用户名: 密码: 验证码:
大豆籽粒不同发育时期基因表达谱的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆是世界上最重要的油料作物和最主要的经济作物之一。大豆中含有丰富的蛋白质、脂肪和多种对人体有益的生理活性物质,既是人类蛋白质、油脂及保健活性物质的重要来源,又是食品、饲料等多种加工工业的优质原料。
     大豆的品质是其加工利用的主要依据,而油脂和蛋白质成分则是衡量大豆品质的两个最重要的指标。大豆籽粒中含有18%-27%的油脂和40%左右的蛋白质,油脂中90%以上的成分是脂肪酸,蛋白质中最主要的成分是多种氨基酸和贮藏蛋白。
     随着基因工程技术和分子生物学技术的飞速发展,改良这两种营养物质的含量和成分一直受到科学家们的关注,但是,油脂和蛋白质合成的生理过程十分复杂,尤其是蛋白质中含有的多种氨基酸,多数氨基酸各有其合成通路,且涉及众多基因和酶的参与,其作用位点及启动功能的时期及如何使细胞内各组分发生变化尚无定论,因此,对大豆种子品质改良的基因工程研究应选用高效、高通量的方法对其进行整体监测,从而挖掘出起调控作用的关键基因。
     创新点:基因的时空表达成为生物学家研究的热点,基因的表达受时间和空间以及内外因子的影响,与基因组的静态相比,基因表达状况往往呈现出复杂的动态过程,基因表达谱的分析正是通过对基因表达在时间和空间上的分析,来探索生物体内复杂的生理过程。Solexa (Illumina)是第二代新型大规模、高通量的测序平台,它要比基因芯片技术具有检测数据范围更大、检测精度更高的优点,本研究应用Solexa数字基因表达谱测序对大豆籽粒发育的4个不同时期的基因表达情况进行了深入研究,将15DAF作为对照,对后续3个时期基因表达水平与之相比较,从mRNA水平对大豆籽粒发育过程中差异表达基因进行了探测,首次全面、精确地检测出了影响脂肪和蛋白质积累的关键基因及其作用位点。
     主要结果如下:
     1.通过Solexa测序,比对出的所有差异表达的基因数分别为29632、29511和29572个。符合条件FDR≤0.001和(?)log2Ratio|≥1的差异表达基因数目分别为11592、16594和16255个,其中共有的差异表达基因为9905个,这些共有的差异表达基因即可认定为在大豆籽粒发育过程中持续表达且起关键作用的基因。
     2.通过Gene Ontology分析,共有11963个基因至少含有一种功能注释,大部分基因功能集中在基因的分子功能本体的binding和catalytic活性上,细胞组件的cel、cell parts和organelles上,并主要参与cellular和metabolic等生物学过程,在三个比较组中其GO功能分类模式类似。
     3.在脂肪酸和油脂合成的功能显著性富集分析中,共有112个三组共有的差异表达基因被筛选出来,在对蛋氨酸和其他多种氨基酸合成相关的功能分析中总共有159个三组共有的差异表达基因被筛选出来。
     4.在本研究中通过Solexa测序一共鉴定出124条pathway,共注释到11228个差异表达基因,筛选出5条与油脂和氨基酸合成相关的pathway。
     5.在三个比较组中的pathway分析中,筛选出25个脂肪酸合成途径中的共有差异表达基因,86个氨基酸合成代谢相关途径的共有差异表达基因。
     6.为验证测序结果的准确性,本研究随机选择55DAF的大豆籽粒作为检测样本,12个候选基因进行荧光定量PCR检测,检测结果基本与测序结果相符,证明Solexa RNA测序结果准确可靠。
     这些结果为大豆籽粒发育提供了一个分子生物学背景,尤其对大豆籽粒发育过程中油脂和蛋白质的合成过程提供全面而详细的信息,所有在本研究中检测到的与油脂和蛋白质合成相关的关键基因可作为今后大豆优质种质改良的重要资源。
Soybean (Glycine max (L.)Merrll.) is one of the most important oil crops and also one of the most important economic crops in the world. Soybean contains rich proteins, lipid and various materials which are beneficial to human. It is the main sources of proteins, greases and raw materials of food and feed.
     The quality of soybean is the basic principle for its processing and utilization, while oil and protein composition of soybean are the two main factors of its quality. There are about18%-27%of lipid and40%protein Soybean seeds contain. More than90%of the lipid composition is fatty acid, and the majority of protein components is a variety of amino acids and storage protein.
     As the rapid development of genetic engineering and molecular biology techniques, the improvement of these two nutrients content and composition has always being the focus of scientists. However, the physiological processes of lipid and protein biosynthesis are very complex, especially the protein contains lots of amino acids. Majority of these amino acids has their own different pathways which many genes and enzymes are involves in. For these genes and enzymes, it is uncertain their action sites and the period of their action and how to make the various components of the cell changes. So, genetic engineering improvement of soybean seeds quality should choose an efficient and high-throughput method for the overall monitoring so as to discovering the key regular genes.
     Innovation:Gene space-time expression has become the hot spot, and the expression of genes is reflected by space-time and some other factors. Compared with the static genome, gene expression always presents a complex dynamic process. Gene expression profiling analysis is just the method that analysis gene space-time expression to detect the complex physiological processes. Solexa (Illumina) is the second geneRation platform as the new large-scale, high throughput sequencing. It has a larger wider range and higher resolution than microarray. So in this study we selected Solexa digital gene expression profiling sequencing to detect the soybean seeds at four different stages.15DAF was taken as control, and compared with the subsequent three stages of the gene expression from mRNA levels. This is the first comprehensive and accurate detection for the key genes that regulated lipid and protein biosynthesis.
     The main results are as follows:
     1. By Solexa sequencing, a total of29632,29511, and29572differentially expressed unigenes were detected. Of them,11592,16594and16255differentially expressed unigenes matched the conditions of the FDR<0.001and|log2Ratio|≥1, respectively.9905differentially co-expressed unigenes were in common, and these unigenes can be identified as the key genes during the soybean seeds development.
     2. By Gene Ontology analysis, a total of11963genes contained at least one functional annotation. The majority of these genes'function were concentrated in the binding and catalytic activity of the molecular function ontology, of cell parts, the cell and organelles of cellular components, and they mainly involved in cellular and metabolic biological processes. The GO function classification models are similar in these three compare groups.
     3. During the GO analysis of fatty acid and lipid synthesis, a total of112differentially co-expressed genes were filtered out in these three groups. While in the analysis of methionine and other amino acids biosynthesis, a total of159differentially co-expressed genes were filtered out in these three groups.
     4. In this study, a total of124pathways were identified by Solexa sequencing, in which11228differentially expressed genes are annotated, and five lipid and amino acid biosynthesis pathways were filter out.
     5.25differencially co-expressed genes were identified in fatty acid synthesis pathway in the three groups, and a total of,86co-expressed genes in amino acid anabolic metabolism pathways.
     6. Seeds of55DAF were randomly chosen as the sample for RNA-extraction and12differentially expressed genes were selected to analyze their expressions using qRT-PCR. The results were consistent well with those obtained from Solexa sequencing.
     These results provided a molecular biology background for soybean seeds development especially provided a comprehensive and detailed information for lipid and protein biosynthesis during development of soybean seeds. All of these genes identified in our research can be the important resources for high-quality soybeans breeding.
引文
[1]尹光.中国野生大豆6个基因SNP筛选:[硕十学位论文].吉林省长春市:东北师范大学,2009
    [2]张忠臣.大豆基因组作图和重要农艺性状的基因定位[硕士学位论文].黑龙江省哈尔滨市:东北农业大学,2004
    [3]滕卫丽.大豆抗花叶病遗传、细胞超微结构分析及基因定位[硕士学位论文].黑龙江省哈尔滨市:东北农业大学,2006
    [4]杨松滔.中国野生大豆及栽培大豆的RAPD分子标记分析[硕士学位论文].吉林省长春市:东北师范大学,2007
    [5]黄初女,金东淳,董艺兰,等.浅谈大豆蛋白质品质改良[J].吉林农业科学,2006,1:37-40
    [6]彭琛琛.大豆脂肪酸代谢酶相关基因的单核苷酸多态性[硕士学位论文].江西省南昌市:南昌大学,2008
    [7]王金陵,杨庆凯,吴宗璞.中国东北大豆[M].哈尔滨:黑龙江科学技术出版社,1999.
    [8]王连铮.国内外大豆生产的现状和大豆品种创新问题[J].中国食物与营养,2006,7:6-9
    [9]鲍磊,乔娟.东北大豆优势产区国际竞争力分析[J].黑龙江科技信息,2007,7:229
    [10]毕远林.黑龙江省2000~2006年高油大豆品种与推广[J].黑龙江农业科学,2007,1:11-12
    [11]周蓉.大豆抗倒伏性评价体系的建立及主要农艺性状QTL定位[博士学位论文].湖北省武汉市:华中农业大学,2009
    [12]冯丽娟.不同基因型与环境因素对高油大豆品质性状的影响[硕十学位论文].黑龙江省大庆市:黑龙江八一农垦大学,2007
    [13]王金龙,陈存来.大豆种子贮藏蛋白组分11S/7S研究概况[J].山东农业科学,1998,36(1):48-50
    [14]胡国华.大豆品质生态特性及其遗传表达特性的研究[博士学位论文].黑龙江省哈尔滨市:东北农业大学,2004
    [15]张忠臣,战秀玲,陈庆山,等.大豆油份和蛋白性状的基因定位.大豆科学,2004,23(2):81-85
    [16]J‘勇.大豆种子贮藏蛋白遗传工程研究[J].中国生物工程杂志,1995,5(5):7-11
    [17]王金陵.中国大豆种质的生态分布.中美大豆科学讨论会论文集,1982,7:32-37
    [18]胡明祥等.中国大豆品质生态区域初步研究.全国大豆学术,讨论会论文,1985
    [19]刘峰,庄炳昌,张劲松,等.大豆遗传图谱得构建和分析[J].遗传学报,2000,27(11):1018-1026
    [20]张德水,董伟,惠东威,等.用栽培大豆与野生大豆间的杂种F2群体构建基因组分子标记连锁图谱框架图[J].科学通报,1997,42(2):1326-1330
    [21]王不武,张君,关淑艳,等.高产、高油、抗病大豆新品种吉农20选育报告[J].中国农业信息,2008,9:19-20
    [22]赵政文,马继凤,李小红,喻名科.南方春大豆春、秋播与籽粒蛋白质脂肪含量关系的研究.大豆科学,1999,16(3):183-189
    [23]刘志胜,李里特,辰巳英三.大豆蛋白营养品质和生理功能研究进展[J].大豆科 学,2000,19(3):263-268
    [24]Hill J E, Breidenbach R W. Protein of soybean seeds Ⅱ. Accumullation of the major protein components during seed development and maturation [J]. Plant Physiology,1974,53(3):747-751
    [25]Topfer K S, Thompson G A, Radke S E, et al. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene [J]. Proc Natl Acad Sci USA, 1992,89(7):2624-2628
    [26]0hlrogge J B, Jaworski J G. Regulation of fatty acid synthesis [J]. Plant Mol Biol.,1997, 48:109-136
    [27]Sasaki Y, Nagano Y. Plant acetyl-CoA carboxylase:structure, biosynthesis, regulation, and gene manipulation for plant breeding [J]. Biosci Biotechnol Biochem.,2004,68:1175-1184
    [28]Elborough K M, Swinhoe R, Winz R, et al. Isolation of cDNAs from Brassica napus encoding the biotin-binding and transcarboxylase domains of acetyl-CoA carboxylase:assignment of the domain structure in a full-length Arabidopsis thaliana genomic clone [J]. Biochem J,1994, 301:599-605
    [29]Heppard E P, Kinney A J, Stecca K L, et al. Developmental and growth temperature regulation of two different microsomal omega-6 desaturase genes in soybeans [J]. Plant Physiology,110(1):311-319
    [30]吴永美,毛雪,王书建,等.植物ω-7脂肪酸的系统代谢工程[J].植物学报,2011,5:575-585
    [31]Hills M J. Control of storage-product synthesis in seeds [J]. Curr Opin Plant Biol,2004, 7(3):302-308
    [32]Simon J W, Slabas A R. cDNA cloning of Brassica napus malonyl-CoA:ACP transacylase(MCAT)(fab D)and complementation of an E.coli MCAT mutant[J]. FEBS Lett,1998,435(2-3):204-206
    [33]Zhou P, Florova G, Reynolds K A. Polyketide synthase acyl carrier protein (ACP) as a substrate and a catalyst for malonyl ACP biosynthesis[J]. Chem Biol,1999,6(8):577-584
    [34]Poxleitner M, Rogers S W, Samuels A L, et al. A role for caleosin in degradation of oil-body storage lipid during seed germination [J]. Plant J,2006,47(6):917-933
    [35]Shoemaker R C, Specht J E. Integration of the soybean molecular and classical genetic linkage groups [J].Crop Science,1995,35:436-446
    [36]Roesler K, Shintani D, Savage L, et al.Targeting of the Arabidopsis homomeric acetyl-coenzyme a carboxylase to plastids of rapeseeds [J].Plant Physiol,1997,113.75-81
    [37]Maeo K, Tokuda T, Ayame A, et al. An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis [J]. The Plant Journal,2009,60(3):476-487
    [38]Takahashi K, Banba H, Kikuchi A. Ito M. An induced mutant line lacking the α-subunit of β-conglycinin in soybean (Glycine max(L.)Merri) [J]. Breeding Science,1994,46(1):65-66
    [39]Branen J K. Chiou T J, Engeseth N J. Over expression of acyl carrier protein-1 alters fatty acid composition of leaf tissue in Arabidopsis [J]. Plant Physiol,2001,127(1):222-229
    [40]Branen J K, Shintani D K, Engeseth N J. Expression of antisense acyl carrier protein-4 reduces lipid content in Arabidopsis leaf tissue [J]. Plant Physiol,2003,132(2):748-756
    [41]Suh M C, Schultz D J, Ohlrogge J B. Isoforms of acyl carrier protein involved in seed specific fatty acid synthesis [J]. Plant J,1999,17(6):679-688
    [42]Voelker T A, Worrell A C, Anderson L, et al. Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants[J]. Science,1992,257:72-74
    [43]Shimakata T, Stumpf P K. Purification and characterization of beta-ketoacyl-ACP synthetase I from Spinacia oleracea leaves [J]. Arch Biochem Biophys.,1983,220(1):39-45
    [44]Kinney A J, Knowlton S. Designer oils:the high oleic acid soybean [M] In Roller S and Harlander S eds. Genetic modification of the food industry. Blackie Academic, London,1998: 193-213
    [45]Dehesh K, Tai H, Edwards P, et al. Overexpression of 3-ketoacyl-acyl-carrier protein synthase Ills in plants reduces the rate of lipid synthesis[J]. Plant Physiol,2001,125(2):1103-1114
    [46]Katayoon D. How can we genetically engineer oilseed crops to produce high levels of medium-chain fatty acids? Eur J Lipid Sci Tech,2001,103(10):688-697
    [47]Abbadi A, Brummel M, Spener F. Knockout of the regulatory site of 3-ketoacyl-ACP synthase III enhances short-and medium-chain acyl-ACP synthesis [J]. Plant J,2000,24(1):1-9
    [48]Hellyer A, Leadlay P F, Slabas A R. Induction, purification and characterisation of acyl-ACP thioesterase from developing seeds of oil seed rape(Brassica napus)[J]. Plant Mol Biol,1992,20(5):763-780
    [49]Force E M, Cantisan S, Vega M J S, et al. Acyl-acyl carrier protein thioesterase activity from sunflower(Helianthus annuus L) seeds [J]. Planta,2000,211(5):673-678
    [50]Othman A, Lazarus C, Fraser T, et al. Cloning of a palmitoyl-acyl carrier protein thioesterase from oil palm[J]. Biochem Soc Trans,2000,28(6):619-622
    [51]Knutzon D S, Bleibaum J L, Nelsen J, et al. Isolation and Characterization of Two Safflower Oleoyl-Acyl Carrier Protein Thioesterase cDNA Clones. Plant Physiol.,1992,100(4):1751-1758
    [52]Katayoon D, Aubrey J, Knutzon D S, et al. Production of high levels of 8:0 and 10:0 fatty acids in transgenic canola by over-expression of Ch FatB2, a thiesterase cDNA from Cuphea hookeriana [J]. Plant J,1996,9.167-172
    [53]Bonaventure G, Salas J J, Pollard M R, et al. Disruption of the FA7B gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth [J]. Plant Cell,2003,15(4):1020-1033
    [54]Bonaventure G, Bao X, Ohlrogge J, et al. Metabolic responses to the reduction in palmitate caused by disruption of the FATB gene in Arabidopsis[J]. Plant Physiol,2004,135(3):1269-1279
    [55]Dormann P, Voelker T A, Ohlrogge J B. Accumulation of palmitate in Arabidopsis mediated by the acyl-acyl carrier protein thioesterase FATB1 [J]. Plant Physiol 2000,123(2):637-644
    [56]陈娜,郭尚敬,颜坤,等.甜椒甘油-3-磷酸酰基转移酶基因的克隆与表达分析[J].园艺学报,2005,2(5):823-827
    [57]Nishida I, Tasaka Y, Shiraishi H, et al. The gene and the RNA for the precursor to the plastid-located glycerol-3-phosphate acyltransferase of Arabidopsis thaliana [J]. Plant Mol Biol,1993,21.267-277
    [58]刘继梅,陈善娜,鄢波,等.水稻中编码甘油-3-磷酸转酰酶部分cDNA的克隆及序列分析[J].云南植物研究,1998,20(3):339-342
    [59]Bhilla R S, Mackenzie S L. Nuceotide squence of a cDNA from Carthaums tinctorius encoding a glycer-3-phosphate acyl-transferase [J].Plant Physial.,1994,106(94):1713-1714
    [60]Wolter F P. Chilling sensivity of Arabidopsis thaliana with genetically engineered membrane liquids [J].EMBO J Eur Mol Biol Organ,1992,11(13):4685-4692
    [61]Zou J T, Katavic V, E. Michael G, et al. Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyl transferase gene [J]. Plant Cell,1997,9(6):909-923
    [62]Zheng P Z, Allen W B, Roesler K, et al. A phenylalanine in DGAT is a key determinant of oil content and composition in maize [J].Nature genetics,2008,40(3):367-373
    [63]Sharma Nirmala, Anderson Maureen, Kumar Arvind, et al. Transgenic increases in seed oil content are associated with the differential expression of novel Brassica-specific transcripts [J]. BMC Genomics,2008,9:619
    [64]Puumalainen T J, Poikonen S, Kotovuori A, et al.2S albumins, are major allergens in oilseed rape and turnip rape [J].J Allergy Clin Immunol,2006,117(2):426-432
    [65]Froissard Marine, Dandrea Sabine, Boulard Celine, et al. Heterologous expression of AtClol, a plant oil body protein, induces lipid accumulation in yeast[J]. FEMS Yeast Res,2009,9(3):428-438
    [66]Fofana B, Cloutier S, Duguid S, et al. Gene expression of stearoyl-ACP desaturase and deltal2 fatty acid desaturase 2 is modulated during seed development of flax (linum usitatissimum) [J]. Lipids,2006,41(7):705-712
    [67]Topfer K S, Thompson G A, Radke S E, et al. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene [J]. Proc Natl Acad Sci USA, 1992,89(7):2624-2628
    [68]Liu Q, Singh S, Green A. High-oleic and high-stearic cottonseed oils:nutritionally improved cooking oils developed using gene silencing [J].J Am Coll Nutr,2002,21(3):20-211
    [69]Pirtle I L, Kongcharoensuntorn W, Nampaisansuk M, et al. Molecular cloning and functional expression of the gene for a cotton Delta-12 fatty acid desaturase(FAD2)[J].Biochim Biophys Acta,2001,1522(2):122-129
    [70]吴晓雷,王永军,贺超英,等.大豆重要农艺性状的QTL分析[J].遗传学报,2001,28(10):947-955
    [71]李福山,徐豹,徐航,等.中国野生大豆(G.soja)籽粒性状的遗传多样性及其地理分布[J].作物学报,1995,6:733-734
    [72]孟祥勋,杨庆凯.大豆杂种不同世代(F2-F6)蛋白质含量遗传变异与选择世代分析.大豆科学,2002,21(1):25-30
    [73]杨光宇,纪锋.中国野生大豆(G.sofa)蛋白质含量及其氨基酸组成的研究进展[J].大豆科学,1999,18(1):57-61
    [74]李福山等主编.中国野生大豆资源研究进展,中国农业出版社,1995.
    [75]宁海龙,李文霞,李文滨.大豆脂肪酸组分的胚细胞质和母体遗传效应分析[J].作物学报.2006,35(12):1942-1947
    [76]Shaul 0, Galili G. Concerted regulation of lysine and threonine synthesis in tobacco plants expressing bacterial feedback-insensitive aspartate kinase and dihydrodipicolinate synthase[J]. Plant Mol Biol.1993,23(4):759-768
    [77]Dinkins R D, Keim K R, Farno L, Edwards L H. Expression of the narrow leaflet gene for yield and agronomic traits in soybean [J]. J Hered.2002,93(5):346-351
    [78]许守民,苗以农,王不武,等.花生DNA导入大豆后代蛋白组分及氨基酸的变异性[J].大豆科学,1995,4:316-320
    [79]苗保河.外源DNA直接导入大豆遗传变异的研究[J].作物品种资源,1998,2:23-25
    [80]刘广阳,杨兴勇,宋丽娟,等.外源DNA导入创造大豆高蛋白种质资源的研究[J].中国油料,1996,3:20-22
    [81]Wei W H, Chen B, Yan X H, et al. Identification of differentially expressed genes in soybean seeds differing in oil content [J]. Plant Science,2008,175(5):663-673
    [82]Jones S I, Gonzalez D 0, Vodkin L 0. Flux of transcript patterns during soybean seed development [J]. BMC Genomics,2010,11:136
    [83]Severin A J, Woody J L, Bolon Y T. RNA-Seq Atlas of Glycine max:A guide to the soybean transcriptome[J]. BMC Plant Biology 2010,10:160
    [84]徐鹏.大豆蛋白质和油分含量的遗传分析及QTL定位.[硕十学位论文].江苏省南京市南京农业大学,2006
    [85]程现昆.我国生物信息学研究现状与展望[J].中国科技信息,2006,8.241-243
    [86]杨旸.基于机器学习方法的生物序列分类研究[博十学位论文].上海市:上海交通大学,2009.
    [87]张业勤.生物信息学在搜索水稻新基因及其功能预测中的运用[J].贵州师范大学学报(自然科学版),2006,3.106-110
    [88]李文芬.地中海实蝇及其近缘种和桔小实蝇复合种基因芯片的研制及应用[硕士学位论文].湖南省长沙市:湖南师范大学,2008
    [89]邹健,冉志华,萧树东.分类表达谱基因芯片在医学研究中的应用[J].肿瘤防治研究,2006,3.209-212
    [90]瞿秀华.正相杂交型SNP检测芯片用于近交系小鼠遗传监测[硕士学位论文].上海市:第二军医大学,2006
    [91]王刚.棉花幼苗盐胁迫条件下Solexa转录组测序结果的分析及验证[硕士学位论文].山东省泰安市:山东农业大学,2011
    [92]汤丽华.基于结构数据的转录因子结合位点分析[硕士学位论文].江苏省南京市:东南大学,2005
    [93]谢超华.福氏2a志贺氏菌glpl、deoR基因功能的研究[硕士学位论文].北京市:中国人民解放军军事医学科学院,2009.
    [94]Asmann Y W, Klee E W, Thompson E A, et al. Middha S.3'tag digital gene expression profiling of human brain and universal reference RNA using Illuraina Genome Analyzer[J]. BMC Genomics,2009,10:531
    [95]Stockhammer O W, Zakrzewska A, Hegedus Z, et al. Transcriptome profiling and functional analyses of the zebra fish embryonic innate immune response to Salmonella infection [J]. Immunol.2009,182:5641-5653
    [96]Nagalakshmi U, Wang Z, Waern K, et al. The Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing [J]. Science,2008,320:1344-1349
    [97]Levin J Z, Berger M F, Adiconis X, et al. Targeted next-geneRation sequencing of a cancer transcriptome enhances detection of sequence variants and novel fusion transcripts [J]. Genome Biol.2009,10:R115
    [98]Wang B, Guo G, Wang C, et al. Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing [J]. Nucleic Acids Res.2010,38(15):5075-5087
    [99]Tang F, Barbacioru C, Nordman E, et al. RNA-Seq analysis to capture the transcriptome landscape of a single cell [J]. Nat Protoc.2010,5:516-535
    [100]庄振华.基于Laplace谱的基因表达谱数据分类研究[硕十学位论文].安徽省合肥市:安徽大学,2010
    [101]Zhang G, Guo G, Hu X, et al. Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome [J]. Genome Res.2010,20:646-654
    [102]David J P, Coissac E, Melodelima C, et al. Transcriptome response to pollutants and insecticides in the dengue vector Aedes aegypti using next-generation sequencing technology [J]. BMC Genomics,2010,11:216
    [103]Liu S, Li D, Li Q, et al. MicroRNAs of Bombyx mori identified by Solexa sequencing[J]. BMC Genomics,2010,11:148
    [104]Yassour M, Kaplan T, Fraser H B, et al. Ab initio construction of a eukaryotic transcriptome by massively parallel mRNA sequencing[J]. Proc Natl Acad Sci USA.2009, 106:3264-3269
    [105]Veitch N J, Johnson P C, Trivedi U, et al. Digital gene expression analysis of two life cycle stages of the human-infective parasite, Trypanosoma brucei gambiense reveals differentially expressed clusters of co-regulated genes[J]. BMC Genomics,2010,11:124
    [106]Morrissy A S, Morin R D, Delaney A, et al. Next-generation tag sequencing for cancer gene expression profiling [J]. Genome Res.,2009,19:1825-1835
    [107]DONG X L, BAI P L, WANG J M, et al. Comparative study on determination of seed oil content of energy plants by using NMR and Soxhlet Extraction [J]. Renewable Energy Resources,2011, 29:21-24
    [108]Mortazavi A, Williams B A, Mccue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq [J].Nat Methods,2008,5:621-628
    [109]Hu R b, Fan C M, Li H Y, et al. Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR [J]. BMC Molecular Biology,2009, 10:93
    [110]Yu J, Hu S N, Wang J. A Draft Sequence of the Rice Genome(Oryza sativa L. ssp. indica) [J]. Science,2002,296:79-92
    [111]Sebolt A M, Shoemaker R C, Diers B W. Analysis of a Quantitative Trait Locus Allele from Wild Soybean That Increases Seed Protein Concentration in Soybean [J]. Crop Science,2000, 40(15):1438-1444
    [112]王晓光,董钻,谢甫绨.不同结荚习性大豆荚粒形成的比较研究[J].辽宁农业科学,1998,1.21-24
    [113]陈如梅,杜永芹.谷物籽粒各类蛋白质的离心分析法[J].上海农业科技,1990,1:39-43
    [114]张恒善,付艳华,孙太石,等.大豆种子脂肪和蛋白质积累规律的研究[J].大豆科学,1993,4.296-301
    [115]赵晋忠,吴慎杰,杜维俊,等.不同生育期大豆品种蛋白质、脂肪积累的变化规律及其与品质的关系[J].华北农学报.2004,19(4):33-35
    [116]李志刚,刘玉平,等.大豆子粒中干物质、脂肪和蛋白质积累规律的研究[J].作物杂 志.2008,4:52-54
    [117]宁海龙,张大勇,张淑珍,等.东北大豆脂肪、蛋白质含量的生态效应[J].大豆科学,2003,2.132-136
    [118]陈恒鹤,尹丽华,王大秋.大豆蛋白质及脂肪含量的遗传和选择效果研究,早世代的变异与选择.大豆科学,1991,10(1):1-9
    [119]Verwoert I I, Linden K H,Nijkamp H J, et al. Developmental specific expression and organelle targeting of the Escherichia coli fabD gene, encoding malonyl coenzyme A-acyl carrier protein transacylase in transgenic rape and tobacco seeds[J]. Plant Mol Biol.1994, 26(1):189-202
    [120]Dehesh K, Tai H, Edwards P, et al. Overexpression of 3-ketoacyl-acyl-carrier protein synthase III s in plants reduces the rate of lipid synthesis. Plant Physiol,2001, 125(2):1103-1114
    [121]Jaworski J G, Clough R C, Barnura S R. A cerulenin insensitive short chain 3-ketoacyl-acyl carrier protein synthase in Spinacia oleracea leaves [J]. Plant Physiol 1989,90(1):41-44
    [122]Mandal M N A, Santha I M, Lodha M L, et al. Cloning of acyl-acyl carrier protein (ACP) thioesterase gene from Brassica juncea. Biochem Soc Trans 2000,28(6):967-969
    [123]Start W G, Ma Y. Polacco J C, Hildebrand D F, et al. Two soybean seed lipoxygenase nulls accumulate reduced levels of lipoxygenase transcripts. Plant Mol Biol 1986,7(1):11-23
    [124]Craft D L, Madduri K M, Eshoo M, et al. Identification and Characterization of the CYP52 Family of Candida tropicalis ATCC 20336, Important for the Conversion of Fatty Acids and Alkanes to a, ω-Dicarboxylic Acid. App Environ Micro 2003,9(10):5983-5991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700