用户名: 密码: 验证码:
深水半潜式平台疲劳分析及关键节点的疲劳试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国海洋油气资源的勘探与开发不断走向深海,深水半潜式平台作为海洋油气资源开发的一种主要平台,其结构分析技术显得尤为重要。为了加快南海深水油气资源的开发利用,确保平台在深海中安全可靠运行,国家将深水平台工程技术列入“十一五”期间的“国家科技重大专项”。论文围绕深水半潜式平台结构疲劳分析技术这一课题,分析了深水半潜式平台结构的疲劳寿命及疲劳可靠性,进行了平台关键节点的疲劳试验和监测研究。本文主要包括以下几方面内容:
     (1)建立了深水半潜式平台结构的疲劳分析方法。详细分析了传统子模型技术、多边界插值方法和改进多边界插值方法,提出了将多边界插值方法和改进多边界插值方法应用于深水半潜式平台结构的疲劳分析,可以满足计算精度的要求和有梁单元通过切割边界的情况,拓宽了子模型技术的应用范围。
     (2)深水半潜式平台结构的疲劳寿命分析。建立了深水半潜式平台整体结构模型和局部子模型,分析了各种工况下平台整体结构的疲劳强度,确定了平台结构的疲劳关键部位。运用改进多边界插值方法分析了平台局部子模型不同工况下的应力响应,采用几何应力外插法计算了热点应力。基于疲劳累积损伤和疲劳裂纹扩展的疲劳分析方法,计算了平台关键节点的疲劳寿命。
     (3)深水半潜式平台结构的疲劳可靠性及参数敏感性分析。应用S-N曲线法和断裂力学方法分析了深水半潜式平台关键部位的疲劳可靠性。结合中国南海12个海域的海况,计算了不同海域深水半潜式平台结构关键节点的疲劳可靠性指标和失效概率。分析了S-N曲线法中和断裂力学方法中的疲劳敏感性参数对平台疲劳可靠性指标的影响规律。
     (4)深水半潜式平台结构关键节点的疲劳试验研究。研究了弯曲作用下关键节点中两类试件的疲劳寿命,分析了关键节点的疲劳破坏现象、疲劳破坏过程以及疲劳裂纹扩展规律。通过电镜扫描,研究了疲劳断口不同裂纹扩展区域的微观组织结构,揭示了疲劳裂纹扩展速率、裂纹扩展方向及疲劳破坏机理。
     (5)深水半潜式平台结构关键节点的疲劳剩余极限强度试验研究。根据损伤容限设计原理,结合平台服役详细检修期,确定试验的疲劳循环加载次数。研究了两类关键节点试件焊接处打磨处理与未打磨处理的疲劳剩余极限强度,对比分析了焊接处的打磨与否对疲劳性能的影响。
     (6)深水半潜式平台结构关键节点的疲劳监测试验研究。基于FBG监测原理,对平台结构关键节点进行了疲劳监测试验研究和疲劳极限强度监测试验研究,分析了试验监测值与实测值的位移及应变变化规律,探讨了用FBG进行结构关键节点疲劳监测的合理性。
With the continuous development of offshore oil and gas to deepwater, deepwater semi-submersible platform (Semi) has become one of the major platforms in offshore oil industry, and the structural analysis technology of deepwater semi-submersible platform appears particularly important. In order to accelerate the exploration of oil and gas resources in deepwater area of South China Sea and insure the safe and reliable service of semi-submersible platform in deepwater, the key technology for deepwater platform have been brought into the eleventh five-year plan of "National Science and Technology Major Project". In this thesis, surrounding fatigue analysis technology of deepwater semi-submersible platform structures, the fatigue life and fatigue reliability for deepwater semi-submersible platform structures are analyzed, and fatigue tests and monitoring investigation on key joints of deepwater semi-submersible platform are carried out. The major contents are summarized as follows:
     1. The study of fatigue analysis method for deepwater semi-submersible platform. Traditional sub-model technique, multiple interpolation method and improved multiple interpolation method are analyzed in detail. The multiple interpolation method and improved multiple interpolation method are proposed for the fatigue analysis on deepwater semi-submersible platform structures and can be satisfied with the requirement of accuracy and the condition of beam element through the cut-boundary. The application of sub-model technique is broadened.
     2. Fatigue life analysis on deepwater semi-submersible platform structures. The global finite element model and local finite element sub-models of key parts of deepwater semi-submersible platform are built. Fatigue strength of the global finite element model of deepwater Semi-submersible platform is analyzed under different sea states to determine the fatigue key parts. Stress response analyses on local finite element sub-models are carried out by using the improved multiple interpolation method. The hot spot stresses of fatigue key nodes are calculated by using the extrapolation of geometric stress. Based on the cumulative fatigue damage and fatigue crack growth, the fatigue lives of key nodes of deepwater semi-submersible platform are investigated.
     3. Fatigue reliability and sensitivity analysis on deepwater semi-submersible platform structures. Based on the S-N curve approach and the fracture mechanics approach, the fatigue reliability analyses on key parts of deepwater semi-submersible platform are investigated. In connection with wave scatter diagram of12sea areas in South China Sea, fatigue reliability indexes and failure probabilities of key nodes of deepwater semi-submersible platform in different sea areas are calculated. Sensitivity analyses of the parameters in S-N curve approach and the fracture mechanics approach are analyzed to study the influences of the parameters on fatigue reliability of deepwater semi-submersible platform.
     4. Fatigue test on key joint of deepwater semi-submersible platform structures. The fatigue lives of two types of key joints under bending loads are investigated, and the analyses of fatigue failure phenomenon, fatigue failure procedures and fatigue crack growth law are carried out. Through the scanning electron microscope, microstructures of different regions in fatigue fractures are analyzed to reveal the fatigue crack growth rates, directions and the fatigue failure mechanism.
     5. Residual fatigue strength test on key joint of deepwater semi-submersible platform structures. Based on the damage tolerance design principle, the fatigue loading cycles are determined in connection with the detailed periodic inspection of deepwater semi-submersible platform during the service life. The residual fatigue strength tests on two types of key joints with grinding weld toe and no grinding weld toe are investigated, and the influences of the weld grinding or not on the fatigue performances are presented by the comparative analysis.
     6. Fatigue monitoring test on key joint of deepwater semi-submersible platform structures. Based on the monitoring principle of fiber Bragg grating (FBG). fatigue monitoring test and residual fatigue strength monitoring test on key joints of deepwater semi-submersible platform structures are investigated, and the changing laws of strain and displacement are analyzed by comparing test results and monitoring results. The rationality of fatigue monitoring on key joints with FBG is discussed.
引文
[1-1]江怀友,赵文智,闫存章、等.世界海洋油气资源与勘探模式概述[J].海相油气地质,2008,13(3):5-10.
    [1-2]江文荣,周雯雯,贾怀存.世界海洋油气资源勘探潜力及利用前景[J].天然气地球科学,2010,21(6):989-995.
    [1-3]江怀友,潘继平,邵奎龙,等.世界海洋油气资源勘探现状[J].中国石油企业,2008,(3):77-79.
    [1-4]连琏,孙清,陈宏民.海洋油气资源开发技术发展战略研究[J].中国人口(资源与环境),2006,16(1):66-70.
    [1-5]王震,陈船英,赵林.全球深水油气资源勘探开发现状及面临的挑战[J].中外能源,2010,15(1):46-49.
    [1-6]潘继平,张大伟,岳来群,等.全球海洋油气勘探开发状况与发展趋势[J].中国矿业,2006,15(11):1-4.
    [1-7]李颖虹,任小波.我国深水油气勘探领域主要科技问题与发展对策[J].中国科学院院刊,2011,26(1):75-79.
    [1-8]杨青.中国自主深海开采油气船启航深海将实现大庆产能[N].北京青年报,2011-5-24.
    [1-9]BP Amoco. BP Annual Report[R]. BP Amoco,2007.
    [1-10]李美琴.浅谈我国石油发展现状及安全战略[J].企业技术开发,2011,30(8):43-44.
    [1-11]何沙.基于我国石油对外依存度的石油安全策略研究[J].西南石油大学学报(工学版),2011,13(3):1-6.
    [1-12]田春荣.2009年中国石油进出口状况分析[J].国际石油经济,2010,18(3):4-13.
    [1-13]田春荣.2010年中国石油进出口状况分析[J].国际石油经济,2011,19(3):15-25.
    [1-14]褚跃民.我国石油安全面临的问题与对策[J].求实,2011,1:142-143.
    [1-15]张耀光,刘岩,李春平,等.中国海洋油气资源开发与国家石油安全策略对策[J].地理研究,2003,22(3):297-304.
    [1-16]党学博.深水海底管道S型铺设设计理论与计算分析方法研究[D].杭州:浙江大学,2010.
    [1-17]吕福亮,贺训云,武金云,等.深水油田开发工程简析—以安哥拉吉拉索尔油田为例[J].石油天然气学报,2008,30(2):600-602.
    [1-18]胡毓仁,李庆典,陈伯真.船舶与海洋工程结构疲劳可靠性分析[M].哈尔滨:哈尔滨工程大学出版社,2010.
    [1-19]Victor B, Joyce F. Understanding systems failures[M]. New York:Manchester University Press,1984.
    [1-20]The Alexander L. Kielland accident[R]. Report of a Norwegian public commission appointed by royal decree of March 28,1980, presented to the Ministry of Justice and Police March,1981.
    [1-21]Office of Ocean Exploration and Research "Types of Offshore Oil and Gas Structures". NOAA Ocean Explorer:Expedition to the Deep Slope. National Oceanic and Atmospheric Administration.15 December 2008.
    [1-22]Marshall Peter W. Risk evaluations for offshore structures[J]. ASCE St. Div.1969,95(12).
    [1-23]Marshall Peter W. Dynamic and fatigue analysis using directional spectra[A]. Proceeding of 8th annual offshore technology conference[C]. OTC 2537,1976.143-157.
    [1-24]Bea R G. Selection of environmental criteria for offshore platform design[A]. Proceeding of 5th annual offshore technology conference[C]. OTC 1839,1973.185-196.
    [1-25]Bea R G. Earthquake criteria for platforms in the Gulf of Mexico[A]. Proceeding of 8th annual offshore technology conference[C]. OTC 2675,1976.657-679.
    [1-26]Wirsching P H. Fatigue reliability for offshore structures[J]. J. Struct. Div., ASCE,1984, 110(10):2340-2356.
    [1-27]Wirsching P H. Fatigue reliability in welded joints of offshore structures[J]. Int. J. Fatigue, 1980,2(2):77-83.
    [1-28]Chaudhury G K, Dover W D. Fatigue analysis of offshore platforms subject to sea wave loadings[J]. Int. J. Fatigue,1985,7(1):13-19.
    [1-29]Jiao G Y, Moan T. Reliability-based fatigue and fracture design criteria for welded offshore structures[J]. Eng. Fract. Mech.,1992,41(2):271-282.
    [1-30]Moan T, Hovde G O, Blanker A M. Reliability-based fatigue design criteria for offshore structures considering the effect of inspection and repair[A].Proceeding of 25th annual offshore technology conference[C]. OTC 7189,1993.591-600.
    [1-31]Singh R P, Gupta A. S-N curve vs fracture mechanics approach to fatigue analysis of steel jacket platforms[J], Int. J. Fatigue,1988,10(1):49-53.
    [1-32]Kjerengtroen L, Wirsching P H. Structural reliability analysis[J]. J. Struct. Eng., ASCE, 1984,110(7):1495-1511.
    [1-33]Hove G O, Moan T. Fatigue and fracture reliability of TLP tether system before and after tether failure[C]. Proc. of the 7th ICASP. Applications of Statistics and Probability, Rotter-dam, Balkema,1995,1(1):319-326.
    [1-34]Hovde G O, Moan T. Fatigue reliability of TLP tether systems[J]. Journal of Offshore Mechanics and Arctic Engineering-Transactions of the ASME,1997,119(1):53-60.
    [1-35]Ximenes M C C. Fatigue reliability and inspection of TLP tendon system[J]. Mar. Tech., 1991,28(2):99-110.
    [1-36]Siddiqui N A, Ahmad S. Reliability analysis against progressive failure of TLP tethers in extreme tension[J]. Reliab. Eng. Syst. Saf.,2000,68(3):195-205.
    [1-37]Siddiqui N A, Ahmad S. Fatigue and fracture reliability of TLP tethers under random loading[J]. Mar. Struct.,2001,14(3):331-352.
    [1-38]Khan R A, Siddiqui N A, Naqvi S Q A, Ahmad S. Reliability analysis of TLP tethers under impulsive loading[J]. Reliab. Eng. Syst. Saf.,2006,91(1):73-83.
    [1-39]Almar-Naess A. Fatigue Handbook:Offshore Steel Structures[M]. Tapir Publishers, Trondheim, Norway.1999.
    [1-40]Ramsamooj D V, Shugar T A. Prediction of fracture-based fatigue life of connectors of the US Mobile Offshore Base[J]. Mar. Struct.,2001,14(1-2):197-214.
    [1-41]Ramsamooj D V, Shugar T A. Reliability analysis of fatigue life of the connector-the US mobile offshore base[J]. Mar. Struct.,2002,15(3):233-250.
    [1-42]Ang A H-S, Cheung M C, Shugar T A, et al..Reliability-based fatigue analysis and design of floating structures. Mar. Struct.,2001,14(1-2):197-214.
    [1-43]Madhavan Pillai T M, Meher Prasad A. Fatigue reliability analysis in time domain for inspection strategy of fixed offshore structures[J]. Ocean Eng.,2000,27(2):167-186.
    [1-44]Pieter Aalberts, Radboud van Dijk, Weizhong Zheng. Effect of hurricanes on the cumulative fatigue life consumption of a GOM TLP[C]. OMAE2008-57856, Estoril: ASME,2008.927-936.
    [1-45]Claes-Goran Gustafson, Andreas Echtermeyer. Long-term properties of carbon fibre composite tethers[J]. Int. J. Fatigue,2006,28(10):1353-1362.
    [1-46]Uraga E A, Moan T. Fatigue reliability-based assessment of welded joints applying consistent fracture mechanics formulations[J]. Int. J. Fatigue,2007,29(3):444-456.
    [1-47]Zaheer M M, Islam N. Reliability analysis of universal joint of a compliant platform[J]. Fatigue Fract. Eng. Mater. Struct.,2010,33(7):408-419.
    [1-48]胡毓仁,陈伯真.海洋平台结构系统疲劳可靠性分析的一阶二次矩方法[J].中国造船,1994,(4):88-102.
    [1-49]胡毓仁,陈伯真.海洋结构管节点疲劳失效的模糊定义及可靠性分析[J].上海交通大学学报,1995,29(2):20-25.
    [1-50]陈伯真,胡毓仁,严庆谊.海洋平台管节点的疲劳可靠性分析[J].中国海洋平台,1996,11(3):114-117.
    [1-51]胡毓仁,陈伯真.船舶及海洋工程结构疲劳可靠性分析[M].北京:人民交通出版社,1996.
    [1-52]张剑波,曾常科,肖熙.半潜式平台的极限强度分析研究[J].中国海洋平台,2005,20(3):19-22.
    [1-53]张剑波.随机载荷作用下平台结构疲劳寿命预测[J].海洋通报,2006,25(5):50-55.
    [1-54]张剑波.半潜式钻井船典型节点疲劳可靠性分析[J].船舶工程,2006,28(1):36-40.
    [1-55]Zhang J B, Huang X P, Bian RG, et al. Fatigue crack growth under random loading[J]. J. Ship Mech.,2006,10(6):94-101.
    [1-56]陈国明,方华灿.海洋平台管节点应力强度因子的工程计算模型[J].石油大学学报(自然科学版),1995,19(1):121-129.
    [1-57]陈国明.海洋平台疲劳寿命预测的简化方法[J].石油矿场机械,1999,28(6):26-30.
    [1-58]方华灿,陈国明.渤海石油钢结构的疲劳寿命预测[J].石油矿场机械,1997,26(5):1-5.
    [1-59]方华灿,陈国明.海洋平台结构整体疲劳寿命的预测[J].石油矿场机械,2000,29(5):1-5.
    [1-60]方华灿,吴小薇.海洋石油平台结构系统的疲劳寿命预测[J].机械强度,2002,24(1):101-103.
    [1-61]Fang H C, Duan M L, Xu F Y, et al. Reliability analysis of ice-induced fatigue and damage in offshore engineering structures[J]. China Ocean Eng.,2000,14(1):15-24.
    [1-62]Fang H C, Duan M L, Wu Y N, et al. An Integrated approach to fatigue life prediction of whole system for offshore platforms[J]. China Ocean Eng.,2001,15(2):177-184.
    [1-63]Fang H C, Duan M L, Jia X L, et al. Fuzzy fatigue reliability analysis of offshore platforms in ice-infested waters[J]. China Ocean Eng.,2003,17(3):307-314.
    [1-64]方华灿,贾星兰,段梦兰.冰区海洋平台构件的模糊疲劳可靠性分析[J].石油大学学报(自然科学版),2003,27(4):94-97.
    [1-65]刘健,陈国明,黄东升.海洋平台结构系统的冰激疲劳可靠性分析[J].机械强度,2005,27(6):835-839.
    [1-66]许亮斌,陈国明.考虑疲劳失效的海洋平台动态可靠性分析[J].石油学报,2007,28(3):131-134.
    [1-67]余建星,郭振邦,徐慧.船舶与海洋结构物可靠性原理[M].天津:天津大学出版社,2001.
    [1-68]余建星,于洪洁,胡云昌,等.半潜式海洋平台结构的疲劳失效概率计算研究[J].海洋工程,1994,12(2)2:32-39.
    [1-69]余建星.深海油气工程[M].天津:天津大学出版社.2010.
    [1-70]余建星,阎宏生,于国友,等.海洋平台结构系统的疲劳可靠性研究[J].海洋学报(中文版),1996,18(03):100-106.
    [1-71]Cui W C. A state-of-the-art review of fatigue life prediction method for marine structures[J]. J Mar. Sci Tech.,2002,7(1):43-56.
    [1-72]崔维成.金属疲劳裂纹扩展率曲线与S-N曲线之间的关系[J[.船舶力学,2002,6(6):93-106.
    [1-73]Cui W C, Bian R G, Liu X C. Application of the two-parameter unified approach for fatigue life prediction of marine structures [C]. PRADS2007.Houston, USA,2007.392-398.
    [1-74]Cui Weicheng. A preliminary review of recent developments in life prediction methods of marine structures[J]. J. Ship Mech.,1999,3(6):55-79.
    [1-75]Wang Y F, Cui W C, et al. The extended McEvily model for fatigue crack growth analysis of metal structures [J]. Int. J. Fatigue,2008,30(10-11):1851-1860.
    [1-76]Wang Y F, Cui W C, et al. The extended McEvily model for fatigue crack growth analysis of metal structures [J]. Int. J. Fatigue,2008,30(10-11):1851-1860.
    [1-77]余建星,阎宏生,于国友等.海洋平台结构系统的疲劳可靠性研究[J].海洋学报(中文版),1996,18(3):100-106.
    [1-78]Wang F, Cui W C. Approximate method to determine the model parameters in a new crack growth rate model [J]. Mar. Struct.,2009,22(4):744-757.
    [1-79]卞如冈,崔维成,等.基于双参数统一方法的深海结构物疲劳裂纹扩展影响参数研究[J].船舶力学,2010,14(5):516-525.
    [1-80]黄小平,韩芸,崔维成,等.变幅载荷作用下焊接接头疲劳寿命预测方法[J].船舶力学,2005,9(1):89-97.
    [1-81]黄小平,崔维成.打磨处理改善焊缝疲劳性能的试验研究[J].船舶力学,2003,7(6):92-99.
    [1-82]Huang X P, Moan T, Cui W C. A unique crack growth rate curve method for fatigue life prediction of steel structures[J]. Ships and Offshore Struct.,2009,4(2):165-173.
    [1-83]Huang X P, Moan T, Cui W C.An engineering model of fatigue crack growth under wariable amplitude loading[J]. Int. J. Fatigue,2008,30(1):2-10.
    [1-84]邓洪洲,杨庆雄.近海平台结构系统疲劳寿命计算方法[J].中国海上油气(工程),1995,7(1):5-9.
    [1-85]邓洪洲,孙秦,杨庆雄.海洋平台结构系统疲劳可靠性分析方法[J].中国造船,1995,(4):62-95.
    [1-86]邓洪洲,孙秦.海上平台结构疲劳与疲劳可靠性分析程序设计[J].计算力学学报,1997,14(4):495-498.
    [1-87]谢彬,王世圣,冯玮,等.3000m水深半潜式钻井平台关键技术综述[J].高科技与产业化,2008,12:34-36.
    [1-88]姜哲,谢彬,谢文会.新型深水半潜式生产平台发展综述[J].海洋工程,2011.29(3):132-138.
    [1-89]王世圣,谢彬,谢文会.深水半潜式钻井平台总体强度计算技术研究[J].石油矿场机械,2009,38(5):1-4.
    [1-90]谢文会,谢彬,王世圣.深水半潜式钻井平台典型节点谱疲劳分析[J].中国海洋平台,2009,24(5):28-40.
    [1-91]谢文会,谢彬.深水半潜式钻井平台简化疲劳分析[J].海洋工程,2010,28(2):37-43.
    [1-92]谢文会,谢彬.深水半潜式钻井平台典型节点强度研究[J].中国海上油气,2010,22(4):265-269.
    [1-93]金伟良.广义结构可靠度的分析方法[c].第三届全国结构工程学术会议论文集,太原,1994.488-491.
    [1-94]金伟良.结构可靠度数值模拟的新方法[J].建筑结构学报,1996,17(3):63-72.
    [1-95]Jin W L, Luz E. Improving importance sampling method in structural reliability[J]. J. Nuclear Eng.& Design,1994,147 (3):393-401.
    [1-96]Jin W L, Luz E. Definition and measure of uncertainties in structural reliability analysis[J]. Struct. Safety & Reliab.,1994,297-300.
    [1-97]Jin W L, et al. Evaluation of application of p-y curve method in offshore engineering foundation[J]. China Ocean Eng.,1993,7(4):451-466.
    [1-98]李林普,金伟良.自升式钻井平台结构疲劳寿命分析[J].大连理工大学学报,1989,29(3):343-351.
    [1-99]Jin W L. Reliability based-design of jacket platform under extreme loads[J]. China Ocean Eng.,1996,10(2):145-160.
    [1-100]Jin W L. et al. Relativistic information entropy on uncertainty analysis[J]. China Ocean Eng.,1996,10(4):410-420.
    [1-101]金伟良,潘东明,张兴才.超载作用下的海洋平台结构可靠性[J].中国海上油气(工程),1997,9(4):1-5.
    [1-102]Jin W L, Moan T, Importance sampling method in rotated U-space[J]. Struct. Safety & Reliab.,1998,427-434.
    [1-103]Zhuang Y Z, Jin W L. Aseismic reliability analysis approach for offshore jacket platform structures[J]. China Ocean Eng.,1998,12(4):375-382.
    [1-104]庄一舟,金伟良,李海波等.海洋导管架平台抗震可靠性分析方法[J].海洋学报,1999,21(5):129-136.
    [1-105]Jin W L, Zheng Z S, Li H B, et al. Hybrid analysis approach for stochastic response of offshore jacket platforms, China Ocean Eng.,2000,14(2):143-152.
    [1-106]Jin W L, Zheng Z S, Li H B, et al. Hybrid analysis approach for stochastic response of offshore jacket platforms[J]. China Ocean Eng.,2000,14(2):143-152.
    [1-107]金伟良.涠11-4C平台结构可靠性研究[R].杭州:浙江大学结构工程研究所,2000.
    [1-108]张立,金伟良.考虑检修因素的海洋工程结构疲劳可靠性分析[J].强度与环境,2001,(3):22-30.
    [1-109]张燕坤,金伟良.极端荷载作用下海洋导管架平台体系可靠度分析[J].海洋工程,2001,19(4):15-20.
    [1-110]朱俊民.海洋平台结构焊接管节点强度和疲劳可靠性分析[D].杭州:浙江大学,2001.
    [1-111]金伟良,郑忠双,邹道勤,等.海洋导管架平台随机响应的复合分析方法[J].海洋工程,2001,19(1):12-18.
    [1-112]郑忠双.极端环境下海洋结构物随机响应分析及动力可靠性研究[D].杭州:浙江大学,2001.
    [1-113]金伟良,沈照伟,李海波.结构可靠度分析中设计基准期的敏度分析[J].中国海洋平台,2003,18(5):15-18.
    [1-114]Jin W L, Song J, Gong S F, et al. Evaluation of damage to offshore platform structures due to collision of large barge[J]. Eng. Struct.,2005,27(9):1317-1326.
    [1-115]张立,金伟良.海洋平台结构疲劳损伤与寿命预测方法[J].浙江大学学报(工学版),2002,36(2):138-142.
    [1-116]张立,金伟良.考虑检修因素的海洋工程结构疲劳可靠性分析[J].强度与环境,2001,(3):22-30.
    [1-117]金伟良,龚顺风,朱俊民.海洋平台结构管节点强度可靠性分析[J].科技通报,2002,18(5):351-354.
    [1-118]龚顺风.海洋平台结构碰撞损伤及可靠性与疲劳寿命评估研究[D].杭州:浙江大学,2003.
    [1-119]金伟良,付勇,赵冬岩,等.具有裂纹损伤的海底管道断裂评估及其软件开发[J].中国海上油气(工程),2003,15(6):41-45.
    [1-120]Jin W L, He Y, Gong S F, et al. System reliability-based assessment on single point mooring jacket platform, Proc. of the 24th international conference on offshore mechanics and arctic engineering, Halkidiki,2005.277-283.
    [1-121]金伟良,何勇,宋剑.偶然灾害下海洋平台损伤结构体系可靠性分析[J].浙江大学学报(工学版),2006,40(9):1554-1558.
    [1-122]龚顺风,何勇,金伟良.单点系泊海洋导管架平台结构的疲劳寿命可靠性分析[J].浙江大学学报(工学版).2007,41(6):995-999.
    [1-123]龚顺风,何勇,金伟良.海洋平台结构随机动力响应谱疲劳寿命可靠性分析[J].浙江大学学报(工学版),2007,41(1):12-17.
    [1-124]Jin W L, Hu Q Z, Shen Z W, et al. Reliability-based load and resistance factors design for offshore jacket platforms in the Bohai Bay:calibration on target reliability index[J]. China Ocean Eng.,2009,23(1):15-26.
    [1-125]Jin W L, Hu Q Z, Shen Z W, et al. Reliability-based load and resistance factors design for offshore jacket platforms in the bohai bay:calibration on design factors[J]. China Ocean Eng.,2009,23(3):387-398.
    [1-126]何勇,龚顺风,金伟良.考虑几何非线性的海底悬跨管道疲劳可靠性分析方法[J].振动工程学报,2009,22(3):313-318.
    [1-127]何勇,徐龙坤,叶谦,金伟良.深海浮式平台加筋板可靠性分析[C].第十四届中国海洋(岸)工程学术讨论会论文集,2009.
    [1-128]Cui L Xu J N, He Y, Jin W L. Fatigue analysis on key components of Semi-submersible platform[C]. Proceedings of the 29th international conference on offshore mechanics and arctic engineering, Shanghai, China,2010,671-675.
    [1-129]徐龙坤.深海浮式平台局部结构可靠度分析与优化设计[D].杭州:浙江大学,2010.
    [1-130]徐龙坤,何勇,金伟良.基于可靠度深海浮式平台加筋板优化设计方法[J].海洋工程,2010,28(3):17-23.
    [1-131]叶谦,何勇,金伟良.半潜式平台结构整体可靠性分析方法[J].海洋工程,2011,29(3):31-36.
    [1-132]徐伽南,何勇,崔磊,金伟良.基于改进子模型技术的TLP平台疲劳分析[J].船舶工程,2012,34(1):79-82.
    [1-133]邵景华,何勇,胡狄,等.张力腿平台局部节点强度可靠度分析方法[J],海洋工程,2012,30(1):25-32.
    [1-134]He Y, Gong S F, Jin W L. A method for analyzing system reliability of existing jacket platforms[J]. China Ocean Eng.,2008,22(3):385-397.
    [1-135]徐伽南.基于子模型技术的海洋张力腿平台结构疲劳分析[D].杭州:浙江大学硕士学位论文,2012.
    [1-136]刘刚,郑云龙,赵德有,等BINGO9000半潜式钻井平台疲劳强度分析[J].船舶力学,2002,6(2):54-63.
    [1-137]李杰,段梦兰,周松民,等.半潜式钻井平台表面裂纹损伤评价[J].石油学报,2006,27(1):128-131.
    [1-138]王建军,王冬石,李杰,等.半潜式钻井平台浮箱表面裂纹损伤研究[J].中国海上油气,2008,20(6):404-4 10.
    [1-139]王建军,段梦兰,黎剑波,等.半潜式钻井平台浮箱表面裂纹前沿断裂参量和临界状态评估研究[J].海洋工程,2010,28(1):1-8.
    [1-140]马网扣,王志青,张海彬.深水半潜式钻井平台节点疲劳寿命谱分析研究[J].海洋工程,2008,26(03):1-8.
    [1-141]冯国庆,任慧龙,李辉,等.基于直接计算的半潜式平台结构总强度评估[J].哈尔滨工程大学学报,2009,30(3):255-261.
    [1-142]邓鹏,颜勇剑,田其磊,等.半潜式平台关键点的疲劳可靠性分析[J].造船技术,2009,6:15-18.
    [1-143]白艳彬,刘俊,薛鸿祥,等.深水半潜式钻井平台总体强度分析[J].中国海洋平台,2010,25(2):22-27.
    [1-144]祁恩荣,庞建华,吴东伟,半潜式平台极限强度可靠性研究[J].船舶力学,2011,15(4):372-376.
    [1-145]张朝阳,刘俊,白艳彬,等.基于谱分析法的深水半潜式平台疲劳强度分析[J].海洋工程,2012,30(1):53-59.
    [1-146]谢昕,胡嘉骏,杨鹏.基于蒙特卡洛模拟的半潜式平台极限强度可靠性研究[J].中国舰船研究,2012,7(1):47-51.
    [1-147]Dover W D. Fatigue fracture mechanics analysis of offshore structures[J]. Int. J. Fatigue, 1981,3(2):52-60.
    [1-148]Cheng Y W. Fatigue crack growth analysis under sea-wave loading[J]. Int. J. Fatigue, 1988,10(2):101-108.
    [1-149]Sarkani S, Michaelov G, Kihl D P, et al. Fatigue of welded steel joints under wideband loadings[J]. Probabilistic Eng. Mech.,1996,11(4):221-227.
    [1-150]Huneau B, Mendez J. Fatigue behavior of a high strength steel in vacuum, in air and in 3.5%NaCl solution undercathodic protection[J]. Materials Sci. Eng.,2003,345(1-2): 14-22.
    [1-151]Zhang Yan-Hui, Maddox S J. Investigation of fatigue damage to welded joints under variable amplitude loading spectra[J]. Int. J. Fatigue,2009,31(1):138-152.
    [1-152]Li Sun, Hong-Nan Li, Liang Ren, et al. Dynamic response measurement of offshore platform model by FBG sensors[J]. Sensors and Actuators A:Physical,2007,136(2): 572-579.
    [1-153]李春林.E36-Z35钢变幅载荷下疲劳强度研究[J].中国海洋平台,1995,10(5):183-185.
    [1-154]李春林.E36-E35钢T型焊接接头疲劳强度研究[J].中国海洋平台,1997,12(2):81-83.
    [1-155]薛以年,徐纪林,李禾,等.国产海上平台钢E36-Z35焊接接头腐蚀疲劳的试验研究[J].钢结构,1992,(1):42-51.
    [1-156]丁克勤,柳春图.海洋平台E36-Z35钢表面疲劳裂纹扩展速率的蒙特卡洛模拟[J].海洋工程,1998,16(2):90-96.
    [1-157]Ding K Q, Liu C T, Zhao J Y, et al, Monte-carlo simulation of surface crack growth rate for offshore structural steel E36-Z35[1]. China Ocean Eng.,1999,13(1):1-10.
    [1-158]冯国庆,任慧龙,李辉,等.在役平台结构剩余疲劳寿命的可靠性分析[J].大连海大学学报,2011,37(1):1 8-24.
    [1-159]欧进萍,肖仪清,黄虎杰,等.海洋平台结构实时安全监测系统[J].海洋工程,2001,19(2):1-6.
    [1-160]徐丹,岳前进,张崎,等.光纤光栅应变计监控海洋平台上部活动荷载[J].海洋工程,2008,26(4):23-26.
    [1-161]王荣祥,张大勇,岳前进,等.基于现场监测的抗冰平台疲劳寿命估计[J].海洋工程,2008,26(3):15-20.
    [1-162]黄国君,殷昀虢,戴锋.光纤布拉格光栅传感系统在海洋平台监测中的应用[C].2000年度海洋工程学术会议论文集,宁波,2003,470-478.
    [1-163]李春梅,申素梅,林越,等.基于光纤光栅传感技术的海洋平台结构健康监测方法[J].船海工程,2011,40(6):165-167.
    [1-164]金伟良,张恩勇,邵剑文,等.分布式光纤传感技术在海底管道健康监测中的应用[J].中国海上油气(工程),2003,15(4):5-8.
    [1-165]Wei-Liang JIN, Jian-Wen SHAO, En-Yong ZHANG. Basic strategy of health monitoring on submarine pipeline by distributed optical fiber sensor[C]. Proceedings of the international conference on offshore mechanics and arctic engineering-OMAE,2003,2: 531-536.
    [1-166]Wei-Liang JIN, Jian-Wen SHAO. Pressure test method of safety assessment on existed submarine pipeline[C]. Proceedings of the international conference on offshore mechanics and arctic engineering-OMAE,2004,3:275-280.
    [1-167]张恩勇,金伟良,宋牟平,等.海底管道串联分布式光纤监测系统[J].中国海洋平台,2004,19(5):40-42.
    [1-168]邵剑文.海底管道的健康监测系统与评估研究[D].杭州:浙江大学,2006.
    [1-169]张恩勇.海底管道分布式光纤传感技术的基础研究[D].杭州:浙江大学,2004.
    [1-170]刘德华,金伟良,张玉香.光纤传感器与结构基体的应变传递关系[J].浙江大学学报(工学版),2006,40(11):1847-1851.
    [1-171]刘德华,宋牟平,金伟良,等.基于布里渊散射的长距离分布式监测网络技术[J].科技通报,2004,20(5):415-419.
    [1-1 72]毛江鸿,何勇,金伟良,等.分布式光纤传感器应变传递性能分析及试验研究[J].传感技术学报,2011,24(10):1406-1411.
    [1-173]毛江鸿.分布式光纤传感器技术在结构应变及开裂监测中的应用研究[D].杭州:浙江大学,2012.
    [2-1]蒋志岩.船舶结构疲劳评估及其应力分析方法研究[D].大连:大连理工大学,2004.
    [2-2]胡毓仁,李庆典,陈伯真.船舶与海洋工程结构疲劳可靠性分析[M].哈尔滨:哈尔滨工程大学出版社,2010.
    [2-3]Paris P C, Erdogan F. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering, ASME,1963,84(4):528-534.
    [2-4]Donahue R J, Clark H M, Atanmo P, et al. Crack opening displacement and the rate of fatigue crack growth[J]. International Journal of Fracture Mechanics,1972,8:209-219.
    [2-5]Foreman R G, Kearney V E, Engle R M. Numerical analysis of crack propagation in cyclic-loaded structures[J]. J. Basic Eng.,1967,89:459-464.
    [2-6]Priddle E K.High cycle fatigue crack propagation under random and constant amplitude loadings[J].Int. J. Pressure Vessels and Piping,1976,4(2):89-117.
    [2-7]McEvily A J, Groeger J. On the threshold for fatigue-crack growth[C]. Proc.4th international conference on fracture, University of Waterloo Press, Waterloo, Canada,1977,1293-1298.
    [2-8]Cui W C, Bian R G, Liu X C. Application of the two-parameter unified approach for fatigue life prediction of marine structures [C]. PRADS2007. Houston, USA,2007,392-398.
    [2-9]ABS. Guidance notes on spectral-based fatigue analysis for floating offshore structures[S]. New York:American Bureau of Shipping,2005.
    [2-10]BS7910. Guide to methods for assessing the acceptability of flaws in metallic structures[S]. London:British Standards,2005.
    [2-11]徐伽南,何勇,崔磊,金伟良.基于改进子模型技术的TLP平台疲劳分析[J].船舶工程,2012,34(1):79-82.
    [2-12]徐龙坤.深海浮式平台局部结构可靠度分析与优化设计[D].杭州:浙江大学,2010.
    [2-13]徐伽南.基于子模型技术的海洋张力腿平台结构疲劳分析[D].杭州:浙江大学,2012.
    [2-14]ANSYS. Advanced analysis techniques guide[M]. USA:ANSYS Company,2009.
    [2-15]陈玉振,陈亚峰,瞿亦峰.子模型技术在强度分析中的应用[J].机械.2008,35(8):28-30.
    [3-1]DNV. fatigue design of offshore steel structures[S]. Norway:Det Norske Veritas,2006.
    [3-2]WAMIT. User manual[M]. USA:WAMIT Inc.2006.
    [3-3]ABS. Guidance notes on spectral-based fatigue analysis for floating offshore structures[S]. New York:American Bureau of Shipping,2005.
    [3-4]胡毓仁,李庆典,陈伯真.船舶与海洋工程结构疲劳可靠性分析[M].哈尔滨:哈尔滨工程大学出版社,2010.
    [3-5]DNV. Fatigue design of offshore steel structures. Recommended Practice DNV-RP-C203[S]. Norway:Det Norske Veritas,2005.
    [3-6]ABS. Guide for the fatigue assessment of offshore structures[S]. New York:American Bureau of Shipping,2003.
    [3-7]BS7608. Code of practice for fatigue design and assessment of steel structures[S]. London: British Standards Institution,1993.
    [3-8]BS7910. Guide to methods for assessing the acceptability of flaws in metallic structures[S]. London:British Standards Institution,2005.
    [4-1]ABS. Guidance notes on spectral-based fatigue analysis for floating offshore structures[S]. New York:American Bureau of Shipping,2005.
    [4-2]Torng T Y, Wirsching, P H. Fatigue and fracture reliability and maintainability process[J]. J. Struct. Eng., ASCE,1991,117(12):3804-3822.
    [4-3]Kung C J, Wirsching P H. Fatigue and fracture reliability and maintainability of TLP tendons[J]. Safety and Reliability, ASME,1992,1(2):15-21.
    [4-4]Jiao G Y, Moan T. Reliability-based fatigue and fracture design criteria for welded offshore structures[J]. Eng. Fract. Mech.,1992,41(2):271-282.
    [4-5]Moan T, Hovde G O, Blanker A M. Reliability-based fatigue design criteria for offshore structures considering the effect of inspection and repair[A]. Proceeding of 25th annual offshore technology conference[C]. OTC 7189,1993.591-600.
    [4-6]Siddiqui N A, Ahmad S. Reliability analysis against progressive failure of TLP tethers in extreme tension[J]. Reliab. Eng. Syst. Saf,2000,68(3):195-205.
    [4-7]Siddiqui N A, Ahmad S. Fatigue and fracture reliability of TLP tethers under random loading[J]. Mar. Struct.,2001,14(3):331-352.
    [4-8]ABS. Guide for the fatigue assessment of offshore structures[S]. New York:American Bureau of Shipping,2003.
    [4-9]Wirsching P H. Fatigue reliability for offshore structures[J]. J. Struct. Div.. ASCE,1984, 110(10):2340-2356.
    [4-10]Kjerengtroen L Wirsching PH. Structural reliability analysis[J]. J. Struct. Eng., ASCE,1984, 10(7):1495-1511.
    [4-11]DNV. Fatigue design of offshore steel structures[S]. Norway:Det Norske Veritas,2006.
    [4-12]胡毓仁,李庆典,陈伯真.船舶与海洋工程结构疲劳可靠性分析[M].哈尔滨:哈尔滨工程大学出版社,2010.
    [4-13]Newman J C, Raju I S. An empirical stress-intensity factor equation for the surface crack[J]. Eng. Fract. Mech.,1981,15(1-2):185-192.
    [4-14]BS7910. Guide to methods for assessing the acceptability of flaws in metallic structures[S]. London:British Standards Institution,2005.
    [5-1]DNV. Fatigue design of offshore steel structures[S]. Norway:Det Norske Veritas,2006.
    [5-2]谢文会,谢彬.深水半潜式钻井平台简化疲劳分析[J].海洋工程,2010,28(2):37-43.
    [5-3]ASTM E647-08. Standard test method for measurement of fatigue crack growth rates[S]. Philadelphia PA:American Society for Testing and Materials,2008.
    [5-4]GB/T15248-2008.金属材料轴向等幅低循环疲劳试验方法[S].北京:中国标准出版社,2008.
    [5-5]GB/T24176-2009.金属材料疲劳试验数据统计方案与分析方法[S].北京:中国标准出版社,2009.
    [5-6]ISO 12108-2012. Metallic materials-Fatigue testing-Fatigue crack growth method [S]. Switzerland:International Organization for Standardization,2012.
    [5-7]ISO12106-2003. Metallic materials-Fatigue testing-Axial strain controlled method [S]. Switzerland:International Organization for Standardization,2003.
    [5-8]ISO 1099-2006. Metallic materials-Fatigue testing-Axial force controlled method [S]. Switzerland:International Organization for Standardization,2006.
    [5-9]邹家仁,钱建民,李华其.海洋工程用钢的焊接技术现状及发展[J],江苏船舶,2011,28(3):35-36.
    [5-10]CCS.船体结构疲劳强度指南[S].北京:中国船级社,2007.
    [5-11]DNV. Recommended practice for fatigue strength analysis of offshore steel structures[S]. Norway:Det Norske Veritas,2001.
    [5-12]张淑茳,史冬岩.海洋工程结构的疲劳与断裂[M].哈尔滨:哈尔滨工程大学出版社,2004.
    [5-13]陈传尧.疲劳与断裂[M].武汉:华中科技大学出版社,2002.
    [5-14]ABS. Guidance notes on spectral-based fatigue analysis for floating offshore structures[S], New York:American Bureau of Shipping,2005.
    [5-15]BS7910. Guide to methods for assessing the acceptability of flaws in metallic structures[S]. London:British Standards Institution,2005.
    [5-16]BS7608. Code of practice for fatigue design and assessment of steel structures[S]. London: British Standards Institution,1993.
    [5-17]ABS. Guide for the fatigue assessment of offshore structures[S]. New York:American Bureau of Shipping,2003.
    [5-18]赵建生.断裂力学及断裂物理[M].武汉:华中科技大学出版社,2003.
    [5-19]Laird C, Smith G C. Crack propagation in high stress fatigue[J]. Journal of Theory Experiment and Applied Physics,1962,7(77):847-857.
    [6-1]刘燕红,朱锡,蒙上阳.破损舰体结构疲劳裂纹扩展及剩余寿命研究[J].船舶力学,2010,14(10):1151-1157.
    [6-2]Sumi Y. Fatigue crack propagation and computational remaining life assessment of ship structures[J]. Journal Marine Science Technology,1998,3(2):102-112.
    [6-3]郭昌捷,周炳焕.营运船舶总纵剩余强度评估和预报[J].大连理工大学学报,1998,38(4):414-418.
    [6-4]Sumi Y, Mohri M, Kawamura Y. Computational prediction of fatigue crack paths in ship structural details[M]. Blackwell Publishing Ltd. Fatigue&Fracture of Engineering&Materials, Structures,2005, (28):107-115.
    [6-5]翁健盛.船舶破损后载荷和剩余强度分析研究[D].上海:上海交通大学,2007.
    [6-6]李陈峰.破损舰船剩余强度评估方法研究[D].哈尔滨:哈尔滨工程大学,2009.
    [6-7]刘俊梅.船体极限强度及受损船体剩余极限强度分析[D].武汉:武汉理工大学,2005.
    [6-8]王芳.具有裂纹损伤的船舶结构剩余极限强度分析[D].上海:上海交通大学,2007.
    [6-9]陈传尧.疲劳与断裂[M].武汉:华中科技大学出版社,2002.
    [6-10]DNV. Recommended practice for fatigue strength analysis of offshore steel structures[S]. Norway:Det Norske Veritas,2001.
    [6-11]CCS.船体结构疲劳强度指南[S].北京:中国船级社,2007.
    [7-1]徐丹,岳前进,张崎,等.光纤光栅应变计监控海洋平台上部活动荷载[J].海洋工程,2008,2(4):23-26.
    [7-2]黄国君,殷昀虢,戴锋,等.光纤布拉格光栅应变传感器的灵敏性及疲劳可靠性研究[J].激光杂志,2003,24(6):45-47.
    [7-3]黄红梅,袁慎芳.基于光纤Bragg光栅传感器的疲劳裂纹扩展的研究[J].光电子(激光),2009,20(4):447-450.
    [7-4]姜德生,何伟.光纤光栅传感器的应用概况[J].光电子(激光),2002,13(4):420-430.
    [7-5]Wang G, et al. Digital demodulation and signal processing applied to fibre Bragg grating strain sensor arrays in monitoring transient loading effects on ship hulls[C]. Proc. of Optical Fiber Sensors Conf., Williamsburg, VA, USA,1997.612-615.
    [7-6]王琦.光纤EFPI/FBG传感测井系统关键技术研究[D].大连:大连理工大学,2009.
    [7-7]武湛君,万里冰,张博明,等.光纤光栅应变传感器监测复合材料层板疲劳过程[J].复合材料学报,2004,21(6):75-81.
    [7-8]Slowik V, Schlattner E, Klink T. Fiber Bragg grating sensors in concrete technology[J]. LACER,1998,3(6):109-119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700