用户名: 密码: 验证码:
微小型加速度计的精密装配及影响性能的因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
加速度计是惯性导航和制导系统中的核心元件之一,其性能是决定导航、制导精度最重要的因素。由于高性能微小型加速度计的装配一直采用人工装配的方式,导致产品特级率低、生产效率低、工人劳动强度大,无法满足高性能微小型加速度计的批量化生产要求。本文以微小型挠性加速度计为研究对象,对微小型加速度计的精密装配技术及装配过程中的不确定因素对性能的影响规律进行了研究。
     根据挠性加速度计的结构特点和工作原理,建立了加速度计的输入输出理论模型,结合对加速度计装配过程的分析,确定了加速度计的偏值误差主要由三种干扰输入引起,即干扰力矩△M,弹性恢复角β和电容差△C。分析了三种干扰输入对偏值误差的影响机理,确定引起偏值误差的主要装配不确定因素是导电游丝引起的干扰力矩△M,以及热膨胀系数不匹配导致摆片产生变形形成的电容差△C。分析了加速度计非线性误差和交叉耦合误差产生的机理,确定了摆组件的装配误差以及摆组件的重心偏移分别是引起加速度计交叉耦合误差和非线性误差的主要原因。对加速度计的偏值稳定性进行了理论分析,确定了导电游丝引起的干扰力矩△M、摆片不均匀变形引起的电容差△C的稳定性,及预紧力不稳定所引起的电容极板间隙变化是加速度计偏值稳定性的主要影响因素。
     采用有限元方法量化分析了导电游丝在焊接装配过程中的变形所引起的偏值误差及其稳定性,针对游丝的焊接工艺提出改进方法。对热膨胀系数不匹配导致的摆片变形及其引起的偏值误差进行了有限元分析,研究了摆片变形所引起偏值的温度稳定性,针对摆组件的胶粘接工艺提出了改进方法。通过建立几何误差与交叉轴灵敏度间的数学关系,以及对加速度计零组件的加工、装配过程的分析,对加速度计的加工与装配提出了合理的公差要求。
     以Majumdar-Bhushan模型中的假设条件为基础,建立了电容传感器的极板接触刚度模型。分析了预紧力对平行极板电容的影响,并进行了实验研究。针对加速度计的微小型螺纹副联接,提出采用零刚度碟簧提高螺纹副预紧力稳定性的方法,对不同尺寸的单片碟簧和组合碟簧的刚度特性进行了有限元分析,建立了实验装置进行对比实验研究。针对具有零刚度特性螺纹副的装配提出了一种改进的扭矩控制方法,实现了加速度计微小型螺纹副装配中对预紧力的有效控制,建立了微小型螺纹副装配实验装置,并进行了实验研究。
     根据微小型挠性加速度计的结构特点和装配工艺要求,遵循实用、可靠、可重构的原则研制了基于显微机器视觉的精密自动装配系统。提出了局部特征拼接定位方法,实现了跨尺度微小型零件的显微视觉测量;提出了一种基于图像质量分析的光强自动控制方法,实现了光强自动调节;采用位置和阻抗混合控制策略,实现了摆组件装配过程中微小装配力的精确控制。随机抽取多套加速度计零件进行装配实验,验证了装配系统的可靠性和装配精度。
     本文关于微小型加速度计的精密装配及性能影响因素的研究,包括:影响加速度计性能的装配不确定因素及其影响机理,微小型挠性加速度计自动化精密装配系统等研究成果,已在微小型挠性加速度计的装配生产中得到了应用。
As one of the key devices of the inertial navigation and inertial guidance system, accele-rometers have great influence on the performance and navigation accuracy. High performance miniature accelerometers assembled manually, and that results in some problems, such as low quality rate, low efficiency and high labor intensity. Therefore, the manual way is unsuitable for mass-production of high performance miniature devices. In this thesis, the precision as-sembly technology and the uncertain factors in the assembly process were studied on basis of the miniature flexure accelerometer.
     According to the structural characteristics and the operational principle of the miniature flexure accelerometer, the mathematical model of input-output was constructed. Based on the model, and the analysis of assembly process, it was found that the bias error of the accelero-meter was mainly influenced by three kinds of disturbance inputs, including the disturbance torque AM, elastic recovery angleβand capacitor error△C. The influence mechanisms of the disturbance inputs were analyzed, and it was found that the disturbance torque AM caused by the conductive floating threads, the capacitor error△C caused by the distortion of the pendu-lum chip were the main factors influencing the bias error of the accelerometer. The assembly error and the shift of centre-of-gravity of the pendulum part were the main factors that leaded to the cross-coupled errors and nonlinear errors, respectively. The stability of accelerometer bias was analyzed theoretically. It was concluded that there were three factors which influ-enced the stability of the accelerometer bias greatly, including the stability of disturbance torque AM caused by the conductive floating threads, the stability of capacitor error△C caused by the distortion of the pendulum chip, and the change of the gap between the elec-trodes of capacitor, which is induced by the unstable preload.
     Finite-Element-Method was used to analyze the bias error caused by the deformation of the conductive floating threads in the process of welding, and the temperature stability of the bias error. According to the analytical results, the welding processing method was optimized. According to the analysis of the bias error and the distortion of the pendulum chip caused by the mismatched thermal expansion coefficient, the adhesive joining technique was improved. By establishing the mathematical relationship between the geometric error and the cross-coupled sensitivity, and analyzing the machining and assembly process of the accele- rometer and its parts, reasonable tolerance requirements for the machining and assembly were proposed.
     The contact stiffness model between the electrode plates of the capacitance was estab-lished on basis of the assumptions of the Majumdar-Bhushan model. Both of the theoretical analysis and the experiments were carried out to demonstrate the influence of the preload on the capacitance between the parallel-plate electrodes. As to the miniature bolt joints of the accelerometer, disc springs with zero stiffness characteristics were used to improve the stabil-ity of the bolt joints preload. FEM was employed to analyze the stiffness characteristics of the combined disc springs and the single disc springs with different sizes. The experiments were conducted to verify the results of FEM analysis. According to the assembly of the miniature bolt joints with zero stiffness characteristics, an improved torque method for preload control was proposed, which can be used to control the preload in the miniature bolt joints assembly of the accelerometer. Assembly experiments were performed for demonstration with the de-veloped experimental setup.
     An automatic assembly system based on microscopic machine vision was developed to meet the requirements on the structural characteristic and the assembly process of the minia-ture flexure accelerometer. According to trans-scales miniature parts measurement by using microscopic vision, a local feature splicing positioning method was proposed. Based on the analysis of the image quality, a light controlling method was proposed to regulate the light intensity automatically. The mixed control strategy of position and impedance was adopted for precisely control of the micro assembly force in the assembly process of the pendulum component. Finally, assembly experiments on multiple randomly selected sets of parts were conducted to verify the reliability and the precision of the assembly system.
     The research works in this paper are about the precision assembly of miniature accele-rometers and its influencing factors of performance. The research results include uncertain factors in the assembly process and the mechanisms influencing on the performance of acce-lerometers, and the automatic assembly system for the miniature flexure accelerometers. All the research results have been applied in the assembly production of the miniature flexure ac-celerometers.
引文
[1]冀林,李旷振.惯性仪器仪表行业发展现状及趋势分析[J].航天工业管理,2009,(3):40-42.
    [2]赵民智,纪丽敏,万承军.我国惯性仪器仪表的技术特点及发展综述[J].传感器世界,2009,(7):16-19.
    [3]陆元九.惯性器件(上册)[M].北京:宇航出版社,1990:1-3.
    [4]顾英.惯导加速度计技术综述[J].飞航导弹,2001,(6):78-85.
    [5]王晖,滕霖,赵宝林.自动微装配技术在航空机载光机电传感器装调中的应用[J].航空制造技术,2010,(2):82-85.
    [6]刘献强.线性加速度计的现状和发展动向[J].测控技术,1995,14(3):6-10.
    [7]吕志清,候正君.线加速计的现状和发展动向[J].压电与声光,1998,20(5):313-321.
    [8]苏中,李擎.线加速度计的技术与发展综述[J].传感器世界,1995,(3):23-29.
    [9]徐瑞,朱筱虹,赵金贤.惯性导航标准现状及标准体系探讨[J].测绘科学,2013,(1):1-8.
    [10]赵君辙,邢馨婷,杨中柳.线加速度计的现状与发展趋势综述[J].计测技术,2007,27(5):1-4.
    [11]文贵印,何晓平.几种惯性加速度计的介绍[C].四川省电子学会传感技术第九届学术年会论文集.昆山:四川省电子学会,2005:80-82.
    [12]周连贵.挠性摆式加速度计(FHPA)的研究[J].飞航导弹,1986,(S2):41-61.
    [13]何铁春,周世勤.惯性导航加速度计[M].北京:国防工业出版社,1983:334-341.
    [14]韩林山,谭群燕,沈允文,等.间隙及转矩对2K-V型传动装置传动精度的影响[J].机械科学与技术,2007,26(8):1080-1089.
    [15]韩林山,沈允文,董海军,等.2K-V型传动装置制造误差对传动精度的影响[J].机械科学与技术,2007,26(9):1135-1140.
    [16]竹振旭,董海军,韩林山,等.误差组合方式对RV型减速机传动精度的灵敏度分析[J].机械设计,2008,25(10):69-73.
    [17]竹振旭,董海军,韩林山,等.基于灵敏度分析方法的摆线针轮系统传动精度研究[J].机械科学与技术,2008,27(5):644-648.
    [18]朱朝宽,曾晓松.圆柱齿轮的装配误差对齿轮工作性能的影响分析[J].机床与液压,2007,35(4):5-7.
    [19]Shuting L Effects of machining errors, assembly errors and tooth modifications on loading capacity, load-sharing ratio and transmission error of a pair of spur gears [J]. Mechanism and Machine Theory,2007,42(6):698-726.
    [20]Shuting L Finite element analyses for contact strength and bending strength of a pair of spur gears wi th machining errors, assembly errors and tooth modifications [J]. Mechanism and Machine Theory,2007,42(1):88-114.
    [21]陈东祥,肖延萍.存在装配误差时TI蜗杆传动接触分析[J].机床与液压,2007,35(2):51-53.
    [22]王波,雷艳妮,刘翔勇.星载天线展开机构蜗杆传动副对不同装配误差的敏感性研究[J].机械科学与技术,2012,31(8):1306-1310.
    [23]郑清春,潘洪杰,薄同伟,等.行星齿轮减速器系统传动精度的分析与研究[J].机械工程与自动化,2009,(1):94-96.
    [24]陆军华,朱如鹏,靳广虎.行星传动动态均载特性分析[J].机械工程学报,2009,45(5):85-87.
    [25]周建星,刘更,吴立言,等.中心轮浮动式行星传动动态均载性能研究[J].机械科学与技术,2009,28(7):857-861.
    [26]黄田,李亚,李思维,等.一种三自由度并联机构几何误差建模、灵敏度分析及装配工艺设计[J].中国科学,2002,32(5):628-635.
    [27]Flores P., Claro J. A Systematic and General Approach to Kinematic Position Errors Due to Manufacturing and Assemble Tolerances [C]. Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and In-formation in Engineering Conference. Las Vegas:ASME,2007:1-7.
    [28]Flores P. A methodology for quantifying the kinematic position errors due to manufacturing and assembly tolerances [J]. Journal of Mechanical Engineering, 2011,57(6):457-467.
    [29]赖雄鸣,段吉安,朱伟.多因素影响下的连杆机构可靠性分析[J].兵工学报,2012,33(4):497-502.
    [30]Krzysztof A., Adamiec-Wojcik I. Analysis of mechanisms with flexible beam-like links, rotary joints and assembly errors [J]. Arch Appl Mech,2012,82:283-295.
    [31]宋文艳,邢影,冯喜平,等.静叶装配误差对发动机性能影响仿真研究[J].计算机仿真,2008,25(11):69-71.
    [32]张伟昊,邹止平,李维,等.叶型偏差对涡轮性能影响的非定常数值模拟研究[J].航空学报,2010,31(11):2130-2138.
    [33]张伟昊,邹正平,刘火星,等.叶型偏差对整机环境中涡轮性能的影响[J].工程热物理学报.2010.31(11):1830-1834.
    [34]Kim D. G., Kim K. W. Influence of the machining and assembling errors on the performance of the shaft supported by Active Magnetic Bearings[J].The Japan Society of Mechanical Engineers,1998,41(2):313-320.
    [35]崔东辉,徐龙祥.机械加工误差对主动磁悬浮轴承性能的影响[J].机械工程学报,2009,45(6):24-33.
    [36]姚英学,杜建军,刘暾,等.制造误差对气体静压轴承涡流力矩影响分析方法研究[J].航空学报,2003,24(2):124-128.
    [37]叶红卫,鲜浩,张雨东,等.Hartmann-Shack波前传感器平移误差的研究[J].光电工程,2003,20(2):1-4.
    [38]戴阳,李发泉,程学武,等.Hartmann-Shack传感器组装误差分析[J].强激光与离子束,2006,18(9):1469-1474.
    [39]Ausserlechner U. Inaccuracies of giant magneto-resistive angle sensors due to assembly tolerances [J]. IEEE Transactions on Magnetics,2009,45(5):2165-2174.
    [40]贾大功,张以谟,井文才等.自聚焦透镜装配误差对光信号耦合效率的影响[J].光电子·激光,2004,15(6):753-755.
    [41]宋霄,刘娜,井文才,等.微面形貌观测物镜的光学系统误差分析[J].光子学报,2009,38(11):2989-2992.
    [42]李岩,范大鹏.视轴稳定平台的装配误差机理分析与仿真[J].中国惯性技术学报,2007,15(1):35-38.
    [43]李岩,范大鹏.光电稳定机构指向误差建模与敏感度分析[J].国防科技大学学报,2009,30(1):104-109.
    [44]颜明,金志华,田蔚风,等.小型静电陀螺仪静电场附加干扰力矩分析[J].上海交通大学学报,2010,35(12):1093-1097.
    [45]程雷,李景森,李立勇,等.小型静电陀螺仪电极面积及电极装配误差研究[J].中国惯性技术学报,2004,12(3):50-54.
    [46]于伟,杨亚非,凌明祥.结构误差造成的半球谐振陀螺闭环检测误差分析[J].中国惯性技术学报,2003,11(4):40-44.
    [47]荣伟彬,陈涛,陈立国,等.挠性陀螺十字铰链模型的建立与分析[J].光学精密工程,2006,11(5):864-869.
    [48]陈涛,陈立国,孙立宁.一种挠性陀螺接头精密装配方法[J].纳米技术与精密工程,2006,4(3):236-239.
    [48]刘娜.提高陀螺电机安装定位精度的机理研究[J].航天制造技术,2005,(4):14-16.
    [49]Yang G., Gaines J. A., Nelson B. J. Supervisory wafer-level 3D microassembly system for hybrid MEMS fabrication[J]. Journal of Intelligent and Robotic Systems,2003, 37:43-68.
    [50]Menciassi A., Eisinberg A., Izzo I., et al. From macro to micro manipulation models and experiments [J]. IEEE/ASMH Transactions on Mechatronics,2004,9(2):311-320.
    [51]Macbashi T., Nakamura N., Sacho Y., et al. High density assembly technology using stacking method [C]. IEEE 9th VLSI Packaging Workshop of Japan, Kyoto:IEEE,2009: 149-152.
    [52]Jacobs H.O., Tao A. R., Schwartz A., et al. Fabrication of cylindrical display by patterned assembly[J]. Science,2002,296:323-325.
    [53]Lai K. W. C., Chung P. S., Ming L., et al. Automated Micro-Assembly of Optical MEMS Structure by Centrifugal Force. Proceedings of the 5th World Congress on In-telligent Control and Automation, Hong Kong:IEEE,2004:5624-5628.
    [54]Dechev N., Mills J. K., Cleghorn W. L. Microassembly of 3-D Microstructures Using a Compliant, Passive Microgripper [J]. Microelectromechanical systems, 2004,13(2):176-189.
    [55]Dechev N., Mills J. K., Cleghorn W. L. Construction of a 3D Mems Microcoil Using Sequential Robotic Microassembly Operations[C]. Proceedings ASME International Mechanical Engineering Congress and R&D Expo, Washington. D. C:ASEM,2003:1-7.
    [56]Dechev N., Mills J. K., Cleghorn W. L. Mechanical fastener designs for use in the microassembly of 3D microstructures [C]. American Society of Mechanical Engineers, Micro-Electro Mechanical Systems Division. New York:American Society of Me-chanical Engineers,2004:447-456.
    [57]Dechev N., Mills J. K., Cleghorn W. L., et al. Development of a 6 Degree of Freedom Robotic Micromanipulator for Use in 3D MEMS Microassembly[C]. Proceedings 2006 IEEE International Conference on Robotics and Automation. Orlando: IEEE,2006:281-288.
    [58]Ren L., Wang L. D., Mills J. K., et al.3-D Automatic Microassembly by Vision-Based Control [C]. Proceedings of the 2007 IEEE/RSJ Internationa]Conference on Intelligent Robots and Systems, San Diego:IEEE,2007:297-302.
    [59]BashaM. A., Dechev N., NaeiniS., et al. Digital Optical 1XN MEMS Switch Utilizing Microassembled Rotating Mi cromirror [C]. Proc. of IEEE Optical MEMS 2006, Big Sky: IEEE,2006:102-103.
    [60]Chu H. K., Mills J. K., Cleghorn W. L. Automated parallel microassembly for MEMS application[J]. Micromechanics and Microengineering,2012,22(9):1-9.
    [61]Chu H. K., Mills J. K. Cleghorn W. L. Fabrication of a Microcoil Through Parallel Microassembly[C].2012 IEEE International Conference on Robotics and Automation, Saint Paul:IEEE,2012:5050-5055.
    [62]Murthy R., Das A. N., Popa. D.0. Multiscale Robotics Framework for MEMS Assembly [C].9th International Conference on Control, Automation, Robotics and Vi-sion, Singapore:IEEE,2006:1-6.
    [63]Murthy R., Das A. N., Popa D.0. M3:Multiscale, Deterministic and Reconfigurablc Macro-Micro Assembly System for Packaging of MEMS [C].2007 IEEE International Conference on Robotics and Automation, Rome:IEEE,2007:668-673.
    [64]Murthy R., Das A. N., Popa D. M3-Deterministic, Mult iscale, Multirobot Platform for Microsystems Packaging:Design and Quasi-Static Precision Evaluation[C]. IEEE Transactions on Automation Science and Engineering, Bangalore:IEEE,2009: 345-361.
    [65]Popa D.O., Murthy R., Mittal M., et al. M3-Mocular Multi-Scale Assembly System for MEMS Packaging [C]. International Conference on Intelligent Robots and Systems, Beijing:IEEE,2006:3712-3715.
    [66]Das A. N., Zhang P., Lee W. H., et al. μ3-Multiscale, Deterministic Micro-Nano Assembly System for Construction of On-Wafer Microrobots[C].2007 IEEE In-ternational Conference on Robotics and Automation, Rome:IEEE,2007:461-466.
    [67]Das A. N., Popa D.O., Stephanou H. E. Automated Microassembly using Precision based Hybrid Control [C].2010 IEEE International Conference on Robotics and Automation. Anchorage:IEEE,2010:4106-4112.
    [68]Das A N, Popa D O. Precision-based Robot Path Planning for Microassembly[C].6th annual IEEE Conference on Automation Science and Engineering, Toronto:IEEE, 2010:528-532.
    [69]Das A N, Sin J, Popa D O, et al. On the Precision Alignment and Hybrid Assembly Aspects in Manufacturing of a Microspectrometer[C].4th IEEE Conference on Automation Science and Engineering, Washington DC:IEEE,2008:959-966.
    [70]Mayyas M. A., Sin J., Stephanou E. Methodologies for the Assembly of a Fiber-Coupled MEMS Fourier Transform Spectrometer[J]. IEEE Transactions on Components and Packaging Technologies,2010,33(4):658-666.
    [71]Das A., Murthy R. Integrated Heterogeneous Micro-nano Systems Via Modular Designing And Flexible Assembly [C]. Proceedings of the ASME 2011 International Mechanical Engineering Congress & Exposition. Denver:ASME,2011:1-6.
    [72]Das A. N., Murthy R., Popa D.O., et al. A Multiscale Assembly and Packaging System for Manufacturing of Complex Micro-Nano Devices[C]. IEEE Transactions on Automation Science and Engineering. Seoul:IEEE,2012:160-170.
    [73]Buttgenbach S., Hesselbach J., Tutsch R., et al. Sensor guided handling and assembly of active micro-systems[J]. Microsyst Technol,2006,12(7):665-668.
    [74]Rathmann S., Schottler K., Berndt M., et al. Sensor-guided micro assembly of active micro systems by using a hot melt based joining technology[J]. Microsyst Technol, 2008,14(12):1975-1981.
    [75]Schottler K., Burisch A., Raatz A., et al. Scheduling and Verification of Micro Assembly Processes[C]. Proceedings of EUCOMES 08. Cassino:Springer,2009: 531-539.
    [76]Schottler K., Raatz A.,Hesselbach J. Precision Assembly of Active Microsystems With a Size-Adapted Assembly System[C]. IFIP International Federation for Information Processing. Chamonix:Springer,2008:199-206.
    [77]Ellwood R. J., Raatz A., Hesselbach J. Vision and Force Sensing to Decrease Assembly Uncertainty [C]. Chamoni:Springer,2010:123-130.
    [78]Kratochvil B. E., Yesin.KB., Hess V., et al. Design of a visually guided 6 DOF micromanipulator system for 3D assembly of hybrid MEMS.[C]. Proceedings of the 4th International Workshop on Microfactories, Shanghai:INFOSCIENCE,2004.
    [79]Probst M., Borer R., Nelson B. J. Microassembly processes and microassembled devices [C].4M2007 Conference on Multi-Material Micro Manufacture, Borovets: Whittles Publishing,2007.
    [80]Probst M., Borer R., Nelson B. J. A microassembly system for manufacturing hybrid MEMS[C].12th IFTOMM World Congress, Besanc.on:4M,2007.
    [81]Probst M., Hurzeler C., Borer R., et al. A microassembly system for the flexible assembly of hybrid robotic mems devices [J]. International Journal of Opto-mechatronics,2009,3:69-90.
    [82]Probst M., Fluckiger M., Pane S., et al. Manufacturing of a hybrid acoustic transmitter using an advanced microassembly system [J]. IEEE transactions on industrial electronics,2009,56(7):2657-2666.
    [83]Probst M., VollmerK., Kratochvil B. E., et al. Design of an advanced microassembly system for the automated assembly of bio-microrobots[C].6th International Workshop on MicroFactories. Besancon:INFOSCIENCE,2006.
    [84]Kummer M P, Abbott J J, Vollmer K, et al. Measuring the magnetic and hydrodynamic properties of assembled-MEMS microrobots[C].2007 IEEE International Conference on Robotics and Automation. Roma:IEEE,2007:1122-1127.
    [85]Karjalainen I., Sandelin T., Uusitalo J., et al. Robotic assembly and joining of miniature and MEMS components using adhesive films-test environment and ex-periences [J]. Assembly Automation,2004,24(1):58-62.
    [86]Uusitalo J., Viinikainen H., Heikkila R. Mini assembly cell for the assembly of mini-sized planetary gearheads[J]. Assembly Automation,2004,24(1):94-101.
    [87]Clevy C., Hubert A., Joe 1 A., et al. A micromanipulation cell including a tool changer[J]. Journal Of Micromechanics And Microengineering,2005,(15):292-301.
    [88]Clevy C., Hubert A., Chaillet N., et al. A new micro-tools exchange principle for micromanipulation[C]. International Conference on Intelligent Robots and Systems. Sendai:IEEE,2004:230-235.
    L89J Clevy C. , Hubert A., Chai 1 let N. Flexible micro-assembly system equipped with an automated tool changer [J]. Journal Of Micromechanics And Microengineering, 2008, (4) : 59-72.
    [90]Du R. , Tang X. Y. , Zhang D. L. Micro Assembly Technology and System [M]. Micro Assembly Technology and System, Berlin: Springer, 2008: 367-384
    [91]Zhang D. L. , Kong C. T. , Tang X. Y, Yang F. Development of Micro-Assembly Machine Using Linear Motors, Advanced Design and Manufacture to Gain a Competitive Edge [M]. Berlin: Springer, 2008: 749-758.
    [92]Qi Q. F., Du R. A Vision Based Micro-Assembly System for Assembling Components in Mechanical Watch Movements [C]. 2010 International Symposium on Optome-chatronic Technologies, Toronto: IEEE, 2010:1-5.
    [93]Robinson C. II. , Wood R. H. , Hoang T. Q. . Development of inexpensive, ul-tra-miniature MEMS-based safety and arming(S&A) device for small-caliber munition fuzes [C]. 23rd Army Science Conference. USA: Orange County Convention Center, 2002: 111-116.
    [94]Robinson C. II., Hoang T. Q. , Gelak M. R. , et al. Materials, fabrication, and assembly technologies for advanced MEMS-based safety and arming mechanisms for projectile munitions[C]. 25th Army Science Conference. USA: Orange County Convention Center, 2006: 221-226.
    [95]Bogue R. W. Swiss collaboration yields novel, automated micro-optic assembly technique [J]. Assembly Automation, 2005, 25(1): 19-20.
    [96]Wtirsch A., Scussat M., Clavel R. , et al. An innovative micro optical element assembly robot characterized by high accuracy and flexibi1ity [C]. 50th Electronic Components and Technology Conference. Las Vegas, 2000: 218-222.
    [97]Siercks K. Flexible automated assembly of micro-optical elements [C]. The 16th Annual Meeting of the IEEE Uasers and Electro-Optics Society. Baltimore: IEEE, 2003: 451-452.
    [98]Sochtig J. , Mahmud S., Obi S. , et al. Sol-gel replication of optical components suited for surface mount assembly[C]. Proceedings of SPIE, Micro-Optics: Fa-brication, Packaging, and Integration. Bellingham: SPIE, 2004: 41-51.
    [99]Stauffer L. , Wai t i F. , VokingerU., et al. High-precision surface mount assembly of micro-optical components per laser reflow soldering [C]. Proceedings of SPJE, Micro-Optics: Fabrication, Packaging, and Integration. Bellingham: SPIE, 2004: 85-95.
    [100]Tsui K., Geisberger A. , Ell is M. , et al. Calibration systems and techniques for automated microassembly [C]. American Society of Mechanical Engineers, In- ternational Electronic Packaging Technical Conferences and Exhibition. Hawaii: American Society of Mechanical Engineers,2003:1-5.
    [101]Skidmore G., Ellis M., Geisberger A., et al. Assembly technology across multiple length scales from the micro-scale to the nano-scale[C].17th IEEE MEMS. Maastricht:IEEE,2004:588-592.
    [102]Tsui K., Geisberger A., Ellis M., et al. Micromachined end-effector and techniques for directed MEMS assembly[J]. Journal of Micromechanics and Microengineering, 2004,14:542-549.
    [103]Ellis M., Skidmore G., Geisberger A., et al. Microfabricated silicon me-chanical connectors and micro assembly [C]. NanoTech 2002. Houston:American Institute of Aeronautics and Astronautics,2002:1-7.
    [104]Udeshi T., Tsui K. Assembly Sequence Planning for Automated Micro Assembly [C]. Proceeding IEEE International Symposium on Assembly and Task Planning. Montreal, Que:IEEE,2005:98-105.
    [105]Hollis R. L.,0'Halloran D., Fedder G., et al. Vision guided pick and place in a minifactory environment[C].6th International Workshop on MicroFactories. Besancon:INFOSCIENCE,2006.
    [106]Randall J., Hughes G., Geisberger A., et al. Realizing Complex Microsystems:A Deterministic Parallel Assembly Approach[C].2004 NSTI Nanotechnology Con-ference & Trade Show. Boston:NSTI,2004:499-502.
    [107]Skidmore G., Ellis M., Geisberger A.,et al. Parallel assembly of microsystems using Si micro electro mechanical systems[J]. Microelectronic Engineering,2003: 445-452.
    [108]Bogue B. Assembly of 3D micro-components:a review of recent research[J]. Assembly Automation,2011,4(31):309-314.
    [109]Hollis R. L., Gowdy J., Rizzi A. A. Design and development of a tabletop precision assembly system [C]. International Conference on Mechatronics and Robotics. Aachen:IEEE,2004:1619-1623.
    [110]Rizzi A. A., Gowdy J., Hollis R. L. Distributed coordination in modular precision assembly systems[J]. The International Journal of Robotics Research,2001,(20): 819-838.
    [111]Gaugel T, Dobler H. Advanced modular micro-production system[C]. Microrobotics and Microassembly Ⅲ. Boston:SPIE,2001:278-285.
    [112]Gaugel T., Bengel M., Malthan D. Building amini-assembly system from a technology construction kit[J]. Assembly Automation,2004,24(1):43-48.
    [113]Verettas I., Clavel R., Codourey A. "Pocket Factory":Concept of miniaturized modular cleanrooms [C].1st Top Meeting of Desktop MFMS and Nanofactorics Tsukuba:INFOSCIENCE,2005.
    [114]Verettas I., Clavel R., Codourey A. PocketFactory:a modular and miniature assembly chain including a clean environment [C].6th International Workshop on MicroFactories. Besancon:INFOSCIENCE,2006.
    [115]Siltala N., Prusi T., Vuola A., et al. Modular Microfactory System for Gas Sensor Assembly [C].2011 IEEE International Symposium on Assembly and Manufacturing. Tampere:IEEE,2011:1-6.
    [116]吴建华.高效率的微器件自动装配技术研究[D].合肥:中国科学技术大学,2007.
    [117]陈立国.基于显微视觉的微操作机器人系统的研究[D].哈尔滨:哈尔滨工业大学,2003.
    [118]李旭东.微操作机器人显微视觉系统及其关键技术的研究[D].北京:北京航空航天大学,2003.
    [119]徐征.微操作系统中定位控制、人机交互和微量注射问题研究[D].大连:大连理工大学,2003.
    [120]王朝晖.基于计算机视觉反馈微装配系统及其关键技术研究[D].西安:西安交通大学,2002.
    [121]王化明.智能制造中的微操作/微装配系统基础技术研究[D].南京:南京航空航天大学,2004.
    [122]陈立国,凌云峰,陈涛.MEMS压力传感器自动组装系统[J],纳米技术与精密工程,2008,6(4):297-3()1.
    [123]Xie H., Rong W. B., Sun L. N., Chen L. G. A Flexible Microassembly System for Automated Fabrication of MEMS Sensors [C].9th International Conference on Control, Automation, Robotics and Vision. Singapore:IEEE,2006:1-6.
    [124]Chen L. G., Ling Y. F., Chen T. Automatic microassembly system for MEMS pressure sensor packaging [J]. Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering,2008,6(4):297-301.
    [125]Xie H, Rong W. B., Sun I.. N. A Flexible Experimental System for Complex Mi-croassembly under Microscale Force and Vision-Based Control [J]. International Journal of Optomechatronics,2007,1(1):81-102.
    [126]谢晖,孙立宁,荣伟彬,等.一种MEMS自动微装配机器人[J].哈尔滨工业大学学报,2006,38(7):101 3-1()16.
    [127]陈国良,黄心汉,周祖德.微装配机器人系统[J],机械工程学报,2009,45(2):288-293.
    [128]叶鑫,张之敬,王强,等.可重构12自由度微装配技术及其实现[J],北京理工大学学报,2009,29(9):775-779.
    [129]唐永龙,张之敬,张晓峰,等.微装配正交精确对准系统的设计[J],光学精密工程,2012,20(7):1542-1550.
    [130]陆元九.惯性器件(下册[M].北京:宇航出版社.1990:30-36.
    [131]王壬林.加速度计[M].北京:国防工业出版社,1982:71-74.
    [132]Greenwood J. A., Williamson J. B. P. Contactof nominally flat surfaces [J]. Mathematical and Physical Sciences,1966,295:300-319.
    [133]Majumdar A., Bhushan B., Fractal Model of Elastic-Plastic Contact Between Rough Surfaces [J]. Journal of Tribology,1991,113:1-11.
    [134]Hyun S., Pei L., Molinari J. F., et al. Finite element analysis of contact between elastic self-affine surfaces [J]. Physical Review E,2004,70:1-12.
    [135]Pei L., Hyun S,, Molinari J. F., et al. Finite element modeling of elasto-plastic contact between rough surfaces [J]. Journal of the Mechanics and Physics of Solids, 2005,53:2385-2409.
    [136]Kucharski S..Klimczak T.,Polljaniuk A., et al. Finite-elements model for the contact of rough surfaces [J]. Wear,1994,177:1-13.
    [137]Sellgren U., Bjorklund S., Andersson S. A finite element-based model of normal contact between rough surfaces [J]. Wear,2003,254:1180-1188.
    [138]尤晋闽,陈天宁.基于分形接触理论的结合面法向接触参数预估[J].上海交通大学学报,2011,9:1275-1280
    [139]兰国生,张学良,丁红钦,等.基于分形理论的结合面改进接触模型[J].农业机械学报,2011,10:217-229.
    [140]尤晋闽,陈天宁.结合面法向动态参数的分形模型[J].西安交通大学学报,2009,9:91-94.
    [141]田红亮,朱大林,秦红玲.固定接触界面法向静弹性刚度[J].应用力学学报,2011,3:318-322.
    [142]Wang S.,Komvopoulos K., A Fractal Theory of the Jnterfacial Temperature Distribution in the Slow Sliding Regime:Part Ⅱ-Multiple Domains, Elas-toplast-ic Contacts and Applications [J]. Journal of Tribology,1994, 116:824-832.
    [143]葛世荣,索双富.表面轮廓分形维数计算方法的研究[J].摩擦学学报,17(4):354-362.
    [144]Wahl, A. M., Meehaniealsprings,2nd, ed., McGraw-Hill Book Co., NY,1963
    [145]GB/T 1972-2005《碟形弹簧》[S].中国国家标准化管理委员会
    [146]ALMEN J.O., LASZLO A. The uniform-section disc spring[J]. Transactions of A SME,1936, (58):305-314.
    [147]Curti G., Orlando M., Podda G., Vereinfaehtes verfahren zur berechnung von tellerfedern [J], Draht,1980,31(11):789-792.
    [148]Huebner W. Deformations and Stresses in Disk Springs [J]. Konstruktion,1982 34(10):387-392.
    [149]易先忠.碟形弹簧基本特性参数分析[J].石油机械,1995,3(23):10-22.
    [150]易先忠,许大昌,刘明尧,等.碟形弹簧力学特性分析[J].江汉石油学院学报,1995,4(17):83-86.
    [151]易先忠,张传友,严泽生.碟形弹簧的力学特性参数研究[J].长江大学学报,2007,4(4):99-101.
    [152]Wagner, W., Wetzel, M. Berechnung von tellerfedern mit hilfe der methode der finiten elemente[J]. Konstruktion,1987,39(4):147-150.
    [153]武锐,高建和,吴焕.基于有限元的碟簧静刚度研究[J].制造业信息化,2010,(8):57-59.
    [154]苏军,吴建国.碟形弹簧特性曲线非线性有限元计算[J].力学与实践,1997,19(4):40-50.
    [155]龙靖宇,谢剑刚.大变形碟簧的设计与研究[J].湖北工业大学学报,2005,20(3):45-49.
    [156]张英会.弹簧[M].北京:机械工业出版社,1980:78-90.
    [157]Rosa G. L., Messina M., Risitano A.. Stiffness of Variable Thickness Belleville Springs [J]. Journal of Mechanical Design,2001,123:294-299.
    [158]Pedersen N. L., Pedersen P. Stiffness and design for strength of trapezoidal Belleville springs [J]. The Journal of Strain Analysis for Engineering Design, 2011,46:825-836.
    [159]Saini P. K., Kumar P., Tandon P. Design and analysis of radially tapered disc springs with parabolically varying thickness [J]. Mechanical Engineering Science, 2007(221):151-158.
    [160]孙利民,王晓波,施力.组合碟簧的刚度研究[J].郑州大学学报(工学版),2007,28(3):117-124
    [161]Fukuoka T., Takaki T. Evaluations of the tightening process of bolted joint with elastic angle control method [C].2004 ASME/JSME Pressure Vessels and Piping Conference. San Diego:ASME,2004:11-18.
    [162]Jesse R. M. Joint Integrity Monitoring Using Permanent Ultrasonic Bolt Load Transducers [C]. Proceedings of the ASME 2010 Power Conference. Chicago:ASME, 2010:1-9.
    [163]Hesse T., Ghorashi M., Inman D. J. Shape memory alloy in tension and compression and its application as clamping-force actuator in a bolted joint:Part 1 Experimentation [J]. Journal of Intelligent Material Systems and Structures, 2004,15(8):577-587.
    [164]Ghorashi M., Inman D. J. Shape memory alloy in tension and compression and its application as clamping force actuator in a bolted joint:Part 2-Modeling [J]. Journal of Intelligent Material Systems and Structures,2004,15(8):589-600.
    [165]Nassar S. A., Meng A. D. Optical monitoring of bolttightening using 3D electronic speckle pattern intcrferometry [J]. Journal of Pressure Vessel Technokr gy-Transactions of the ASME,2007,129(1):89-95.
    [166]Yang L. X., Ettemeyer A. Strain Measurement by Three-Dimensional Electronic Speckle Pattern Interferometry:Potentials, Limitations and Applications [J]. Optical Engineering,2003,42(5):1257-1266.
    [167]Nassar S. A., Yang X. J. Torque-angle formulation of threaded fastener tightening [J]. Journal of Mechanical Design,2008,130(2):024501-024504,
    [168]Nassar S. A., Matin P. H., Barber G. C. Thread friction torque in bolted joints [J]-Journal of Pressure Vessel Technology-Transactions of the ASME,2005,127(4): 387-393.
    [170]Tao X. D., Farrokh J. S., Hyungsuck C. An active zooming method for simultaneous control of field of view and depth of field in vision-based microassembly [C]. Optomechatronic Systems Control Conference. Lausanne:SPIE,2007: 6719041-6719049.
    [171]廖强,罗建,谢钱涛.基于主动视觉的精密检测系统分析[J].重庆理工大学学报(自然科学版),2010,4(24):79-85.
    [172]赵辉,鲍歌堂,陶卫.图像测量中自动聚焦函数的实验研究与分析[J].光学精密工程,2004,10(12):531-536.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700