用户名: 密码: 验证码:
果园靶标在线探测方法及风送变量喷雾技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
果园病虫害防治目前主要靠化学农药,而果园过量施用农药致使其大量残留,严重污染生态环境,威胁果品安全生产。对靶喷药技术是降低农药残留的有效手段之一,本文针对果园对靶精准喷雾关键技术难题,研究果园靶标在线探测风送变量喷雾方法,具有重要意义。主要研究内容及结论分为如下4部分。
     (1)提出了基于超声传感靶标外形轮廓探测方法,并对该方法进行了低速条件下探测精度分析和高速条件下机具行走速度对探测影响规律研究。设计了靶标外形轮廓探测试验台,研究了基于超声传感技术在低速条件下探测靶标外形的可行性,并针对规则树冠、樱桃树冠和山楂树冠分别进行试验,探究该方法的普适性和探测精度,结果显示树冠体积探测精度分别为92.8%、90.0%和87.0%,表明该方法在机具低速行走条件下具有较高探测精度。进行了机具行走速度对靶标外形轮廓探测影响试验,数据表明,不同行走速度下探测的靶标形状基本一致,但会产生一定滞后现象,且速度越高滞后越明显。行走速度不大于1m/s时,靶标外形滞后量拟合方程为d=0.117v-0.02,式中,d为靶标外形滞后量,m;v为运动速度,m/s。该方程具有很高的拟合精度,其中R2=0.983。
     (2)提出了幼树靶标探测方法并进行了试验研究和探测系统设计。针对幼树树冠很小且枝叶稀疏,难以通过探测树冠准确获取靶标位置信息的难题,研究了基于红外光电传感技术通过探测树杆获取靶标位置,通过预先设置靶标外形参数进行对靶喷雾的可能性;设计了幼树靶标探测系统,在实验室和果园分别进行了试验,并进行了探测精度和准确性分析。实验室试验表明,在传感器探测范围内,探测距离和树杆直径对探测系统探测准确性几乎没有影响,速度对探测准确性有微小量影响,速度不大于1m/s时喷雾总宽度最大相对误差只有3.9%。果园试验表明,行走速度不大于0.94m/s时,幼树靶标探测系统能100%探测到树杆并计算出喷雾位置和喷雾宽度。
     (3)研究并建立了PWM变量喷雾喷头流量模型。针对喷头流量受喷雾压力、PWM频率和占空比多因素影响,难以通过少量的试验获得其数学关系的问题,采用二次回归正交组合试验设计方法建立了喷头流量回归模型。在常压喷雾条件下,分别对TEEJET AITXA8002型、8003型和8004型喷头建立了常压喷头流量模型,并对其进行了参数检验和失拟检验,结果表明3个喷头流量模型均可行;随机选择同类型其他喷头进行了模型普适性试验,结果表明,模型流量和实际测量流量均具有很好的一致性,其中8002喷头模型最大相对误差为7.05%,最小相对误差为0.14%;8003喷头模型最大和最小相对误差分别为7.27%和0.31%;8004喷头模型最大和最小相对误差分别为7.94%和0.71%。同样建立了高压喷雾喷头流量模型,并对其进行了参数检验和失拟检验,结果表明3个喷头流量模型亦均可行;并对TEEJET AITXA8002型喷头进行了模型普适性试验,结果表明,模型流量和实际测量流量具有很好的一致性,最大相对误差为6.50%,最小相对误差为0.44%。
     (4)试验研究风送PWM变量喷雾雾化特性和喷头雾滴沉积特性。在设计风送PWM变量喷雾雾化特性试验台的基础上,通过试验研究喷雾压力、风速、PWM频率和占空比对雾化效果影响特性,试验表明,雾滴粒径随喷雾压力的增加成规律性变化,其中常用的三个粒径统计项D32、D43和Dvo.5随喷雾压力增加的平均变化率分别为-90.33μm/MPa、-232.3μm/MPa和-300.2μm/MPa,喷雾压力从0.2MPa增加到0.5MPa时,D32、D43和Dvo.5分别减小31%、36%和56%;雾滴粒径随PWM频率增加先增加后减小,PWM频率从2Hz增加到10Hz时,D32、D43和Dvo.5最大增加18%、31%和62%;雾滴粒径随PWM占空比增加而减小,PWM占空比从30%增加到90%时,D32、D43和Dvo.5分别减少19%、21%和27%;雾滴粒径随风速的增加成规律性变化,D32、D43和Dvo.5随风速增加的平均变化率分别为2.62μm·s/m、3.59μm·s/m和6.83μm·s/m,风速从3m/s增加到15m/s时,D32、D43和Dv0.5分别增加46%、26%和71%。设计了喷头流量二维分布测量皿,并对TEEJET AITXA8002型喷头进行流量分布测量,数据显示,当喷头高度为0.20m时,喷头有效喷雾宽度约为0.24m,在喷雾宽度范围内,流量分布尚均匀,呈“双驼峰”形状。设计了风送喷雾喷头沉积试验台并研究风速对喷头雾滴沉积影响特性,数据显示,风速越小,雾滴沉积受重力影响越大,分布越靠下;反之,受重力影响越小,且越集中于原点区域;当风速大于12m/s,喷雾距离为0.80m时,喷雾沉积基本不受重力的影响,且喷雾集中。
At present orchard plant diseases and insect pests are mainly controlled by chemical pesticides. Spraying excessive amounts of pesticides will cause its large residues, which has seriously polluted ecological environment and fruit production. Target-oriented spraying is one of good means to reduce pesticide residues. The aim of the paper is to solve target-oriented spraying technical problem through studying targets online detection chemical pesticide variable spraying method. The main research contents and conclusions are the following four parts.
     (1) Orchard spray target profile probing method based on ultrasonic sensors was put forward. The precision analysis of the method at low speed condition was carried out, and the detection influence by sprayer speed was researched. In order to research on spray target profile probing method, and provide the theoretical support for variable spray based on real-time probing target profile, a tree spray target profile probing platform was improved. The platform was used in probing canopy profile of man-made tree with standard shape, cherry tree in the flowering stage and Hawthorn tree. Experiments indicate that measurement accuracy of standard shape canopy, cherry tree and Hawthorn tree canopy profile probing is92.8%,90.0%and87%, which shows that this method has high accuracy at the condition of low speed. The results of target detection speed influence test show that the target profiles detected at different speed are almost the same with lag phenomenon. The higher speed will cause the more lag. When the speed is not more than1m/s, the relationship between the lag distance and the speed is approximately linear. The straight-line equation obtained is d=0.117v-0.02, where d is the lag distance in m, v is the speed in m/s.The equation has a high fitting accuracy, where R2=0.983.
     (2) Orchard young tree target detection method was put forward, and the detection system was designed. Young tree target is hard to detect in orchard spraying because the tree canopies are small and sparse. In order to solve the problem, a young tree target detector which percept the target though probing orchard tree trunk was designed based on infrared sensors. Spraying parameters, such as spraying width and delay distance, could be input to the detector easily. Laboratory experiments indicated that accuracy of the detector is hardly affected by probing distance and diameter of tree-truck, while it is affected by the speed of sprayer a little. When the trunk is in the detection range of infrared sensor, and the speed is not more than1m/s, the calculating accuracy of spraying width is not less than96.1%. Orchard experiments showed that the probing accuracy of the detector is100%, when the speed of sprayer is not more than0.94m/s.
     (3) Nozzle flow models of PWM variable-rate spraying were studied and established. Nozzle flow model is indispensable in variable-rate spraying control based on Pulse Width Modulation (PWM) technology, especially when nozzles are controlled independently. Nozzle flow is affected by spraying pressure, PWM frequency and PWM duty cycle. It is hard to establish the model with a few trials. The central composite orthogonal regression tests were completed, and the flow models of TEEJET AITXA nozzles of type8002、8003and8004were obtained. The results of equation hypothesis test and test for lack of fit of flow models for regular pressure variable-rate spraying show that the three flow models are agreeable. The maximum relative error of the TEEJET AITXA nozzle model of type8002is7.05%, while the minimum relative error is0.14%. For the type8003, the maximum and minimum relative errors are7.27%and0.31%. And for the type8004, the maximum and minimum relative errors are7.94%and0.71%. Nozzle flow model validation trials show that the relative errors between model flow and actual flow are small. Nozzle flow model for high pressure variable-rate spraying is also established. The results from equation hypothesis test and test for lack of fit of flow model shows that those three flow models work well. Nozzle flow model validation trials show that the relative errors of model flow and actual flow are small, while the maximum and minimum relative error is6.50%and0.44%. The flows characteristics of different nozzles with the same type are almost the same.
     (4) Air-blast spraying atomization characteristics and spray nozzle droplets sedimentary characteristics were experimentally researched. A atomization characteristics test bench of air-assisted spraying was designed, with which the atomization effect impact characteristics of spraying pressure, wind speed, PWM frequency and duty cycle were studied. Experiments show that droplet size changes regularly as spraying pressure increases, and the average rates of change of the three statistics items commonly usedD43and Dv0.5are-90.33μm/MPa、-232.3μm/MPa and-300.2μm/MPa. When spraying pressure increases from0.2MPa to0.5MPa, D32, D43and.Dv0.5decrease by31%,36%and56%. Droplet size increases firstly then decreases as PWM frequency increases. When PWM frequency increases from2Hz to10Hz, D32, D43and DV0.5decreased by18%,31%and62%.Droplet size decreases as PWM duty cycle increases. When PWM duty cycle increases from30%to90%, D32, D43and Dv0.5decreased by19%,21%and27%. Droplet size changes regularly as wind speed increases, and the average rates of change of D32、D43and Dv0.5are2.62μm·s/m,3.59μm-s/m and6.83μm·s/m.When wind speed increases from3m/s to15m/s, D32, D43and Dv0.5decreased by46%,26%and71%. Square two-dimensional nozzle flow measurement dish was designed. And nozzle flow distribution measurement of TEEJET AITXA nozzle of type8002show that when the nozzle height is0.20m, spray nozzle effective width is about0.24m, and the flow distribution is even with a "double hump" shape. Air-blast spraying nozzle sedimentary characteristics test bench was improved. Spray nozzle droplets sedimentary characteristics experiments show that the smaller the wind speed, the more droplets sedimentary are affected by gravity. Conversely, they are affected by gravity less, and are concentrated in origin area. When the wind speed is more than12m/s and spraying distance is0.80m, droplets sedimentary are concentrated and hardly affected by gravity.
引文
陈艳巧,张晓辉,常金丽等.2007.轻型电动弥雾机喷头的设计.农业机械学报,38(5):58-61
    陈勇,郑加强,周宏平等.2003.精确农业管理系统可变量技术研究现状与发展.农业机械学报,34(6):156-159.
    陈志刚,王玉光,孟婷,等.2009.喷雾施药植株红外对靶试验.排灌机械,27(4):237-246.
    戴奋奋.2008.风送喷雾机风量的选择与计算.植物保护,34(6):124-127.
    邓巍,何雄奎,丁为民.2009.用大喷头脉宽调制间歇喷雾提高沉积率的试验研究.农业工程学报,25(1):104-108.
    邓巍,何雄奎,张录达,等.2008.自动对靶喷雾靶标红外探测研究.光谱学与光谱分析,28(10):2285-2289.
    邓巍,丁为民.2008.基于PWM技术的连续式变量喷雾装置设计与特性分析.农业机械学报,39(6):77-80.
    邓巍,丁为民,何雄奎.2009.PWM间歇式变量喷雾的雾化特性.农业机械学报,40(1):74-78.
    邓巍,赵春江,何雄奎,等.2010.绿色植物靶标的光谱探测研究.光谱学与光谱分析,30(8):2179-2183.
    傅泽田,祁力钧,王俊红.2007.精准施药技术研究进展与对策.农业机械学报,38(1):189-192.
    耿爱军,李法德,李陆星.2007.国内外植保机械及植保技术研究现状.农机化研究,(4):189-191
    郭克君,满大为,汤晶宇.2008.6HYZ-450型智能化自动对靶林木喷药机研制.林业机械与木工设备,36(6):18-19.
    何雄奎.2004.改变我国植保机械和施药技术严重落后的现状.农业工程学报,20(1):13-15
    何雄奎,严苛荣,储金宇,等.2003.果园自动对靶静电喷雾机设计与试验研究.农业工程学报,19(6):78-80.
    洪添胜.2008-10-08.变量喷雾自动混药装置.中国专利,200810027898.6,
    胡开群,周舟,祁力钧,等.2010.直注式变量喷雾机设计与喷雾性能试验.农业机械学报,41(6):70-74.
    冀荣华,祁力钧,傅泽田.2007.自动对靶施药系统中植物病害识别技术的研究.农业机械学报,38(6):190-192.
    贾卫东,邱白晶,施爱平等.2007.农用高压静电喷雾场的实验.农业机械学报,38(12):66-69
    林惠强,刘才兴,洪添胜.2007.果树施药仿形喷雾的神经网络统一模型.农机化研究,(10):57-60
    李丽,宋坚利,何雄奎.2010.农作物喷雾靶标自动探测器设计与应用.农业机械学报,41(7):54-56.
    李晓光,王秀,李民赞.2008.基于单片机PID和PWM液体流量控制系统研究.微计算机信息,24(5):69-71.
    李志臣.2007.基于机器视觉的杂草对准喷药控制系统研究.[博士学位论文].南京:南京农业大学
    李志西,杜双奎.试验优化设计与统计分析[M].北京:科技出版社,2010:226-238.
    刘大印,王秀,毛益进,等.2011.基于单片机PWM变量农药喷洒控制系统的研究.农机化研究,33(5):99-103.
    刘建,吕新民,党革荣,等.2003.植保机械的研究现状与发展趋势.西北农林科技大学学报,31(10)增刊:202-204
    刘清旺,李增元,陈尔学,等.2008.利用机载激光雷达数据提取单株木树高和树冠.北京林业大学学报,30(6):83-89.
    刘志壮,洪添胜,李震等.2009.基于模糊控制的流量控制阀仿真.农业工程学报,25(2):83-86
    卢秉福,张祖立,朱明,等.2008.农业机械化发展关键影响因素的辨识与分析[J].农业工程学报,24(11):114—117.
    陆建,毛罕平,陈树人.2009.基于ARM7的精确对靶喷施除草嵌入式控制系统.农机化研究,(12):76-79.
    毛益进,王秀,马伟.2009.农药喷洒雾滴粒径分布数字分析方法.农业工程学报,25(Supp):78-82.
    邱白晶,李佐鹏,吴吴等.2007.变量喷雾装置响应性能的试验研究.农业工程学报,23(11):148-152
    茹煜,郑加强,周宏平.2005.风送式静电喷雾技术防治林木病虫害研究与展望.世界林业研究18(3):38-42
    赛奎春.2007.C#程序开发范例宝典.北京:人民邮电出版社:355-380.
    邵陆寿,戴之祥,崔怀雷等.2005.基于模糊控制的变量施药控制系统.农业机械学报,36(11):110-112
    随顺涛,朱瑞祥,王丽丽.2009.基于脉宽调制的变量喷药技术控制系统.农机化研究,31(4):143-145.
    汪懋华.1999.“精确农业”发展与工程技术创新.农业工程学报,15(1):1-8
    王科元,陈永成,李华等.2006.农药静电喷雾技术的发展.农机化研究,(7):50-52.
    王万章,洪添胜,陆永超,等.2006.基于超声波传感器和DGPS的果树冠径检测.农业工程学报,22(8):158-161.
    吴春笃,杜彦生,张伟,张波陈志刚.2007.脉宽调制型变量喷雾系统雾量沉积分布.农业机械学报,38(12):70-73.
    夏书娥,张锁荣.2008.稻麦连作田菵草化学防除技术研究.杂草科学,(6):45-47
    杨莉.2008.基于ARM7的自动变量喷药系统设计及算法研究.长春:吉林大学:54-57.
    杨学军,严荷荣,徐赛章,等.2002.植保机械的研究现状及发展趋势[J].农业机械学报,33(6):129-137.
    俞龙,赵祚喜,洪添胜,等.2009.果树冠层参数实时检测系统.农业机械学报,40(增刊):194-197.
    俞龙,洪添胜,赵祚喜,等.2010.基于超声波的果树冠层三维重构与体积测量.农业工程学报,26(11):204-208.
    于永,戴佳,常江.2007.51单片机C语言常用模块与综合系统设计实例精讲.北京:电子工业出版社:74-131.
    袁湘月,吴春笃,储金宇,等.2004.果园自动对靶喷雾机的研制.山东农机,(4):9-11.
    翟长远,朱瑞祥,随顺涛,等.2009.车载式变量施药机控制系统设计与试验.农业工程学报,25(8):105-109.
    翟长远,赵春江,王秀,等.2010a.树型喷洒靶标外形轮廓探测方法.农业工程学报,26(12):173-177.
    翟长远,朱瑞祥,张佐经,等.2010b.精准施药技术现状分析[J].农机化研究,32(5):9-12.
    翟长远,朱瑞祥,黄胜,等.2011.基于单片机的施药监测系统设计与试验.农业机械学报,42(8):70-74.
    翟长远,赵春江,王秀,等.2012a.幼树靶标探测器设计与试验.农业工程学报,28(2):18-22.
    翟长远,王秀,密雅荣,等.2012b.PWM变量喷雾喷头流量模型.农业机械学报,43(4):42-46.
    张发军,柴苍修.2007.智能车载喷雾的模糊控制方法.农业工程学报,23(7):104-108.
    张富贵,洪添胜,肖磊,等.2008.果树冠幅的检测机理研究.农业工程学报,24(4):25-29.
    张建瓴,陈树军,可欣荣等.2006.仿形喷雾装置的设计及分析.现代制造工程,(1):120-122
    张霖,赵祚喜,俞龙,等.2010.超声波果树冠层测量定位算法与试验.农业工程学报,26(9):192-197.
    张俊雄,曹峥勇,耿长兴,等.2009.温室精准对靶喷雾机器人研制.农业工程学报,25(增刊2):70-73.
    赵茂程,郑加强.2003.树形识别与精确对靶施药的模拟研究.农业工程学报,19(6):150-153.
    周舟,傅泽田,王秀,等.2009.直接注入式喷药机延时性测试系统的研究.中国农业大学学报, 14(6):91-96.
    邹建军,曾爱军,何雄奎,等.2007.果园自动对靶喷雾机红外探测控制系统的研制.农业工程学报,23(1):129-132
    邹伟,李丽,王秀,等.2011.基于PWM调速的变流量喷药系统.农机化研究,33(2):163-166.
    Bora G C, Schrock M D, Oard D L, et al.2005. Reliability tests of pulse width modulation (PWM) valves for flow rate control of anhydrous ammonia. Applied Engineering in Agriculture, (21):955-960.
    Brown D L, Giles D K, Oliver M N, et al.2008. Targeted spray technology to reduce pesticide in runoff from dormant orchards. Crop Protection,27(3):545-552.
    Changyuan Zhai, Xiu Wang, Chunjiang Zhao, et al.2011. Orchard tree structure digital test system and its application. Mathematical and Computer Modelling,54(3):1145-1150.
    Changyuan Zhai, Xiu Wang, Dayin Liu, et al.2012. Nozzle flow model of high pressure variable-rate spraying based on PWM technology. Advanced Materials Research,422:208-217.
    Chueca P, Garcera C, Molto E, Gutierrez A.2008. Development of a sensor-controlled sprayer for applying low-volume bait treatments. Crop Protection,27(10):1373-1379.
    Chun-Chieh Yang, Shiv O. Prasher, Jacques-Andre Landry,,et al.2003. Development of a herbicide application map using artificial neural networks and fuzzy logic. AgriculturalSystems, (76):561-574
    Delen R., Clijmans L., Anthonis J., et al.2004. A non-linear model to approximate the dynamics of a pulse width-modulated spray nozzle. Mathematics and Computers in Simulation, (65):39-48.
    Doruchowski G., Holownicki R..2000. Environmentally friendly spray techniques for tree crops. Crop Protection,19:617-622.
    Giles D.K., Delwiche M.J., Dodd R.B..1988. Electronic measurement of tree canopy volume. Trans. ASAE, 31 (1):264-272.
    Giles, D.K., Downey, D.2005. Reducing orchard spray rates and ground deposit by using tree sensors and sprayer control. Annu. Rev. Agric.Eng, (4):229-236.
    Giles D. K., Slaughter D.C..1997. Precision band spraying with machine-vision guidance and adjustable yaw nozzle. Transactions of the ASAE,40(1):132-140.
    Gil E., Escola A., Rosell J.R..2007. Variable rate application of plant protection products in vineyard using ultrasonic sensors. Crop Protection,26:1287-1297
    Guzman J L, Rodriguez F, Sanchez-Hermosilla J, et al.2008. Robust pressure control in a mobile robot for spraying tasks. Transactions of the ASABE,51(2):715-727.
    Hang Zhu, Yubin Lan, Wenfu Wu, W. Clint Hoffmann, Yanbo Huang, Xinyu Xue, Jian Liang, Brad Fritz. 2010. Development of a PWM Precision Spraying Controller for Unmanned Aerial Vehicles. Journal of Bionic Engineering,7(3):276-283.
    Hoffmann W C, Bagley W E, Fritz B K, et al.2008. Effects of water hardness on spray droplet size under aerial application conditions. Applied Engineering in Agriculture,24(1):11-14.
    Jeon H Y, Zhu H, Derksen R, et al.2011. Evaluation of ultrasonic sensor for variable-rate spray applications. Computers and Electronics in Agriculture, (1),75:2131221.
    Lee W S, Alchanatis V, Yang C, et al.2010. Sensing technologies for precision specialty crop production. Computers and Electronics in Agriculture,74(1):2133.
    Lei Tian.2002a. Development of a sensor-based precision herbicide application system. Computers and Electronics in Agriculture,36:133-149.
    Lei Tian.2002b. Sensor-based precision chemical application systems. World Congress of Computer in Agriculture and Nature Resources,279-289.
    Lebeau F., El L. Bahir, M.-F. Destain, et al.2004. Improvement of spray deposit homogeneity using a PWM spray controller to compensate horizontal boom speed variations. Computers and Electronics in Agriculture (43):149-161.
    Llorens J, Gil E, Llop J, et al.2010. Variable rate dosing in precision viticulture:Use of electronic devices to improve application efficiency. Crop Protection, (3),29:239-248.
    Llorens J., Gil E., Llop J., Escola A.,2011. Ultrasonic and LIDAR sensors for electronic canopy characterization in vineyards:advances to improve pesticide application methods. Sensors, 11(2):2177-2194.
    Molto E, Martin B, Gutierrez A.2000. Design and testing of an automatic machine for spraying at a constant distance from the tree canopy. J. agric. Eng. Res.,77(4):379-384.
    Molto M., Martin B., Gutierrez A..2001. Pesticide loss reduction by automatic adaptation of spraying on globular trees. Agric. Eng. Res.,78 (1):35-41.
    Pai, N., Salyani, M., Sweeb, R.D..2009. Regulating airflow of orchard airblast sprayer based on tree foliage density. Transactions of the ASABE,52 (5):1423-1428.
    Palleja, T., Tresanchez, M., Teixido, M., Sanz, R., Rosell, J.R., Palacin, J..2010. Sensitivity of tree volumen measurement to trajectory errors from a terrestrial LIDAR scanner. Agricultural and Forest Meteorology,150:1420-1427.
    Pascual, M., Villar, J.M., Rufat, J., et al.2011. Evaluation of peach tree growth characteristics under different irrigation strategies by LIDAR system:preliminary results. Acta Horticulturae,889:227-232.
    Perez-Ruiz M., Aguera J., Gil J. A., Slanghter D.C..2010. Optimization of agrochemical application in olive groves based on positioning sensor. Precision Agric., doi:10.1007/s 11119-010-9200-7.
    Piche M, Panneton B, Theriault R.2000. Reduced drift from air-assisted spraying. Canadian Agricultural Engineering,42(3):117-122
    Rosell J.R., Llorens J., Sanz et al.2009. Obtaining the three-dimensional structure of tree orchards from remote 2D terrestrial LIDAR scanning. Agricultural and Forest Meteorology,149:1505-1515.
    Rosell J.R., Sanz R..2012. A review of methods and applications of the geometric characterization of tree crops in agricultural activities. Computers and Electronics in Agriculture,81:124-141.
    Schumann A W, Zaman Q U.2005. Software development for real-time ultrasonic mapping of tree canopy size. Computers and Electronics in Agriculture,47(1):25-40.
    Solanelles F., Escola A., Planas S., et al.2006. An electronic control system for pesticide application proportional to the canopy width of the tree crops. Biosyst. Eng.,95(4):473-481.
    Solanelles F., Planas S., Escola A., et al.2002. Spray application efficiency of an electronic control system for proportional application to the canopy volume. Aspects Appl. Biol. Int. Adv. Pestic. Appl.,66:139-146.
    Toru Torii.2000. Research in autonomous agriculture vehicles in Japan. Computer and Electronics in Agriculture,25:133-153.
    Unavut J K, Schueller J K, Mason P A C.2000. Continuous control of a sprayer pinch valve. Transactions of the ASAE,43(4):829-837.
    Valeriano Mendez, Heliodoro Catalan, Joan R. Rosell, et al.2012. SIMLIDAR-Simulation of LIDAR performance in artificially simulated orchards. Biosystems Engineering,111:72-82.
    Walklate P.J., Cross J.V., Richardson G.M., et al.2006. Optimising the adjustment of label-recommended dose rate for orchard spraying. Crop Protection,25:1080-1086.
    Walklatea P.J., Cross J.V..2011. An examination of Leaf-Wall-Area dose expression. Crop Protection, doi:10.1016/j.cropro.2011.08.018.
    Weiss U., Biber P..2011. Plant detection and mapping for agricultural robots using a 3D LIDAR sensor. Robotics and Autonomous Systems,59:265-273.
    Zaman Q.U., Salyani M..2004. Effects of foliage density and ground speed on ultrasonic measurement of citrus tree volume. Appl. Eng. Agric.,20 (2):173-178.
    Zaman Q U, Schumann A W, Hostler H K.2007. Quantifying sources of error in ultrasonic measurements of citrus orchards. American Society of Agricultural and Biological Engineers,23(4):449-453.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700