然水体中生物膜的主要化学组分与水体中相关化学物质的关系[J]。高等学校化学学报,2002d,23(8):1507-1509。
    董德明,李海龙,李鱼,房春生,李晓红,许崇颜。伊通河(长春市区段)沉积物重金属元素化学形态分布特征[J]。水土保持研究,2004b,11(1):95-96,136。
    董德明,花修艺,李鱼,康春莉。不同水体生物膜中各化学组分对铅的吸附作用研究[J]。高等学校化学学报,2002,23(2):294-296。
    董德明,李鱼,杨帆,花修艺,张菁菁,纪亮。采集的生物膜对铅、镉吸附过程中的相互干扰[J]。环境科学动态,2003e,(3):67。
    董德明,杨帆,李鱼,陈辉,花修艺。水温对自然水体生物膜上铁、锰氧化物形成过程的影响[J]。科学技术与工程,2003f,3(2):182-184。
    董利平。环境内分泌干扰物对男(雄)性生殖系统的影响[J]。职业与健康,2003,19(12):11-13。
    范润珍,卢向阳,钱传范。土壤中莠去津对几种蔬菜作物的安全浓度的测定[J]。农药,1999,38(12):33-34。
    范小振,吕柏,弓爱君。阿特拉津在土表的紫外光降解行为研究[J]。土壤,2005,37(2):197-201。
    范小振,张翠华,弓爱君。阿特拉津在土表的光解行为动力学研究[J]。土壤学报,2005,36(3):456-459。
    弓爱君,叶常明。除草剂阿特拉津的环境行为综述[J]。环境科学进展,1997,5(2):37-47。
    何勇田,熊先哲。复合污染研究进展[J]。环境科学,1994,15(6):79-83。
    胡宏韬,林学钰,廖资生,陆雍森。除草剂阿特拉津污染地下水的生物治理研究[J]。农业环境科学学报,2003,22(2):224-227。
    胡宏韬,柳云龙。不同实验条件下阿特拉津的生物降解研究[J]。环境科学与技术,2004,27(1):32-33。
    胡宏韬,林学钰,张兰英,陆雍森。农药阿特拉津生物降解的静态实验研究[J]。农业环境科学学报,2003,22(5):602-605。
    胡宏韬,刘广民,程金平。阿特拉津的微生物降解特征研究[J]。水处理技术,2004,30(4):217-220。
    江桂斌。持久性有毒污染物的环境化学行为与毒理效应[J]。毒理学杂志,2005,19(3):179-180(增刊)。
    康春莉,董德明,李忠华,李鱼,花修艺,郭平。EDTA萃取法分离自然水体中生物膜胞外聚合物[J]。东北师大学报自然科学版,2003,35(2):120-122。
    李博文,杨志新,谢建治。土壤Cd Zn Pb复合污染对植物吸收重金属的影响[J]。农业环境科学学报,2004,23(5):908-911。
    李改枝,郭博书,李景峰。黄河水体表层沉积物与重金属交换吸附作用的研究[J]。水处理技术,2001,27(5):264-266。
    李清波,黄国宏,王颜红,刘孝义。阿特拉津生态风险及其检测和修复技术研究进展[J]。应用生态学报,2002,13(5):625-628。
    李清波,黄国宏,王颜红,王朋,张旭东,骆永明。土壤和玉米籽粒中阿特拉津残留量的测定方法[J]。分析化学,2003,31(3):383。
    李鱼,郑娜,董德明,杨帆,花修艺,金钦汉。镉在自然水体生物膜生长过程中的积累[J]。应用化学,2004a,21(1):28-31。
    李鱼,刘亮,董德明,姜百川,刘金凤,王丽莉。自然水体生物膜上有机质的表征[J]。吉林大学学报(理学版),2004b,42(2):302-305。
    李鱼,董德明,花修艺,张菁菁,杨帆,邱立民。湿地水环境中生物膜吸附铅、镉能力的研究[J]。地理科学,2002,22(4):445-448。
    李鱼,刘亮,董德明,花修艺,杨帆,徐珑。城市河流淤泥中重金属释放规律的研究[J]。水土保持学报,2003a,17(1):125-127。
    李鱼,董德明,杨帆,郑娜,金钦汉。自然水体生物膜中铁、锰氧化物的形态分析[J]。吉林大学学报(理学版),2003b,41(3):374-377。
    李鱼,王晓丽,董德明,王月,李青山。湿地土壤草根层对铅、镉吸附与解吸的动力学研究[J]。湿地科学,2004c,2(1):10-14。
    李鱼,刘亮,董德明,杨帆,花修艺,张菁菁。有机氯类农药对自然水体生物膜吸附Pb,Cd能力的影响[J]。自然科学进展,2003c,13(8):866-869。
    李鱼,王晓丽,陈昕,董德明,刘亮,李青山,李兴春。湿地水环境中表层沉积物吸附铅、镉能力的研究[J]。吉林大学学报(地球科学版),2005,35(2):231-235。
    李鱼,王晓丽,张正,郭书海。表层沉积物(生物膜)非残渣态组分的选择性萃取分离及其吸附铜/锌的特性[J]。高等学校化学学报,2006,27(12):2285-2290。
    李鱼,王岙,高茜,王晓丽,翦英红,徐自力。阿特拉津、镉在表层沉积物(生物膜)上的干扰吸附特性[J]。化学与化工,2008,2(1):68-71。
    黎源倩,牟文萱,孙成均,谢碧俊,张立实。食品中莠去津残留量的测定[M]。食品卫生检验方法理化部分,GB/T5009.132-2003。
    李在田。气相色谱测定土壤中微量阿特拉津[J]。中国环境监测,2005,21(2):20-21。
    梁继东,周启星。甲胺磷、乙草胺和铜单一与复合污染对黑土环境安全的胁迫研究[J]。环境科学学报,2004,24(3):474-481。
    廖显威,邓嘉莉,李来才,苏宇,范志金。单嘧磺隆除草剂水解机理的理论研究[J]。化学学报,2006,64(9):868-872。
    凌波,王轶文。环境内分泌干扰物的健康影响[J]。中国公共卫生,2002,18(2):237-239。
    刘爱菊,朱鲁生,王军,孙瑞莲,林爱军。除草剂阿特拉津的环境毒理研究进展。土壤与环境,2002,11(4):405-408。
    刘广深,徐冬梅,李克斌,刘维屏。酸雨、铜和莠去津对土壤水解酶活性的影响[J]。应用生态学报,2004,15(1):127-130。
    刘国诠,余兆楼。色谱柱技术[M]。化学工业出版社,北京,2001:19-23。
    毛应明,蒋新,王正萍,王芳,邓建才。阿特拉津在土壤中的环境行为研究进展[J]。环境污染治理技术与设备,2004,5(12):11-15。
    孟昭福,薛澄泽,张增强,唐新保。土壤中重金属复合污染的表征[J]。农业环境保护,1999,18(2):87-91。
    慕卫,刘峰,王金信,朱鲁生。反相高效液相色谱法同时测定土壤中莠去津、氰草津残留量方法研究[J]。分析化学,1998,26(5):571-573。
    农药商品大全编委会。农药商品大全[M]。北京:中国商业出版社,1998,640。
    潘学冬,虞云龙,花日茂。均三氮类除草剂微生物降解与转化[J]。安徽农业大学学报,2001,28(3):246-250。
    彭胜,陈家军,王红旗。挥发性有机污染物在土壤中的运移机制与模型[J]。土壤学报,2001,38(3):315-323。
    齐文启,孙宗光。痕量有机污染物的监测[M]。化学工业出版社,2001:1。
    乔雄梧,马利平。阿特拉津在土壤中的降解途径及其对持留性的影响[J]。农村生态环境,1995,11(4):5-8。
    任晋,蒋可,周怀东。官厅水库水中阿特拉津残留的分析及污染来源[J]。环境科学,2002,23(1):126-128。
    任晋,蒋可,徐晓白。土壤中莠去津及其降解产物的提取及高效液相色谱-质谱分析[J]。色谱,2004,22(2):147-150。
    沈学优,卢瑛莹,吴双双,孙俊杰,朱利中。有机膨润土在Pb2+和p-硝基酚复合污染中的吸附及机理[J]。环境科学,2004,25(5):168-170。
    石登荣,张录达,任丽萍,于金莲,田芹。马拉硫磷在环境水体中降解条件的优化研究[J]。农业环境科学学报,2006,25(4):988-991。
    宋菲,郭玉文,刘孝义,陈维新,张玉龙,李军。土壤中重金属镉锌铅复合污染的研究[J]。环境科学学报,1996,16(4):431-436。
    苏少泉。除草剂在植物体内的代谢与选择性及使用[J]。现代农药,2003,2(6):14-17。
    束良佐,朱育晓。Al3+和阳离子型表面活性剂复合污染对玉米幼苗的影响[J]。农村生态环境,2001,17(2):52,55。
    陶庆会,汤鸿霄。共存污染物对阿特拉津在天然沉积物上吸附的影响[J]。环境科学学报,2004a,24(4):696-701。
    陶庆会,汤鸿霄。阿特拉津在天然水体沉积物中的吸附[J]。环境化学,2004b,23(2):145-151。
    陶庆会,汤鸿霄。两种染料与阿特拉津在沉积物上的竞争吸附[J]。中国环境科学,2004c,24(2):129-133。
    汪小勇,张超兰,姜文。被农药污染的土壤植物修复研究进展[J]。农业资源与环境科学,2005,21(7):382-384。
    王东冬,田芹,赵继红。环境水体中痕量阿特拉津的检测[J]。北方工业大学学报,2004,16(3):32-34。
    王金花,朱鲁生,王军,孙瑞莲,赵秉强。除草剂阿特拉津对土壤脲酶活性的影响[J]。应用生态学报,2003,14(12):2281-2284。
    王敏欣,朱书全。水环境中农药的水解研究分析[J]。黑龙江科技学院学报,2004,14(2):74-77。
    王宁,金泰廣。环境内分泌干扰物健康效应生物学机制研究进展[J]。职业卫生与应急救援,2004,22(4):194-196。
    王文军,王文华,张学林,徐盈。水环境中生物膜对污染物环境化学行为的影响[J]。环境科学进展,1999,7(6):58-64。
    王新,吴燕玉。改性措施对复合污染土壤重金属行为影响的研究[J]。应用生态学报,1995,6(4):440-444。
    吴燕玉,王新,梁仁禄,陈怀满,谢玉英。Cd、Pb、Cu、Zn、As复合污染在农田生态系统的迁移动态研究[J]。环境科学学报,1998,18(4):407-414。
    郑振华,周培疆,吴振斌。复合污染研究的新进展[J]。应用生态学报,2001,12(3):469-473。
    谢碧俊,方亚群,向仕学。气相色谱法测定玉米和甘蔗中阿特拉津残留量[J]。预防医学情报杂志,2004,20(1):84-85。
    谢文明,刘兴泉,范志先,陈明。莠去津在土壤中的残留动态和淋溶动态[J]。农药学学报,2003,5(1):82-87。
    熊雅琴,杨仁斌,郑丽英,刘毅华,李欢。pH和温度对除草剂双草醚钠盐水解的影响[J]。农业环境科学学报,2006,25(2):494-496。
    徐勇,杨鲁静。环境内分泌干扰物对儿童生长发育与健康的影响[J]。中华儿科杂志,2003,41(7):508-510。
    严登华,何岩,王浩。东辽河流域地表水体中Atrazine的环境特征[J]。环境科学,2005,26(3):203-208。
    杨仁斌,彭娟莹,袁芳。农药在环境中的水解途径[J]。农业环境科学学报,2006,25(增刊):389-391。
    杨炜春,王琪全,刘维屏。除草剂莠去津(atrazine)在土壤—水环境中的吸附及其机理[J]。环境科学,2000,21(4):94-97。
    叶常明,雷志芳,王杏君,弓爱君,郑和辉。除草剂阿特拉津的多介质环境行为[J]。环境科学,2001,22(2):69-73。
    叶常明,王杏君,弓爱君,雷志芳。阿特拉津在土壤中的生物降解研究[J]。环境化学,2000,19(4):300-305。
    余海燕。河湖沉积物对重金属吸附—解吸的研究概况[J]。化学工程师,2005,(7):30-33。
    张超兰,徐建民,姚斌。添加有机物对莠去津污染土壤微生物生物量的动态影响[J]。农药学学报,2003,5(2):79-84。
    张丹蓉,管仪庆。批实验中土壤队阿特拉津吸附的差异性研究[J]。河海大学学报(自然科学版),2004,32(5):492-495。
    张兰英,林学钰,李慧芳,陆捷。微生物对地下水及土壤中阿特拉津降解的研究[J]。城市环境与城市生态,2002,15(1):59-61。
    张乔。14C-阿特拉津和14C-五氯草酸钠在土壤-植物系统中的归宿[J]。农业环境保护,1986,5(5):14-16。
    张信连,杨维东,刘洁生。环境内分泌干扰物对生物和人体健康的影响[J]。国外医学临床生物化学与检验学分册,2005,26(6):349-351。
    郑和辉,叶常明。乙草胺和丁草胺的水解及其动力学[J]。环境化学,2001,20(2):168-171。
    郑娜,邱立民,董德明,李鱼,王玮瑜,张荣。自然水体生物膜上铁氧化物含量对生物膜吸附镉特性的影响[J]。吉林大学学报(理学版),2004,42(2):306-310。
    郑振华,周培疆,吴振斌。复合污染研究的新进展[J]。应用生态学报,2001,12(3):469-473。
    周东美,王玉军,仓龙,郝秀珍,陈怀满。土壤及土壤—植物系统中复合污染的研究进展[J]。环境污染治理技术与设备,2004,5(10):1-8。
    周东美,王慎强,陈怀满。土壤中有机污染物—重金属复合污染的交互作用[J]。土壤与环境,2000,9(2):143-145。
    朱广伟,陈英旭。沉积物中有机质的环境行为研究进展[J]。湖泊科学,2001,13(3):272-277。
    朱利中,徐霞,胡松,邹忠利,鲍卫民,陈宝梁。西湖底泥对水中苯胺、苯酚的吸附性能及机理[J]。环境科学,2000,21(2):28-31。
    朱利中,杨坤,董舒。阳—非离子混合表面活性剂对沉积物吸附硝基苯的影响[J]。环境科学,2004,25(3):164-167。
    朱珠,刘嘉茵。环境内分泌干扰物对女性生殖健康影响的研究进展[J]。国外医学妇产科学分册,2004,31(3):179-182。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700