用户名: 密码: 验证码:
黑素瘤中过度表达c-FLIP异常激活β-catenin/TCF路径的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分c-FLIP、浆/核β-catenin的表达及二者表达的相关性研究
     目的观察细胞型FAS结合蛋白样白介素-1β转换酶抑制蛋白(cellular FADD-likeinterleukin -1βconvening enzyme inhibitory protein,c-FLIP)、浆/核β-连环蛋白(β-catenin)在恶性黑素瘤组织、色素痣、银屑病及正常包皮组织中的表达,探讨两者的相关性。
     方法以20例色素痣组织及20例正常包皮作为对照,应用免疫组织化学方法检测77例恶性黑素瘤组织,20例银屑病组织中c-FLIP、浆/核β-catenin的表达,对蛋白表达行半定量分析。
     结果c-FLIP、浆/核β-catenin、周期素蛋白D1(cyclinD1)在77例恶性黑素瘤组织中的阳性表达率分别为65.0%、32.5%和31.2%,且三者的表达有相关性;c-FLIP的表达在黑素瘤组织中明显增高,且与组织类型相关;在正常色素痣中c-FLIP、浆/核β-catenin及cyclinD1无阳性表达或偶见阳性表达。银屑病组织中c-FLIP的表达增强,与正常对照相比,差异有显著性;几无浆/核β-catenin的表达;在银屑病组织中未观察到三者有MM中的类似关系。
     结论c-FLIP高表达可能参与MM的发生、发展;在MM中高表达的c-FLIP可能与β-catenin的浆/核表达有关,从而影响β-连环蛋白/T细胞因子(β-catenin/TCF)下游基因cyclinD1的表达。
     第二部分pCMV-Tag2B-FLIP_(L/P43/S)以及c-FLIP-shRNA载体的构建和表达
     目的构建细胞FLICE蛋白(c-FLIP)和pCMV-Tag2B融合蛋白基因的重组真核表达载体pCMV-Tag2B-FLIP_L、pCMV-Tag2B-FLIP_S和pCMV-Tag2B-FLIP_(p43)。并转染至A375细胞中进行表达,鉴定融合蛋白的生物学活性。针对c-FLIP各亚型共有靶点设计shRNA分子,连接于真核表达载体pSilencer 3.1-H1 neo,构建pSilencer-c-FLIP质粒,下调c-FLIP的表达。为后续实验奠定基础。
     方法从白血病Jurkat细胞中提取总RNA,分离提取mRNA,逆转录获得cDNA。设计三对引物引入酶切位点xhoⅠ和EcoRI,再用PCR的方法,分别扩增FLIP_L、FLIP_(P43)和FLIP_S序列。将获得的基因克隆至pGEM-T载体(FLIP-T),转化大肠杆菌DH5a,进行蓝白筛选,挑取阳性克隆扩增。提取质粒以xhoⅠ、EcoRI双酶切鉴定,并测序证实正确后,亚克隆至pCMV-Tag 2B,获得pCMV-Tag 2B-FLIP_(L/P43/S),转染A375细胞,获得稳转细胞系。设计针对c-FLIP的shRNA,酶切pSilencer 3.1-H1 neo后,将合成的shRNA通过BamHⅠ和HindⅢ连接于载体,构建真核载体,表达siRNA。
     结果测序结果表明获得了正确的FLIP_L、FLIP_(P43)和FLIP_S基因序列;亚克隆至pGEM-T载体后,xhoⅠ和EcoRI双酶切可见约1.4Kb、1.1Kb和0.6kb的小片段和约4.3Kb的大片段,与理论计算值相符,表明pCMV-Tag 2B-FLIP_L、pCMV-Tag 2B-FLIP_(P43)和pCMV-Tag 2B-FLIP_S真核表达载体构建成功;表达载体转染A375细胞,G418筛选后用westernblot、流式分析鉴定其为稳定转染细胞株。成功pSilencer-c-FLIP构建,转染入黑素瘤细胞中,能够下调c-FLIP各亚型的表达。
     结论成功构建pCMV-Tag 2B-FLIP_(L/P43/S)融合蛋白的真核表达载体,融合蛋白可在A375细胞中表达;成功构建pSilencer-c-FLIP载体,在黑素瘤细胞中能够下调c-FLIP各亚型的表达,本实验为进一步研究FLIP对β-catenin/TCF通路的影响奠定基础。
     第三部分c-FUP_(L/P43)通过β-catenin/TCF激活cyclinD1的表达
     目的观察c-FLIP的改变是否激活β-catenin/TCF通路,引起下游基因的变化;观察c-FLIP各亚型在上述作用中的差异。
     方法利用pCMV-Tag-2B-c-FLIP真核表达载体上调低表达c-FLIP的黑素瘤A375细胞系中各亚型c-FLIP的表达水平,用western blot及细胞免疫荧光观察β-catenin定量、定位的改变;用TOP/FOP双荧光报告基因分析观察转录因子TCF的活性,判断是否通过β-catenin/TCF路径启动下游基因的转录;western blot检测β-catenin/TCF路径下游基因cyclinD1蛋白水平的改变;比较c-FLIP各亚型在上述过程中的作用差异;同时利用pSilencer-c-FLIP载体下调c-FLIP各亚型的水平,观察对上述过程的影响,明确c-FLIP各亚型功能特异性。
     结果在A375细胞中,高表达c-FLIP_(L/P43)可以增加胞核及胞浆中β-catenin的表达;通过TOP/FOP双荧光报告基因检测,证明确实通过β-catenin/TCF路径启动下游基因的转录;检测下游基因cyclinD1的蛋白水平明显升高。行RNA干扰c-FLIP的表达后,上述结果部分逆转。但在高表达c-FLIP_S的细胞中并未表现出上述现象。
     结论过度表达c-FLIP_(L/P43)可以异常激活β-catenin/TCF路径,诱导下游基因的表达。
     第四部分c-FLIP对A375细胞生物学特性的影响
     目的观察c-FLIP各亚型对A375细胞的生长、增殖、凋亡及转化能力的影响。
     方法在pCMV-Tag-2B-c-FLIP_(L/P43/S)稳定转染细胞中,运用绝对细胞计数对c-FLIP各亚型稳定转染细胞绘制生长曲线,比较其与对照组的差异;用MTT法检测各稳定转染细胞增殖能力的差异;用Annexin v/PI双染细胞,检测各组细胞凋亡率的差异;用双层软琼脂克隆形成实验检测各组细胞体外转化能力的差异。同时运用shRNA干扰,下调c-FLIP各亚型的表达,验证c-FLIP所产生的细胞生物学特异改变的特异性。
     结果A375/c-FLIP_(L/p43/S)细胞的生长速度均快于A375/Control细胞,其中,A375/c-FLIP_L与A375/c-FLIP_(P43)细胞的生长速度基本一致,A375/c-FLIP_S较二者慢;行MTT法检测细胞增殖能力,与细胞生长曲线结果类似,A375/c-FLIP_(L/p43/S)细胞增殖能力强于A375/Control细胞,其中,A375/c-FLIP_S细胞增殖能力略低于A375/c-FLIP_L及A375/c-FLIP_(P43)细胞;Annexin v/PI双染检测细胞凋亡率,A375/c-FLIP_(L/p43/S)细胞略低于A375/Control细胞;行双层软琼脂克隆形成实验,A375/c-FLIP_(L/p43/S)细胞克隆形成率高于对照细胞,其中,A375/c-FLIP_L与A375/c-FLIP_(P43)细胞克隆形成率高于A375/c-FLIP_S细胞。用shRNA干扰,下调c-FLIP各亚型的表达,上述效应部分得到逆转。
     结论c-FLIP各亚型均可以促进细胞生长、增殖及转化,其中c-FLIP_L及c-FLIP_(P43)的能力更强,但在抗凋亡效应中,c-FLIP的三种亚型未表现出显著差异。
PartⅠExpression of c-FLIP and nuclear or cytoplasmicβ-catenin andthe relationship between them
     Objective: To study expression of c-FLIP,β-catenin in melanoma, nevus, psoriasis andacrobystia and explore the relationship between them. To investigate the correlationbetween histopathological characteristics and expression of those protein in melanoma.
     Methods: The protein of c-FLIP,β-catenin and cyclinD1 were detecded byimmunohistochemistry and quantitative analysis the relationship among c-FLIP, nuclear orcytoplasmicβ-catenin and cyclinD1.
     Results: In melanoma, positive expression of c-FLIP, nuclear or cytoplasmicβ-catenin andcyclinD1 were observed in 65.0% (50 case), 32.5% (25 case) and 31.2%(24 case), respectively,and the positive relationship were observed among c-FLIP and nuclear or cytoplasmicβ-catenin,cyclinD1. Increased those protein expression in melanoma lesion were significantly associatedwith histological type. In nevus, the expression of c-FLIP, nuclear or cytoplasmicβ-catenin andcyclinD1 were lower than that in melanoma. In psoriasis, the expression of c-FLIP was increased,and nearly no expression of nuclear or cytoplasmicβ-catenin.
     Conclusions: Our data suggested that increased c-FLIP, nuclear or cytoplasmicβ-catenin and cyclinD1 protein in melanoma may contribute to the development ofmelanoma. The increased expression of c-FLIP maybe have relationship with theexpression of nuclear or cytoplasmicβ-catenin, and then induce the expression ofdownstream genes ofβ-catenin/T Cell Factor(β-catenin/TCF), such as, cyclinD1.
     PartⅡConstruction and expression of pCMV-Tag2B-FLIP_(L/P43/S) andc-FLIP-shRNA expression vector
     Objective: To construct pCMV-Tag2B-c-FLIP_(L/P43/S) eukaryotic expression vector,transfect into melanoma cells and investigate the expression. Construct c-FLIP-shRNAeukaryotic expression vector, transfect into melanoma cells and explore the effect ofinterference for c-FLIP.
     Methods: Extracted total RNA from Jurkat cells and then isolated mRNA, and thenreverse transcripted to obtain cDNA. Three pairs of PCR primers were designed and used toamplify the c-FLIP_L, c-FLIP_(P43) and c-FLIP_S gene respectively. Two restrictionendonuclease sites xho I and EcoRI were introduced. The c-FLIP_L or c-FLIP_(P43) or c-FLIP_Sgene was inserted into the pGME-T vector. The recombinant plasmid was transfomed intoE. coli DH5α. Positive cell clones were indentified by restriction enzyme digestion andsequenced. The c-FLIP_L or c-FLIP_(P43) or c-FLIP_S gene was subcloned into the eukaryoticfusion protein expression vector pCMV-Tag-2B to obtain pCMV-Tag-2B-c-FLIP_(L/P43/S).After identification, pCMV-Tag-2B-c-FLIP_(L/P43/S) plasmid was transfected into A375 cellsand get the stable transfectants of A375/c-FLIP_(L/P43/S). Dectected the expression ofc-FLIP_(L/P43/S) in the A375/c-FLIP_(L/P43/S). To synthesize the sequence target human c-FLIPgene, c-FLIP-shRNA, and insrted into pSilencer 3.1-H1 neo vetor by BamHⅠand HindⅢrestriction endonuclease sites to get pSilencer-c-FLIP. After identification, pSilencer-c-FLIPplasmid was transfected into A375 cells and observe the c-FLIP_(L/P43/S) expression.
     Results: The c-FLIP_(L/P43/S) gene was identified by sequencing, and the A375/c-FLIP_(L/P43/S)and pSilencer-c-FLIP were identified by western blot and flow cytometry(FCM).
     Conclusions: The pCMV-Tag-2B-c-FLIP_(L/P43/S) and pSilencer-c-FLIP eukaryotic expressionvector were successfully constructed . The expression of c-FLIP_(L/P43/S) protein could beregulated by those vectors. Those vectors could be used in future research for melanoma.
     PartⅢc-FLIP_(L/P43) activateβ-catenin/TCF pathway and induce theexpression of cyclinD1
     Objective: To observe whether the change of c-FLIP protein expression could lead toaberrant activation of beta-catenin/TCF pathway in melanoma and induce gene expressionof the downstream. Explore the function of c-FLIP_L, c-FLIPP_(43) and c-FLIP_S during theprocess above.
     Methods: To detecte the expression of cytoplasm or nuclearβ-catenin protein andcyclinD1 protein in stable clone A375/c-FLIP_(L/P43/S) by western blot. To observe the locationofβ-catenin in stable clone A375/c- FLIP_(L/P43/S) by cell immunofluorescence, and toobserve the activity of transcription factor T cell factor by TOP/FOP Flash. Compare thedifference of function among A375/c- FLIP_(L/P43/S). To reduce the expression of c-FLIP_(L/P43)by pSilencer-c-FLIP vector, and then observe the effect during the process above.
     Results: In stable clone A375/c-FLIP_(L/P43), we observed the expression of cytoplasm andnuclearμ-catenin was increased. At the same time, we found in those cells, the expressionof cyclinD1 was increased. By the TOP/FOP Flash, we dectected the activition of TCF wasup-regulated. However, we did not found the same results in the A375/c-FLIPs cells.
     Couclusions: Overexpression of c-FLIP_(L/P43) in A375 cell could promote the nulcear/cytoplasm accumulation ofβ-catenin and the increase transcriptional activity ofβ-catenin/TCF pathway and then induce the downstream gene expression, such as,cyclinD1.
     PartⅣThe effects of c-FLIP on bionomics of melanoma cell A375
     Objective: observe the effects of three type of c-FLIP on bionomics of melanoma cellA375, such as, growth, proliferation, apoptosis and transformation activity.
     Methods: To count cells of A375/c-FLIP_(L/P43/S) and obtain the cells' growth curve, andthen to compare the difference among those type of cells. To detecet the proliferationalactivity of A375/ c-FLIP_(L/P43/S) by MTT; to observe the rate of apoptosis by by flowcytometry(FCM) using annexin V and propidium iodide(PI) double staining; to detect thetransformation activity of those cells by soft agar assay. At the same time, suppress theexpression of c-FLIP by RNAi and then observe the effects on A375.
     Results: In comparison to control group, c-FLIP_(L/P43/S) over-expression promote thegrowth and proliferation activity of A375 cells, c-FLIP_(L/P43) have more remarkable effect onA375 cells' activity of growth and proliferation than that of c-FLIP_S. Compare to the controlcells, c-FLIP _(L/P43/S) can resist the apoptosis. Sofa agar assay indicate c-FLIP _(L/P43/S)over-expression promote the transformation activity of A375. c-FLIP _(L/P43) have more effectson transformation activity of A375 than that of c-FLIP_S. Using siRNA specifically knockingdown the expression of c-FLIP, those effects above have been reversed partly.
     Conclusions: The three subtypes of c-FLIP can promote the activity of growth,proliferation and transformation. As to resist to apoptosis, c-FLIP_(L/P43) have more effectsthan that of c-FLIP_S.
引文
1 Larue L, Delmas V. The WNT/Beta-catenin pathway in melanoma. Front Biosci 2006; 11: 733-42.
    2 Weeraratna AT. A Wnt-cr wonderland-the complexity of Wnt signaling in melanoma. Cancer Metastasis Rev 2005; 24: 237-50.
    3 Morin PJ. beta-catenin signaling and cancer. Bioessays 1999; 21: 1021-30.
    4 Malbon CC, Wang H, Moon RT. Wnt signaling and heterotrimeric G-proteins:strange bedfellows or a classic romance? Biochem Biophys Res Commun 2001; 287:589-93.
    5 Itoh K, Antipova A, Ratcliffe MJ et al. Interaction of dishevelled and Xenopus axin-related protein is required for wnt signal transduction. Mol Cell Biol 2000; 20:2228-38.
    6 Polakis P. The many ways of Wnt in cancer. Curr Opin Genet Dev 2007; 17: 45-51.
    7 Polakis P. Wnt signaling and cancer. Genes Dev 2000; 14: 1837-51.
    8 He TC, Chan TA, Vogelstein B et al. PPARdelta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell 1999; 99: 335-45.
    9 Polakis P. The oncogenic activation of betaocatenin. Curr Opin Genet Dev 1999; 9:15-21.
    10 Nakamura T, Akiyama T. [Role of the Wnt signaling network in embryogenesis and tumorigenesis]. Seikagaku 2005; 77: 5-19.
    11 Pinto D, Clevers H. Wnt control of stem cells and differentiation in the intestinal epithelium. Exp Cell Res 2005; 306: 357-63.
    12 Turashvili G, Bouchal J, Burkadze G et al. Wnt signaling pathway in mammary gland development and carcinogenesis. Pathobiology 2006; 73: 213-23.
    13 He X, Axelrod JD. A WNTer wonderland in Snowbird. Development 2006; 133:2597-603.
    14 Bienz M, Clevers H. Linking colorectal cancer to Wnt signaling. Cell 2000; 103:311-20.
    15 Zhai Y, Wu R, Schwartz DR et al. Role of beta-catenin/T-cell factor-regulated genes in ovarian endometrioid adenocarcinomas. Am J Pathol 2002; 160:1229-38.
    16 Suriano G, Vrcelj N, Senz J et al. beta-catenin (CTNNB1) gene amplification: a new mechanism of protein overexpression in cancer. Genes Chromosomes Cancer 2005; 42: 238-46.
    17 Austinat M, Dunsch R, Wittekind C et al. Correlation between beta-catenin mutations and expression of Wnt-signaling target genes in hepatocellular carcinoma.Mol Cancer 2008; 7: 21.
    18 Yang J, Zhang W, Evans PM et al. Adenomatous polyposis coli (APC)differentially regulates beta-catenin phosphorylation and ubiquitination in colon cancer cells. J Biol Chem 2006; 281:17751-7.
    19 Bougatef K, Ouerhani S, Moussa A et al. Prevalence of mutations in APC,CTNNB1, and BRAF in Tunisian patients with sporadic colorectal cancer. Cancer Genet Cytogenet 2008; 187:12-8.
    20 Shigemitsu K, Sekido Y, Usami N et al. Genetic alteration of the beta-catenin gene (CTNNB1) in human lung cancer and malignant mesothelioma and identification of a new 3p21.3 homozygous deletion. Oncogene 2001; 20: 4249-57.
    21 Ikeda T, Yoshinaga K, Semba S et al. Mutational analysis of the CTNNB1(beta-catenin) gene in human endometrial cancer: frequent mutations at codon 34 that cause nuclear accumulation. Oncol Rep 2000; 7: 323-6.
    22 Zucman-Rossi J, Benhamouche S, Godard C et al. Differential effects of inactivated Axinl and activated beta-catenin mutations in human hepatocellular carcinomas.Oncogene 2007; 26: 774-80.
    23 Rimm DL, Caca K, Hu G et al. Frequent nuclear/cytoplasmic localization of beta-catenin without exon 3 mutations in malignant melanoma. Am J Pathol 1999;154:325-9.
    24 Demunter A, Libbrecht L, Degreef H et al. Loss of membranous expression of beta-catenin is associated with tumor progression in cutaneous melanoma and rarely caused by exon 3 mutations. Mod Pathol 2002; 15: 454-61.
    25 Reifenberger J, Knobbe CB, Wolter M et al. Molecular genetic analysis of malignant melanomas for aberrations of the WNT signaling pathway genes CTNNB1, APC, ICAT and BTRC. Int J Cancer 2002; 100: 549-56.
    26 Goltsev YV, Kovalenko AV, Arnold E et al. CASH, a novel caspase homologue with death effector domains.J Biol Chem 1997; 272:19641-4.
    27 Srinivasula SM, Ahmad M, Ottilie S et al. FLAME-1, a novel FADD-like anti-apoptotic molecule that regulates Fas/TNFR1-induced apoptosis. J Biol Chem 1997; 272:18542-5.
    28 Hu S, Vincenz C, Ni J et al. I-FLICE, a novel inhibitor of tumor necrosis factor receptor-1- and CD-95-induced apoptosis.J Biol Chem 1997; 272:17255-7.
    29 Han DK, Chaudhary PM, Wright ME et al. MRIT, a novel death-effector domain-containing protein, interacts with caspases and BclXL and initiates cell death.Proc Natl Acad Sci USA 1997; 94:11333-8.
    30 Irmler M, Thome M, Hahne M et al. Inhibition of death receptor signals by cellular FLIP. Nature 1997; 388:190-5.
    31 Tschopp J, Irmler M, Thome M. Inhibition of fas death signals by FLIPs. Curr Opin Immunol 1998; 10: 552-8.
    32 Cohen GM. Caspases: the executioners of apoptosis. Biochem J 1997; 326 ( Pt 1):1-16.
    33 Kreuz S, Siegmund D, Rumpf JJ et al. NFkappaB activation by Fas is mediated through FADD, caspase-8, and RIP and is inhibited by FLIP. J Cell Biol 2004; 166:369-80.
    34 Kataoka T, Budd RC, Holler N et al. The caspase-8 inhibitor FLIP promotes activation of NF-kappaB and Erk signaling pathways. Curr Biol 2000; 10: 640-8.
    35 Shimada K, Nakamura M, Matsuyoshi S et al. Specific positive and negative effects of FLIP on cell survival in human prostate cancer. Carcinogenesis 2006; 27:1349-57.
    36 Nakagiri S, Murakami A, Takada S et al. Viral FLIP enhances Wnt signaling downstream of stabilized beta-catenin, leading to control of cell growth. Mol Cell Biol 2005; 25: 9249-58.
    37 Naito M, Katayama R, Ishioka T et al. Cellular FLIP inhibits beta-catenin ubiquitylation and enhances Wnt signaling. Mol Cell Biol 2004; 24: 8418-27.
    38 Ishioka T, Katayama R, Kikuchi R et al. Impairment of the ubiquitin-proteasome system by cellular FLIP. Genes Cells 2007; 12: 735-44.
    39 Bullani RR, Huard B, Viard-Leveugle I et al. Selective expression of FLIP in malignant melanocytic skin lesions. J Invest Dermatol 2001; 117: 360-4.
    40 Kataoka T, Tschopp J. N-terminal fragment of c-FLIP(L) processed by caspase 8 specifically interacts with TRAF2 and induces activation of the NF-kappaB signaling pathway. Mol Cell Biol 2004; 24: 2627-36.
    41 Yeh JH, Hsu SC, Han SH et al. Mitogen-activated protein kinase kinase antagonized fas-associated death domain protein-mediated apoptosis by induced FLICE-inhibitory protein expression. J Exp Med 1998; 188: 1795-802.
    42 Gumbiner BM. Signal transduction of beta-catenin. Curr Opin Cell Biol 1995; 7:634-40.
    43 Nakamura Y. Cleaning up on beta-catenin. Nat Med 1997; 3: 499-500.
    44 Pollock PM, Hayward N. Mutations in exon 3 of the beta-catenin gene are rare in melanoma cell lines. Melanoma Res 2002; 12: 183-6.
    45 Ruiter DJ, van Muijen GN. Markers of melanocytic tumour progression. J Pathol 1998; 186: 340-2.
    46 Krueger A, Baumann S, Krammer PH et al. FLICE-inhibitory proteins: regulators of death receptor,mediated apoptosis. Mol Ceil Biol 2001; 21: 8247-54.
    47 Ryang DY, Joo YE, Chung KM et al. Expression of c-FLIP in gastric cancer and its relation to tumor cell proliferation and apoptosis. Korean J Intern Med 2007; 22:263-9.
    48 Galligan L, Longley DB, McEwan M et al. Chemotherapy and TRAIL-mediated colon cancer cell death: the roles of p53, TRAIL receptors, and c-FLIP. Mol Cancer Ther 2005; 4: 2026-36.
    49 Engels IH, Stepczynska A, Stroh C et al. Caspase-8/FLICE functions as an executioner caspase in anticancer drug-induced apoptosis. Oncogene 2000; 19:4563-73.
    50 Thome M, Tschopp J. Regulation of lymphocyte proliferation and death by FLIP. Nat Rev Immunol 2001; 1: 50-8.
    51 Thome M, Schneider P, Hofmann K et al. Viral FLICE-inhibitory proteins (FLIPs)prevent apoptosis induced by death receptors. Nature 1997; 386: 517-21.
    52 Searles RP, Bergquam EP, Axthelm MK et al. Sequence and genomic analysis of a Rhesus macaque rhadinovirus with similarity to Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8. J Virol 1999;73:3040-53.
    53 Hu S, Vincenz C, Buller M et al. A novel family of viral death effector domain-containing molecules that inhibit both CD-95- and tumor necrosis factor receptor-1-induced apoptosis. J Biol Chem 1997; 272: 9621-4.
    54 van Houdt IS, Muris JJ, Hesselink AT et al. Expression of c-FLIP is primarily detected in diffuse large B-cell lymphoma and Hodgkin's lymphoma and correlates with lack of caspase 8 activation. Histopathology 2007; 51: 778-84.
    55 Safa AR, Day TW, Wu CH. Cellular FLICE-like inhibitory protein (C-FLIP): a novel target for cancer therapy. Curr Cancer Drug Targets 2008; 8: 37-46.
    56 Kataoka T. The caspase-8 modulator c-FLIP. Crit Rev Immunol 2005; 25: 31-58.
    57 MacFarlane M. TRAIL-induced signalling and apoptosis. Toxicol Lett 2003; 139:89-97.
    58 Luschen S, Falk M, Scherer G et al. The Fas-associated death domain protein/caspase-8/c-FLIP signaling pathway is involved in TNF-induced activation of ERK. Exp Cell Res 2005; 310: 33-42.
    59 Griffith TS, Chin WA, Jackson GC et al. Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol 1998; 161: 2833-40.
    60 McGary EC, Lev DC, Bar-Eli M. Cellular adhesion pathways and metastatic potential of human melanoma. Cancer Biol Ther 2002;1: 459-65.
    61 Osborne JE. Loss of beta-catenin expression is associated with disease progression in malignant melanoma. Br J Dermatol 2002; 146: 1104.
    62 Zhang XD, Hersey P. Expression of catenins and pl20cas in melanocytic nevi and cutaneous melanoma: deficient alpha-catenin expression is associated with melanoma progression. Pathology 1999; 31: 239-46.
    63 Kageshita T, Hamby CV, Ishihara T et al. Loss of beta-catenin expression associated with disease progression in malignant melanoma. Br J Dermatol 2001;145: 210-6.
    64 Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 1999; 398: 422-6.
    65 Krueger A, Schmitz I, Baumann S et al. Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex.J Biol Chem 2001; 276: 20633-40.
    66 Scaffidi C, Schmitz I, Krammer PH et al. The role of c-FLIP in modulation of CD95-induced apoptosis.J Biol Chem 1999; 274:1541-8.
    67 Chang DW, Xing Z, Pan Y et al. c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. Embo J 2002; 21: 3704-14.
    68 Park SJ, Kim YY, Ju JW et al. Alternative splicing variants of c-FLIP transduce the differential signal through the Raf or TRAF2 in TNF-induced cell proliferation.Biochem Biophys Res Commun 2001; 289:1205-10.
    69 Chaudhary PM, Eby MT, Jasmin A et al. Activation of the NF-kappaB pathway by caspase 8 and its homologs. Oncogene 2000; 19: 4451-60.
    70 Kurbanov BM, Fecker LF, Geilen CC et al. Resistance of melanoma cells to TRAIL does not result from upregulation of antiapoptotic proteins by NF-kappaB but is related to downregulation of initiator caspases and DR4. Oncogene 2007; 26:3364-77.
    71 Xiao C, Yang BF, Song JH et al. Inhibition of CaMKII-mediated c-FLIP expression sensitizes malignant melanoma cells to TRAIL-induced apoptosis. Exp Cell Res 2005; 304: 244-55.
    72 Song JH, Song DK, Herlyn M et al. Cisplatin down-regulation of cellular Fas-associated death domain-like interleukin-lbeta-converting enzyme-like inhibitory proteins to restore tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human melanoma cells. Clin Cancer Res 2003; 9:4255-66.
    73 Widlund HR, Horstmann MA, Price ER et al. Beta-catenin-induced melanoma growth requires the downstream target Microphthalmia-associated transcription factor. J Cell Biol 2002; 158:1079-87.
    74 Giles RH, van Es JH, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer.Biochim Biophys Acta 2003; 1653:1-24.
    75 Taylor JA, Bernabe KQ, Guo J et al. Epidermal growth factor receptor-directed enterocyte proliferation does not induce Wnt pathway transcription. J Pediatr Surg 2007; 42:981-6.
    76 Shtutman M, Zhurinsky J, Simcha I et al. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 1999; 96:5522-7.
    77 Castrop J, van Norren K, Clevers H. A gene family of HMG-box transcription factors with homology to TCF-1. Nucleic Acids Res 1992; 20: 611.
    78 Brantjes H, Roose J, van De Wetering M et al. All Tcf HMG box transcription factors interact with Groucho-related co-repressors. Nucleic Acids Res 2001; 29:1410-9.
    79 Hsu SC, Galceran J, Grosschedl R. Modulation of transcriptional regulation by LEF-1 in response to Wnt-1 signaling and association with beta-catenin. Mol Cell Biol 1998; 18: 4807-18.
    80 Takemaru KI, Moon RT. The transcriptional coactivator CBP interacts with beta-catenin to activate gene expression. J Cell Biol 2000; 149: 249-54.
    81 Hecht A, Vleminckx K, Stemmler MP et al. The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. Embo J 2000;19:1839-50.
    82 Billin AN, Thirlwell H, Ayer DE. Beta-catenin-histone deacetylase interactions regulate the transition of LEF1 from a transcriptional repressor to an activator. Mol Cell Biol 2000;20: 6882-90.
    83 Brantjes H, Barker N, van Es J et al. TCF: Lady Justice casting the final verdict on the outcome of Wnt signalling. Biol Chem 2002; 383: 255-61.
    84 Korswagen HC, Clevers HC. Activation and repression of wingless/Wnt target genes by the TCF/LEF-1 family of transcription factors. Cold Spring Harb Symp Quant Biol 1999; 64:141-7.
    85 Graham TA, Weaver C, Mao F et al. Crystal structure of a beta-catenin/Tcf complex. Cell 2000; 103: 885-96.
    86 Liu BY, Kim YC, Leatherberry V et al. Mammary gland development requires syndecan-1 to create a beta-catenin/TCF-responsive mammary epithelial subpopulation. Oncogene 2003; 22: 9243-53.
    87 Gotoh J, Obata M, Yoshie M et al. Cyclin D1 over-expression correlates with beta-catenin activation, but not with H-ras mutations, and phosphorylation of Akt,GSK3 beta and ERK1/2 in mouse hepatic carcinogenesis. Carcinogenesis 2003; 24:435-42.
    88 Bertin J, Armstrong RC, Ottilie S et al. Death effector domain-containing herpesvirus and poxvirus proteins inhibit both Fas- and TNFR1-induced apoptosis.Proc Natl Acad Sci USA 1997; 94:1172-6.
    89 Micheau O, Thome M, Schneider P et al. The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J Biol Chem 2002; 277:45162-71.
    90 Dorsky RI, Moon RT, Raible DW. Control of neural crest cell fate by the Wnt signalling pathway. Nature 1998; 396: 370-3.
    91 Dunn KJ, Williams BO, Li Y et al. Neural crest-directed gene transfer demonstrates Wnt1 role in melanocyte expansion and differentiation during mouse development.Proc Natl Acad Sci USA 2000; 97:10050-5.
    92 Lewis JL, Bonner J, Modrell M et al. Reiterated Wnt signaling during zebrafish neural crest development. Development 2004;131: 1299-308.
    93 Rasper DM, Vaillancourt JP, Hadano S et al. Cell death attenuation by 'Usurpin', a mammalian DED-caspase homologue that precludes caspase-8 recruitment and activation by the CD-95 (Fas, APO-1) receptor complex. Cell Death Differ 1998; 5:271-88.
    94 Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998;281:1305-8.
    95 Ozoren N, El-Deiry WS. Cell surface Death Receptor signaling in normal and cancer cells. Semin Cancer Biol 2003; 13:135-47.
    96 Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001;104: 487-501.
    97 Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 1999; 13:1899-911.
    98 Deveraux QL, Reed JC. IAP family proteins-suppressors of apoptosis. Genes Dev 1999; 13: 239-52.
    99 Bouchet D, Tesson L, Menoret S et al. Differential sensitivity of endothelial cells of various species to apoptosis induced by gene transfer of Fas ligand: role of FLIP levels. Mol Med 2002; 8: 612-23.
    100 Desbarats J, Birge RB, Mimouni-Rongy M et al. Fas engagement induces neurite growth through ERK activation and p35 upregulation. Nat Cell Biol 2003; 5:118-25.
    101 Davidson SM, Stephanou A, Latchman DS. FLIP protects cardiomyocytes from apoptosis induced by simulated ischemia/reoxygenation, as demonstrated by short hairpin-induced (shRNA) silencing of FLIP mRNA. J Mol Cell Cardiol 2003; 35:1359-64.
    102 Ashany D, Savir A, Bhardwaj N et al. Dendritic cells are resistant to apoptosis through the Fas (CD95/APO-1) pathway.J Immunol 1999; 163: 5303-11.
    103 Rescigno M, Piguet V, Valzasina B et al. Fas engagement induces the maturation of dendritic cells (DCs), the release of interleukin (IL)-lbeta, and the production of interferon gamma in the absence of IL-12 during DC-T cell cognate interaction: a new role for Fas ligand in inflammatory responses. J Exp Med 2000; 192: 1661-8.
    104 Kiener PA, Davis PM, Starling GC et al. Differential induction of apoptosis by Fas-Fas ligand interactions in human monocytes and macrophages. J Exp Med 1997;185:1511-6.
    105 Kim H, Whartenby KA, Georgantas RW, 3rd et al. Human CD34+ hematopoietic stem/progenitor cells express high levels of FLIP and are resistant to Fas-mediated apoptosis. Stem Cells 2002; 20:174-82.
    106 Imanishi T, Murry CE, Reinecke H et al. Cellular FLIP is expressed in cardiomyocytes and down-regulated in TUNEL-positive grafted cardiac tissues.Cardiovasc Res 2000; 48: 101-10.
    107 Kobayashi T, Okamoto K, Kobata T et al. Differential regulation of Fas-mediated apoptosis of rheumatoid synoviocytes by tumor necrosis factor alpha and basic fibroblast growth factor is associated with the expression of apoptosis-related molecules. Arthritis Rheum 2000; 43:1106-14.
    108 Schedel J, Gay RE, Kuenzler P et al. FLICE-inhibitory protein expression in synovial fibroblasts and at sites of cartilage and bone erosion in rheumatoid arthritis. Arthritis Rheum 2002; 46:1512-8.
    109 Kim HA, Blanco FJ. Cell death and apoptosis in osteoarthritic cartilage. Curr Drug Targets 2007; 8: 333-45.
    110 Semra YK, Seidi OA, Sharief MK. Overexpression of the apoptosis inhibitor FLIP in T cells correlates with disease activity in multiple sclerosis. J Neuroimmunol 2001; 113: 268-74.
    111 Sharief MK. Increased cellular expression of the caspase inhibitor FLIP in intrathecal lymphocytes from patients with multiple sclerosis. J Neuroimmunol 2000; 111: 203-9.
    112 Chen K, Wei Y, Sharp GC et al. Mechanisms of spontaneous resolution versus fibrosis in granulomatous experimental autoimmune thyroiditis. J Immunol 2003;171: 6236-43.
    113 Xu L, Zhang L, Yi Y et al. Human lupus T cells resist inactivation and escape death by upregulating COX-2. Nat Med 2004; 10: 411-5.
    114 Engidawork E, Gulesserian T, Yoo BC et al. Alteration of caspases and apoptosis-related proteins in brains of patients with Alzheimer's disease. Biochem Biophys Res Commun 2001; 281: 84-93.
    115 Golks A, Brenner D, Fritsch C et al. c-FLIPR, a new regulator of death receptor-induced apoptosis.J Biol Chem 2005; 280: 14507-13.
    116 Budd RC, Yeh WC, Tschopp J. cFLIP regulation of lymphocyte activation and development. Nat Rev Immunol 2006; 6: 196-204.
    117 Kataoka T, Schroter M, Hahne M et al. FLIP prevents apoptosis induced by death receptors but not by perforin/granzyme B, chemotherapeutic drugs, and gamma irradiation. J Immunol 1998; 161: 3936-42.
    118 Screpanti V, Wallin RP, Ljunggren HG et al. A central role for death receptor-mediated apoptosis in the rejection of tumors by NK cells. J Immunol 2001;167: 2068-73.
    119 Yeh WC, Itie A, Elia AJ et al. Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity 2000;12: 633-42.
    120 Shu HB, Halpin DR, Goeddel DV. Casper is a FADD- and caspase-related inducer of apoptosis. Immunity 1997; 6:751-63.
    121 Gilbert S, Loranger A, Marceau N. Keratins modulate c-Flip/extracellular signal-regulated kinase 1 and 2 antiapoptotic signaling in simple epithelial cells. Mol Cell Biol 2004; 24: 7072-81.
    122 Ting AT, Pimentel-Muinos FX, Seed B. RIP mediates tumor necrosis factor receptor 1 activation of NF-kappaB but not Fas/APO-1 -initiated apoptosis. Embo J 1996; 15: 6189-96.
    123 Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature 2005; 434:843-50.
    124 Qiao L, Han SI, Fang Y et al. Bile acid regulation of C/EBPbeta, CREB, and c-Jun function, via the extracellular signal-regulated kinase and c-Jun NH2-terminal kinase pathways, modulates the apoptotic response of hepatocytes. Mol Cell Biol 2003; 23: 3052-66.
    125 Schlapbach R, Spanaus KS, Malipiero U et al. TGF-beta induces the expression of the FLICE-inhibitory protein and inhibits Fas-mediated apoptosis of microglia. Eur J Immunol 2000; 30: 3680-8.
    126 Gupta S, Natarajan R, Payne SG et al. Deoxycholic acid activates the c-Jun N-terminal kinase pathway via FAS receptor activation in primary hepatocytes.Role of acidic sphingomyelinase-mediated ceramide generation in FAS receptor activation.J Biol Chem 2004; 279: 5821-8.
    127 Wang W, Prince CZ, Mou Y et al. Notch3 signaling in vascular smooth muscle cells induces c-FLIP expression via ERK/MAPK activation. Resistance to Fas ligand-induced apoptosis. J Biol Chem 2002; 277: 21723-9.
    128 Ohashi H, Takagi H, Oh H et al. Phosphatidylinositol 3-kinase/Akt regulates angiotensin Ⅱ-induced inhibition of apoptosis in microvascular endothelial cells by governing survivin expression and suppression of caspase-3 activity. Circ Res 2004; 94:785-93.
    129 Madge LA, Li JH, Choi J et al. Inhibition of phosphatidylinositol 3-kinase sensitizes vascular endothelial cells to cytokine-initiated cathepsin-dependent apoptosis. J Biol Chem 2003; 278: 21295-306.
    130 Kreuz S, Siegmund D, Scheurich P et al. NF-kappaB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol Cell Biol 2001;21: 3964-73.
    131 Mora AL, Corn RA, Stanic AK et al. Antiapoptotic function of NF-kappaB in T lymphocytes is influenced by their differentiation status: roles of Fas, c-FLIP, and Bcl-xL. Cell Death Differ 2003; 10:1032-44.
    132 Horsley V, Pavlath GK. NFAT: ubiquitous regulator of cell differentiation and adaptation. J Cell Biol 2002; 156: 771-4.
    133 Volpert OV, Zaichuk T, Zhou W et al. Inducer-stimulated Fas targets activated endothelium for destruction by anti-angiogenic thrombospondin-1 and pigment epithelium-derived factor. Nat Med 2002; 8: 349-57.
    134 Zaichuk TA, Shroff EH, Emmanuel R et al. Nuclear factor of activated T cells balances angiogenesis activation and inhibition. J Exp Med 2004; 199:1513-22.
    135 Bartke T, Siegmund D, Peters N et al. p53 upregulates cFLIP, inhibits transcription of NF-kappaB-regulated genes and induces caspase-8-independent cell death in DLD-1 cells. Oncogene 2001;20:571-80.
    136 Daoud SS, Munson PJ, Reinhold W et al. Impact of p53 knockout and topotecan treatment on gene expression profiles in human colon carcinoma cells: a pharmacogenomic study. Cancer Res 2003; 63: 2782-93.
    137 Fukazawa T, Fujiwara T, Uno F et al. Accelerated degradation of cellular FLIP protein through the ubiquitin-proteasome pathway in p53-mediated apoptosis of human cancer cells. Oncogene 2001; 20: 5225-31.
    138 Ricci MS, Jin Z, Dews M et al. Direct repression of FLIP expression by c-myc is a major determinant of TRAIL sensitivity. Mol Cell Biol 2004; 24: 8541-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700