用户名: 密码: 验证码:
重金属在土壤—微生物界面相互作用的分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤微生物是土壤中的活性胶体,它们比表面大带电荷,代谢活动旺盛。受到重金属污染的土壤,往往富集多种耐重金属的真菌和细菌,微生物可通过多种作用方式影响土壤重金属的活性。本论文从受重金属污染的土壤中筛选到一株具有较高铜锌耐性的微生物,采用电镜、能谱、红外光谱和X-射线吸收光谱等现代分析技术并结合传统的物理化学方法,阐明了恶臭假单胞菌CZ1对Cu、Zn的吸附行为及其结合的分子形态,并初步探讨了微生物-矿物-重金属相互作用机制,旨在为重金属污染土壤的风险评价和生物修复提供理论依据。通过研究取得了以下主要结果:
     从浙江诸暨哩浦铜矿废弃矿区铜耐性植物海州香薷根际土壤中分离到一株具有较高铜锌耐性的微生物,编号为CZ1,根据形态学观察、生理生化特性和16S rDNA序列同源性比对,鉴定为Pseudomonas putida。CZ1可分别耐受3 mM Cu或5 mM Zn,对氨苄青霉素具有抗性,而对卡那霉素无抗性。重金属耐性实验发现固体培养基中最低抑制浓度小于液体培养基中最低抑制浓度,而且Cu的毒性要大于Zn的毒性。在含有27.7mg/L Cu或26.0mg/L Zn的无机盐液体培养基中,CZ1对Cu和Zn的去除能力可分别达到87.2%和99.8%。尽管较低浓度的重金属会对微生物细胞造成一定程度的损伤,但CZ1依然表现出了较高的铜锌富集能力。
     溶液pH对CZ1吸附Cu~(2+)、Zn~(2+)的能力影响较大,活菌体和死菌体吸附Cu~(2+)的最佳pH分别为5.0和4.5,而吸附Zn~(2+)的最佳pH均为5.0;在最佳吸附条件下,CZ1对Cu~(2+)、Zn~(2+)的吸附量随着起始浓度的增加而增加,但去除效率却随之下降;CZ1对Cu~(2+)、Zn~(2+)的吸附等温线均符合Langmuir等温吸附方程。活菌体对Cu~(2+)、Zn~(2+)的吸附能力远大于死菌体,并且包括主动吸收和被动吸附两个过程,其中活菌体通过主动吸收方式结合的Cu~(2+)、Zn~(2+)含量占整个吸附量的40~50%,而被动吸附则为50~60%。解吸实验表明,0.1M盐酸对死菌体中Cu~(2+)、Zn~(2+)的解吸效率分别为95.3%和83.8%,而活菌体仅为72.5%和45.6%,进一步说明活菌体对Cu~(2+)、Zn~(2+)的吸附存在着主动吸收的过程。在0.01 M KNO_3溶液中,Cu~(2+)、Zn~(2+)吸附体系均表现出了明显的颗粒物浓度(C_p)效应,不同C_p下的所有吸附等温线可以用Freundlich型C_p效应等温式进行统一描述,分别为q_(eq)=2.553·C_p~(-0.7106)·C_(eq)~(0.8971)和q_(eq)=2.412·C_p~(-0.8305)·C_(eq)~(0.6504)。通过
Soil microorganisms are the active colloids in the soil, with charges, high specific surface areas and metabolic activities. Many tolerant fungi and bacteria will exist in the soil after polluted by heavy metals, they could influence the species, bioavailability and transportation processes of heavy metals through varies actions. In this paper, a heavy metal-tolerant strain, Pseudomonas putida CZ1, was isolated from the contaminated soils. The actions of biosorption and molecular species of heavy metal binding, the interaction mechanisms of microorganism-clay-metal were investigated using Electron microscopy (EM), Energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) and X-ray absorption spectroscopy (XAS) combined with conventional physical-chemical methods, which could provide theory basis for risk evaluation and bioremediation of heavy metal contaminated soils. The main results were as follows:
    A strain was isolated from the rhizosphere of Elsholtzia splendens obtained from the heavy-metal-contaminated soil in the north-central of Zhejiang province of China. Based on 16S ribosomal DNA sequencing, the microorganism was closely related to Pseudomonas putida. It exhibited high minimal inhibitory concentration (MIC) values (about 3 mM Cu and 5 mM Zn) for metals and antibiotic resistance to ampicillin, but not to kanamycin. Based on the results of heavy metal toxicity screening, inhibitory concentrations in solid media were lower than those in liquid media. Moreover, it was found that the toxicity of copper was higher than that of zinc. Pseudomonas putida CZ1 was capable of removing about 87.2% of Cu and 99.8% of Zn during the active growth cycle with a specific biosorption capacity of 27.7 and 26.0 mg/L, respectively. Although copper and zinc under low concentration slightly damage the surfaces of some cells, it was still demonstrated to have higher biosorption capacities of copper and zinc.
    It was found that the optimum pH for Zn(II) removal by living and nonliving cells was 5.0, while it was 5.0 and 4.5, respectively for Cu(II) removal. At the optimal conditions, metal ion biosorption was increased as the initial metal concentration increased but the removal efficency decreased. The adsorption data with respect to both metals provide an excellent fit to the Langmuir isotherm. The binding capacity of living cells is significantly higher than that of nonliving cells at tested conditions. It demonstrated that about 40-50%
引文
Alonso A., Sanchez P., Martinez J.L. (2000) Stenotrophomonas maltophilia D457R contains a cluster of genes from gram-positive bacteria involved in antibiotic and heavy metal resistance. Antimicrob. Agents Chemother. 44: 1778-1782
    Avery S.V. (1995) Caesium accumulation by microorganisms: uptake mechanisms, cation competition, compartmentalization and toxicity. J. Ind. Microbiol. 14: 76-84
    Avery S.V., Smith S.L., Ghazi A.M., Hoptroff M.J. (1999) Stimulation of strontium accumulation in linoleate-enriched Saccharomyces cerevisiae is a result of reduced Sr2+ efflux. Appl. Environ. Microbiol. 65: 1191-1197
    Berthelin J., Guiliet B., Rouivler J., Sadio S., Gueniot B., Munier-Lamy C. (1990) A bag method to study the release, exchange, fixation, preconcenration and the loss of major and trace mineral elements in soil. In Harrison A.F., Ineson P, Heal V.W. ed. Nutrient Cycling Terrestrial Ecosystem. London: Elsevier Science. 26-35
    Berthelin J., Leyval C. (1982) Ability of symbious and nonsymbiotic rhizosphere microflora of maize to weather micas and to promote plant guowth and plant nutrition. Plant Soil. 68:369-374
    Berthelin J., Munier-Lamy C, Leyval C. (1995) Effect of microorg-anisms on mobility of heavy metals in soils. In Huang P.M., Berthelin J., Bollag J.M., McGill W.B., Pago A.L. ed. Environmental Impact of Soil Component, Mineral-organic and Microorganisms Interaction on Environmental Quality.Boca Raton: CRC Press/Lewis Publishers. 3-17
    Beveridge T.J. (1978) The response of cell walls of Bacillus subtilis to metals and electron microscopic strains. Can. J. Microbial. 24: 89-104
    Beveridge T.J. (1984) Mechanisms of the binding of metallic ions to bacterial walls and the possible impact on microbial ecology. In: Klug M.J., Reddy C.A. ed. Current Perspectives in Microbial Ecology. Washington: American Society for Microbiology. 601-607
    Beveridge T.J. (1986) The immobilization of soluble metals by bacterial walls. Biotechnol. Bioeng. 16: 127-139
    Beveridge T.J. (1989) Role of cellular design in bacterial metal accumulation and mineralization. Annu. Rev. Microbiol. 43: 147-171
    Beveridge T.J., Koval S.F. (1981) Binding of metals to cell envelopes of Escherichia Coli K-12. Appl. Environ. Microbiol. 42: 325-335
    Beveridge T.J., Murray R.G.E. (1976) Uptake retention of metal by cell walls of Bacillus Subtilis. J. Bacterial. 27: 1502-1518
    Beveridge T.J., Murray R.G.E. (1980) Sites of metal deposition in the cell wall of Bacillus Subtils. J. Bacterial. 141:876-887
    Beveridge T.J., Schultze-Lam S. (1995) Detection of Anionic sites on bacterial walls, their ability to bind toxic heavy metals and form sedimentable floc and their contribution to mineralization in natural freshwater environments. In Allen H.E., Huang C.P., Bailey G.W., Bowers A.R. ed. Metal Speciation and Contamination of Soil. Boca Raton: CRC Press/ Lewis Publisher. 183-205
    Borremans B., Hobman J.L., Provoost A., Brown N.L., vander Lelie D. (2001) Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J. Bacteriol. 183: 5651-5658
    Brady J.M., Tobin J.M. (1995) Binding of hard and soft metal ions to Rhizopus arrhizus biomass. Enzy. Microbial. Technol. 17: 791-796
    Bridge T.A.M., White C, Gadd GM. (1999) Extracellular metal-binding activity of the sulphate-reducing bacterium Desulfococcus multivorans. Microbiol. 145: 2987-2995
    Brown Jr. GE., Foster A.L., Ostergren J.D. (1999) Mineral surfaces and bioavailability of heavy metals: A molecular-scale perspective. Proc. Nat. Acad. Sci. 96: 3388-3395
    Burkert B., Robson A. (1994) Zn65 uptake in subterranean clover by three vesicular-arbusular mycorrhizal fungi in a root-free sandy soil. Soil Biol. Biochem. 26: 1117-1124
    Bustard M, Donnellan N., Rollan A., McHale A.P. (1997) Studies on the biosorption of uranium by a thermotolerant, ethanol-producing strain of Kluyveromyces marxianus. Bioprocess Biosys. Eng. 17: 45-50
    Byeong C.J., Hawes C, Karen M., Lynne B., Macaskie E. (1997) Localization of enzymically enhanced heavy metal accumulation by Citrobacter sp. And metal accumulation in vitro by liposomes containing entrapped enzyme. Microbiology. 143: 2497-2507
    Caccavo F.J. (1999) Protein-mediated adhesion of the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY to hydrous ferric oxide. Appl. Environ. Microbiol. 65: 5017-5022
    Caguiat J.J., Watson A.L., Summers A.O. (1999) Cd(II)-responsive and constitutive mutants implicate a novel domain in MerR. J. Bacteriol. 181: 3462-3471
    Chanmugathas P., Bollag J.M. (1987a) Microbial role in immobilization and subsequent mobilization of cadmium in soil suspensions. Soil Sci. Soc. Am. J. 51: 1184-1191
    Chanmugathas P., Bollag J-M. (1987b) Microbial mobilization of cadmium in soil under aerobic and anaerobic conditions. J. Environ. Quali. 16: 161-167
    Chanmugathas P., Bollag J-M. (1988) A column study of biological mobilization of cadmium in soil suspension. Arch. Environ. Contamin. Toxicol. 17: 229-235
    Claudia G, Mark K., Vishwanath R.I., Patrick O.B., Dennis R.W. (2000) Identification of the copper regulon in saccharomyces cerevisiae by DNA microarrays. J. Biol. Chem. 275: 32310-32316
    Clemens S., Kim E.J., Neumann D., Schroeder J.I. (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J. 18: 3325-3333
    Compeau GC, Bartha R. (1985) Sulfate-Reducing Bacteria: Principal Methylators of mercury in anoxic estuarine sediment. Appl. Environ. Microbiol. 50: 498-502
    Crupper S.S., Worrell V., Stewart GC, Iandolo J.J. (1999) Cloning and expression of CadD, a new cadmium resistance gene of Staphylococcus aureus. J. Bacteriol. 181: 4071-4075
    De Pina K., Desjardin V., Mandrand-Berthelot M.A., Giordano G, Wu, L.F. (1999) Isolation and characterization of the nikR gene encoding a Nickel-Responsive regulator in Escherichia coli. J. Bacteriol. 181:670-674
    Dopson M., Lindstrom E.B. (1999) Potential role of Thiobacillus caldus in arsenopyrite bioleaching. Appl. Environ. Microbiol. 65: 36-40
    Doyle R.J., Matthews T.H. (1980) Chemical basis for selectivity of metal ions by the Bacillus Subtilis cell wall. J. Bacterial. 143: 471-480
    Eitinger T., Wolfram L., Degen O., Anthon C. (1997) A Ni2+ binding motif is the basis of high affinity transport of the Alcaligenes eutrophns nickel permease. Am. Soci. Biochem. Mole. Biol. 272: 17139-17144
    Endo G, Silver S. (1995) CadC, the transcriptional regulatory protein of the cadmium resistance system of Staphylococcus aureus plasmid pI258. J. Bacteriol. 177: 4437-4441
    Entry J.A., Watrud L.S., Reeves M. (1998) Accumulation of Cs-137 and Sr-90 from contaminated soil by three grass species inoculated with mycorrhizal fungi. Environ. Pollut. 104: 449-457
    Fafael A.H., Mellade P., Martinez J.L. (1998) Metal accumulation and Vanadiuminduced multidrug resistance by environmental isolates of Eschehchia hermannii and Enterobacter cloacae. Appl. Environ. Microbiol. 64: 4317-4320
    
    Farkas V. (1979) Biosynthesis of cell walls of fungi. Microbiol. Rev. 43: 117-144
    Ferris F.G, Fyfe W.S., Beberdge T.J. (1987) Bacteria as nucleation sites for authigenic minerals in a metal contaminated lake sediment. Chem. Geol. 63: 225-232
    Flemming C.A., Ferris F.G., Beveridge T.J., Bailey GW. (1990) Remobilization of toxic heavy metals adsorbed to bacterial wall-clay composites. Appl. Environ. Microbiol. 56: 3191-3203
    Fouler T.A., Crundwell F.K. (1998) Leaching of Zinc sulfide by Thiobacillus ferrooxidans: experiments with a controlled redox potential indicate no directbacterial mechanism. Appl. Environ. Microbiol. 64: 3570-3575
    Francis A.J., Dodge C.J. (1988) Anaerobic microbial dissolution of transition and heavy metal oxdides. Appl. Environ. Microbiol. 54: 1009-1014
    Franke S., Grass G, Nies D.H. (2001) The product of the ybdE gene of the Escherichia coli chromosome is involved in detoxification of silver ions. Microbiol. 147: 965-972
    Friss N., Myers-Kieth P. (1986) Biosorption of uranium and lead by Streptomyces longwoodensis. Biotechnol. Bioeng. 28: 21-28
    Gadd GM., White C. (1989) Removal of thorium from simulated acid process streams by fungal biomass. Biotech. Bioeng. 33: 592-597
    Garcia-Dominguez M., Lopez-Maury L., Florencio F.J., Reyes J.C. (2000) A gene cluster involved in metal homeostasis in the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol. 182: 1507-1514
    Gatti D., Mitra B., Rosen B.P. (2000) Escherichia coli soft metal ion-translocating ATPases. J. Biol. Chem. 275: 34009-34012
    Gupta A., Maynes M., Silver S. (1998) Effects of halides on plasmid-mediated silver resistance in Escherichia coli. Appl. Environ. Microbiol. 64: 5042-5045
    Guzzo J., Dubow M.S. (2000) A novel selenite and tellurite-inducible gene in Escherichia coli. Appl. Environ. Microbiol. 66: 4972-4978
    Hao Z., Chen S., Wilson D.B. (1999) Cloning, expression and characterization of cadmium and manganese uptake genes from lactobacillus plantarum. Appl. Environ. Microbiol. 65: 4746-4752
    Hernandez A., Mellado R.P., Martinez J.L. (1998) Metal accumulation and vanadium-induced multidrug resistance by environmental isolates of Escherichia hermannii and Enterobacter cloacae. Appl. Environ. Microbiol. 64: 4317-4320
    Huang Q.Y., Wu J.M., Chen W.L., Li X.Y. (2000) Adsorption of Cadmium by soil colloids and minerals in presence of Rhizobia. Pedosphere. 10: 299-307
    Hoflich G, Metz R. (1997) Interactions of plant-microorganism- associations in heavy metal containing soils from sewage farms. Bodenkultur. 48: 239-247
    Iwahori K., Takeuchi F., Kamimura K., Sugio T. (2000) Ferrous iron-dependent volatilization of mercury by the plasma membrane of Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 66: 3823-3827
    Jun L.Z., Robert J.K. (1991) The uptake of copper from aqueous solute on by immobilized fungal biomass. J.Chem.Tech.Biotechnol. 52: 317-330
    King J.K., Kostka J.E., Frischer M.E., Saunders F.M. (2000) Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments. Appl. Environ. Microbiol. 66: 2430-2437
    Klaus T., Joerger R., Olsson E., Granqvist C.G (1999) Silver-based crystalline nanoparticles, microbially fabricated. Appl. Phys. Sci. Microbiol. 96: 13611-13614
    Kovalchuk O., Titov V., Hohn B., Kovalchuk I. (2001) A sensitive transgenic plant system to detect toxic inorganic compounds in the environment. Nature Biotechnol. 19: 568-572
    Krantz-Rulcker C, Allard B., Schnurer J. (1996) Adsorption of Ⅱ B-metals by three common soil fungi-comparison and assessment of importance for metal distribution in natural soil systems. Soil Biol. Biochem. 28: 967-975
    Kurek E., Czavan J., Bollag J.M. (1982) Sorption of cadmium by microorganisms in competition with other soil constituents. Appl. Environ. Microbiol. 43: 1011-1015
    Langley S., Beveridge T.J. (1999) Effect of O-side-chain-Lipopolysaccharide chemistry on metal binding. Appl. Environ. Microbiol. 65: 489-498
    Ledin M., Krantz-Rulcker C, Allard B. (1996) Zn, Cd and Hg accumulation by microorganisms, organic and inorganic soil components in mult-compartment systems. Soil Biol. Biochem. 28: 791-799
    Lee S.W., Glickmann E., Cooksey D.A. (2001) Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Appl. Environ. Microbiol. 67: 1437-1444
    Leyval C, Berthelin J. (1991) Weathering of a mica by roots and rhizospheric microorganisms of pine. Soil Sci. Soc. Am. J. 55: 1009-1015
    Leyval C, Berthelin J., Schontz D., Weissenhorn I., Morei J. (1991) Influence of endomycorrhizas on maize uptake of Pb, Cu, Zn and Cd applied as mineral salts or sewage sludge. In: Farmer J.G ed. Heavy Metals in the Environment. Edinburgh: CEP Consultants. 204-211
    Macaskie L.E., Dean A.C.R., Cheethan A.K., Jakeman R.J.B., Skarnulis A.J. (1987) Cadmium accumulation by a Citrobacter sp.: the chemical nature of the accumulated metal precipitate and its location on the bacterial cells. J. Gen. Microbiol. 133: 539-544
    Marques A.M., Roca X., Simon-Pujol M.D., Fuste M.C., Congregado F. (1991) Uranium accumulation by Pseudomonas sp. EPS-5028. Appl. Microbiol. Biotechnol. 35: 406-410
    Mayers I.T., Beveridge T.J. (1989) The sorption of metals to Bacillus subtilis walls from dilute solutions and simulated hamilton harbour (Lake Ontario) water. Can. J. Microbiol. 35: 764-770
    Munier-Lamy C, Adrian P., Berthelin J. (1991) Fate of organo-heavy metal complexes of sludges from domestic wastes in soils :a simplified modelization. Toxicol. Environ. Chem. 31: 527-533
    Munier-Lamy C, Berthelin T.J. (1987) Formation of polyelectrolyte complexes with (Fe, Al) and trace (V, Cu) elements during neterotrophic microbial leaching of rocks. Geomicrobial. J. 5: 119-124
    Niu H., Xu X.S., Wang J.H., Volesky B. (1993) Removal of lead from aqueous solutions by penicillium biomass. Biotech. Bioeng. 1993; 42: 785- 787
    
    Paul E.A., Clark F.E. (1990) Soil Microbiology and Biochemistry. New York: Academic Press
    Riggle P.J., Kumamoto C.A. (2000) Role of a Candida albicans P1-Type ATPase in resistance to copper and silver ion toxicity. J. Bacteriol. 182: 4899-4905
    Robert M., Berthelin J. (1986) Role of biological and biochemical factors in soil minerals weathering. In: Huang P.M., Schnizer M.ed. Interactions of Soil Minerals with Natural Organics and Microbes. Madison: Soil Sci. Soc. Am. Special Publication. 17:453-465
    Sameer AA. Zdravko D. (1995) Adsorption of Copper and Chromium by Aspergillus carbonarius. Biotechnol. Prog. 11: 638-642
    Siegel S.M., Galun M., Siegel B.Z. (1990) Filamentous fungi as metal biosorbents: a review. Water Air Soil Pollut. 53:335-344
    Siegel S.M., Keller P., Siegel B.Z., Galun E. (1986) Metal Speciation, Separation and Recovery. Proc Intern Symp. Chicago: Kluwer Academic Publishers. 77-94
    Sillen J.G. (1964) Stability Cinstants of metal Ion Comp lexes. London: In Special Publicat ion, The Chem ical Society. 17
    Sitaula B.K., Almas A., Baken L.R., Singh B.R. (1999) Assessment of heavy metals associated with bacteria in soil. Soil Biol. Biochem. 31 : 315-316
    Smith T., Jeffery K.P., Mcgarvey A., Summers A.O. (1998) Bacterial oxidation of mercury metal vapor, Hg(0). Appl. Environ. Microbiol. 64:1328-1332
    Sposito G. (1983) The chemical forms of trace metals in soil. In: Thornton L. ed. Appl. Environ. Geochem. London: Academic Press. 123-131
    Stumm W., Werhli B., Wieland E. (1987) Surface complexation and its impact on geochemical kinetics. Croat. Chem. Acta 60:429-456
    Tao H.Q., Li X.L., Zhang J.L. (1997) Effect of VA-mycorrhizal infection on growth and nutrient uptake of red clover at different Zn supply levels. Chin. J. Appl. Environ. Biol. 3:263-267
    Thomas R.A.P., Lawlor K., BaileyM. (1998) Biodegradation of metal-EDTA complexes by enriched microbial pollution. Appl. Environ. Microbiol. 64:1009-1014
    Thompson J.P.T. (1996) Correction of dual phosphorus and zinc deficiencies of linseed with cultures of vesicular-arbuscular mycorrhizal fungi. Soil Biol. Biochem. 28:941-951
    Tobin J., Cooper D., Neufeld R. (1984) Uptake of heavy metal ions by Rhizopus arrhizus biomass. Appl. Environ. Microbiol. 47:821-824
    Volesky B., May-Phillips H.A. (1995) Biosorption of heavy metals by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 42:797-806
    Walker S.G., Flemming C.A., Ferris F.G., Beveridge T.J., Bailey G. W. (1989) Physicochemical interaction of Escherichia Coli cell envelopes and Bacillus subtilis cell walls with two clays and ability of the composite to immobilize heavy metals from solution. Appl. Environ. Microbiol. 55: 2976-2984
    Wang C.L., Maratukulam P.M., Lum A.M., Clark D.S., Deasling J.D. (2000) Metabolic Engineering of an aerobic sulfate reduction pathway and its application to precipitation of cadmium on the cell surface. Appl. Environ. Microbiol. 66:4497-4502
    Wang B.J., Yang H.F., Li W.Z. (1997) The optimum conditions and effectors of Cr~(6+) reduction in Penicillium sp. BS-1. Chin. J. Appl. Environ. Biol. 3:355-360
    Woolfolk C.A., Whiteley H.R. (1962) Reduction of inorganic compounds with molecular hydrogen by micrococcus lactilyticus. J. Bacterial. 84:647-658
    陈志良,仇荣亮.(2002)重金属污染土壤的修复技术.环境保护.29(6):21-23
    胡永定.(1994)荆马河区与土壤重金属污染的成因分析.江苏环境科技.(1):9-12
    李其林,刘光得,魏朝富等.(2005)重庆市蔬菜区重金属污染现状.土壤通报.36(1):96-100
    林强.(2004)我国的土壤污染现状及其防治对策.福建水土保持.16(1):25-28
    林玉锁,李波,张孝飞.(2004)我国土壤环境安全面临突出问题.环境保护.(10):39-42
    乔显亮,骆永明,吴胜春.(2000)污泥的土地利用及其环境影响.土壤.32(2):79-85
    王向健,郑玉峰.(2004)重金属污染土壤修复技术现状与展望.环境保护科学.30(4):48-49
    屠娟,张利,赵力,俞耀庭.(1995)非活性黑根霉菌对废水中重金属离子的吸附.环境科学.16:12-15
    魏秀国,何江华等.(2002)广州蔬菜地土壤重金属污染状况调查与分析.土壤与环境.11(3):252-254
    周泽义.(1999)中国蔬菜重金属污染及控制.资源生态环境网络研究动态.10(3):21-27
    张书海,沈跃文.(2000)污灌区重金属污染对土壤的危害.环境监测管理与技术.12(2):22-24
    赵其国,骆永明.(2000)开展我国东南沿海经济快速发达地区资源与环境质量问题研究建议.土壤.32(4):169-172
    朱永官.(2003)土壤—植物系统中的微界面过程及其生态环境效应.环境科学学报.23(2):205-210
    Ana A., Patricia S., Martinez J.L. (2000) Stenotrophomonas maltophilia D457R contains a cluster of genes from gram-positive bacteria involved in antibiotic and heavy metal resistance. Antimicrob. Agents Chemother. 44:1778-1782
    Angle J.S., Chancy R.L. (1989) Cadmium resistance screening in nitrilotriacetate-buffered minimal media. Appl. Environ. Microbiol. 55 : 2101-2104
    Babich H., Stotzky G. (1980) Environment factors that influence the toxicity of heavy metal and gaseous pollutants to microorganisms. Crit. Rev. Microbiol. 8:99-145
    Baldry M.G., Dean A.C.R. (1980) Copper accumulation by E. coli strain Fel 2/5: 1. Uptake during batch culture. Microbios Lett. 15:83-87
    Benka-Coker M.O., Ekundayo J.A. (1998) Effects of heavy metals on growth of species of Micrococcus and Pseudomonas in a crude oil/mineral salts medium. Bioresour. Technol. 66:241-245
    Bhattacherjee J.W., Pathak S.P., Gaur A. (1988) Antibiotic resistance and metal tolerance of coliform bacteria isolated from Gomti river water at Lucknow city. J. Gen. Appl. Microbiol. 34:391-399
    Castro F., Viedma P., Cotorras D. (1992) Biomasa de Rhizopus oligosporus como adsorbente de iones metalicos. Microbiologia SEM. 8:94-105
    Chang J.S., Hong J., Oa O., Bh O. (1993) Interaction of mercuric ions with the bacterial growth medium and its effects on enzymatic reduction of mercury. Biothchnol. Prog. 9:526-532
    Chang J.S., Huang J.C. (1998) Selective adsorption/recovery of Pb, Cu, and Cd with multiple fixed beds containing immobilized bacterial biomass. Biotechnol. Prog. 14:735-741
    Chang J.O., Law R., Chang C.C. (1997) Biosorption of lead, copper and cadmium by biomass of Pseudomonas aeruginosa PU21. Water Res. 31: 1651-1658
    Damiani G, Amedeo P., Bandi C, Fani R., Bellizzi D. (1996) Bacteria Identification by PCR-Based Techniques. Chapter 10, Microbial Genome Methods. CRC Press. p.167-177
    Dedyukhina E.G, Eroshin V.K. (1991) Essential metal ions in the control of microbial metabolism. Proc. Biochem. 26:31-37
    Delong E.F., Wickham G.S., Pace N.R. (1991) Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science. 243: 1360-1363
    Dhakephalkar P.K., Chopade B.A. (1994) High levels of multiple metal resistances and its correlation to antibiotic resistance in environmental isolates of Acinetobacter. BioMetals. 7: 67-74
    Fominaa M.A., Alexanderb I.J., Colpaertc J.V., Gadda GM. (2005) Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol. Biochem. 37: 851-866
    Foster T.J. (1983) Plasmid determined resistance to anti-microbial drugs and toxic metal ions in bacteria. Microbiol. Rev. 47: 361-409
    Gadd G.M. (1986) Fungal response towards heavy metals, In: Herbert, R.A., Codd, GA. (Eds), Microbes in Extreme environments, pp. 83-110, Academic Press, London
    Gadd GM. (1990) Heavy metal accumulation by bacteria and other microorganisms. Experientia. 46: 834-840
    
    Gadd GM. (1993) Interactions of fungi with toxic metals. New Phytol. 124, 25-60
    Gadd GM. (2001) Metal transformations, in: Gadd, GM. (Ed.), Fungi in Bioremediation. Cambridge University Press, Cambridge, pp. 359-382
    Gross C, Kelleher M., Iyer V.R., Brown P.O., Winge D.R. (2000) Identification of the copper regulon in Saccharomyces cerevisiae by DNA microarrays. J. Biol. Chem. 275: 32310-32316
    Gumgum B., UnluE., Tez Z., Gulsun Z. (1994) Heavy metal pollution in water, sediment and fish from Tigris River in Turkey. Chemosphere. 29: 111-116
    Hao Z., Chen S., Wilson D.B. (1999) Cloning, expression and characterization of cadmium and manganese uptake genes from Lactobacillus plantarum. Appl. Environ. Microbiol. 65: 4746-4752
    Hassen A., Saidi N., Cherif M., Baudabous A. (1998a) Resistance of environmental bacteria to heavy metals. Bioresour. Technol. 64: 7-15
    Hassen A., Saidi N., Cherif M., Baudabous A. (1998b) Effects of heavy metals on Pseudomonas aeruginosa and Bacillus thuringiensis. Bioresour. Technol. 65: 73-82
    Hiroki M. (1992) Effects of heavy metal contamination on soil microbial population. Soil Sci. Plant Nutr. 38, 141-147
    Hussein H.M.A. (1999) Influence of Heavy Metal Ions on the Biodegradation of Hazardous Waste Water Components, Ph.D. thesis, Faculty of science, Alexandria University. Alexandria-Egypt
    Hussein H., Krull R., Abou El-Ela S.I., (2001) Hempel D.C. Interaction of the different heavy metal ions with immobilized bacterial culture degrading xenobiotic wastewater compounds, In: Proceedings of the Second International Water Association World Water Conference, pp. 15-19, Berlin, Germany.
    Hussein H., Farag S., Kandil K., Moawad H. (2005) Tolerance and uptake of heavy metals by Pseudomonads. Proc. Biochem. 40: 955-961
    Koch A.L. (1981) Growth measurement, in: Gerhaldt P., Murray R.GE., Costilow R.N., Nestar E.W., Wood W.A., Krieg N.R., Phillips GB. (Eds.), Manual of Methods for General Bacteriology, American Society of Microbiology, pp. 179-207, Washington, DC
    Kunito T., Nagaoka K., Tada N., Saeki K., Senoo K., Oyaizo H., Matsumoto S. (1997) Characterization of Cu-resistant bacterial communities in Cu-contaminated soil. Soil Sci. Plant Nutr. 43: 709-717
    Maceskie L.E., Dean A.C.R. (1984) Cadmium accumulation by Citrobacter sp. J. Gen. Microbiol. 130: 53-62
    Mahler I., Levinson H.S., Wang Y., Halvorson H.O. (1986) Cadmium and mercury-resistant Bacillus strains from a salt marsh and from Boston Harbor. Appl. Environ. Microbiol. 52: 1293-1298
    Perry J., Carol A. (2000) Role of a Candida albicans P1-Type ATPase in resistance to copper and silver ion toxicity. J. Bacteriol. 182: 4899-4905
    Ramteke P.W. (1997) Plasmid mediated co-transfer of antibiotic resistance and heavy metal tolerance in coliforms. Ind. J. Microbiol. 37: 177-181
    Roane T.M., Kellogg S.T. (1996) Characterization of bacterial communities in heavy metal contaminated soils. Can J. Microbiol. 42: 593-603.
    Roane T.M., Pepper I.L., Miller R.M. (1996) Microbial remediation of metals. In: Crawford RL, Crawford DL (eds) Bioremediation: Principles and Applications. Cambridge University Press, Cambridge, UK, pp 312-340
    Roane T.M., Pepper I.L. (1997) Microbial remediation of soils co-contaminated with 2, 4-dichlorophenoxyacetic acid and cadmium. Proceedings of the 12th Annual Conference on Hazardous Research, Kansas City, pp 343-356
    Rohit M., Sheela S. (1994) Uptake of zinc in Pseudomonas sp. strain UDG26. Appl. Environ. Microbiol. 60: 2367-2370
    
    Rosen P.B. (1996) Bacterial resistance to heavy metals and metalloids. J. Biol. Chem. 1: 273-277
    Sambrok J., Fristch E.F., Maniatis J. (1989) Moecular Cloning Laboratory Mannual, 2nd edition. Cold Spring Harbor, Cold Spring Harbor Laboratory Press, NY
    Silver S., Misra K.T. (1988) Plasmid-mediated heavy metal resistances. Ann. Rev. Microbiol. 42: 717-743
    Silver S., Phung L.T. (1996) Bacterial heavy metal resistance: New surprises. Annu. Rev. Microbiol. 50: 753-789
    Silver S., Walderhaug M. (1992) Gene regulation of plasmid and chromosome determined inorganic ion transport in bacteria. Microbiol. Rev. 56: 195-228
    Taniguchi J., Hemmi H., Tanahashi K., Amano N., Nakayama T., Nishino T. (2000) Zinc biosorption by a zinc-resistant bacterium, Brevibacterium sp. strain HZM-1. Appl. Microbiol. Biotechnol. 54: 581-588
    Timoney J.F., Port J., Giles J., Spanier J. (1987) Heavy-metal and antibiotic resistance in the bacterial flora of sediments of New York Bight. Appl. Environ. Microbiol. 36: 465-472
    Townsley C.C., Ross I.S., Atkins A.S. (1986) Biorecovery of metallic residues from various industrial effluents using filamentous fungi. In: Lawrence, R.W., Branion, R.M.R., Ebner, H.G (Eds.), Fundamental and Applied Biohydrometallurgy. pp. 279-289, Elsevier, Amsterdam
    Trevors J.T., Oddie K.M., Belliveau B.H. (1985) Metal resistance in bacteria FEMS Microbiol. Rev. 32: 39-54
    Trevors J.T., Stratton GW., Gadd GM. (1986) Cadmium transport, resistance, and toxicity in bacteria, algae, and fungi. Can. J. Microbiol. 32: 447-464
    Verma T., Srinath T., Gadpayle R.U., Ramteke P.W., Hans R.K., Garg S.K. (2001) Chromate tolerant bacteria isolated from tannery effluent. Bioresour. Technol. 78: 31-35
    Volesky B., May H., Holan Z.R. (1993) Cadmium biosorption by 5. cerevisiae. Biotechnol. Bioeng. 41: 826-829
    Wang L.C., Michels P., Dawson C., Kitisakkul S., Baross J., Clark D. (1997) Cadmium removal by a new strain of Pseudomonas aeruginosa in aerobic culture. Appl. Environ. Microbiol. 63:4075-4078
    Wang L., Chua H., Zhou Q., Wong P.K., Sin S.N., Lo W.L., Yu P.H. (2003) Role of cell surface components on Cu~(2+) adsorption by Pseudomonas putida 5-x isolated from electroplating effluent. Water Res. 37:561-568
    Wei Y.B. (1989)Physiology of Microbes. Beijing: Higher Education Press. (In Chinese)
    Wilhelmi B.S., Duncan J.R. (1995) Metal recovery from Saccharomyces cerevisiae biosorption columns. Biotech. Lett. 17:1007-1010
    Wong C. K. (1993) Effects of chromium, copper, nickel and zinc on longevity and reproduction of the cladoceran Moina macrocopa. Bull. Envriopn. Contam. Toxicol. 50:633-639
    Yilmaz E. I. (2003) Metal tolerance and biosorption capacity of Bacillus circulans strain EB1. Res. Microbiol. 154:409-415
    奥斯伯,布伦特,金斯敦等.(2001)精编分子生物学实验指南[M].北京:科学出版社.p16-34
    东秀珠,蔡妙英.(2001)常见细菌系统鉴定手册[M].北京:科学出版社.p128-192
    鲁如坤等.(2000)中国土壤学会.土壤农业化学分析方法[M].北京:中国农业科技出版社
    Aksu Z. (1998) Biosorption of heavy metals by microalgae in batch and continuous systems, in: Wong Y. S., Tam N.F.Y., editors, Algae for Waste Water Treatment, Germany: Springer-Verlag and Landes Bioscience, (Chapter 3)
    Aksu Z., Kutsal T. (1990) A comparative study for biosorption characteristics of heavy metal ions with C. vulgaris. Environ. Technol. 11: 979-987
    Aksu Z., Ozer D., Ekiz H.I., Kutsa(?) T., Cag(?)lar A. (1996) Investigation of biosorption of chromium(VI) on C. crispata in two-staged batch reactor. Environ. Technol. 17: 215-220
    Brady D., Duncan J.R. (1994) Bioaccumulation of metal cations by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 41: 149-154
    
    Cabral J.P.S. (1992) Selective binding of metal ions to Pseudomonas syringae. Microbios. 71: 47-53
    Chang J.S., Law R., Chang C.C. (1997) Biosorption of lead, copper, and cadmium by biomass of Pseudomonas aeuginosa PU21. Water Res. 31: 1651-1658
    Chen, X.C., Wang, Y.P., Lin, Q., Shi, J.Y., Wu, W.X., Chen, Y.X. (2005) Biosorption of copper(II) and zinc(II) from aqueous solutions by Pseudomonas putida CZI. Colloid Surf. B-Biointerfaces. 46: 101-107
    Cox, L., Hermosin, M.C., Celis,R. Cornejo, J. (1997) Sorption of two polar herbicides in soils and soil clays suspensions. Water Res. 31: 1309-1316
    Curl, R.L. Keioleian, G.A. (1984) Implicit-adsorbate model for apparent anomalies with organic adsorption on natural adsorbents. Environ. Sci. Technol. 18: 916-922
    Di Toro, D.M., Horzempa, L.M. (1982) Reversible and resistent components of PCB adsorption-desorption: Isotherms. Environ. Sci. Technol. 16: 594-602
    Di Toro, D.M., Mahony, J.D., Kirchgraber, P.R., O'Byrne A.L., Pasquale L.R. Picclrilll D.C. (1986) Effects of nonreversibility, particle concentration, and ionic strength on heavy metal sorption. Environ. Sci. Technol. 20: 55-61
    Fourest E., Canal C, Roux J.C. (1994) Improvement of heavy metal biosorption by mycelial dead biomasses (Rhizopus arrhizus, Mucor miehei and Penicillium chrysogenum): pH control and cationic activation. FEMS Microbiol Rev. 14: 325-332
    Gadd G.M. (1986) Fungal response towards heavy metals, In: Herbert, R.A., Codd, G.A. (Eds), Microbes in Extreme environments, pp. 83-110, Academic Press, London
    Gadd G.M., De Rome L. (1988) Biosorption of copper by fungal Melanin. Appl. Microbiol. Biotechnol. 29:610-617
    Gardea-Torresdey J.L., Becker-Hapak M.K., Hosea J.M., Darnall D.W. (1990) Effect of chemical modification of algal carboxyl groups on metal ion binding. Environ. Sci. Technol. 24: 1372-1378
    Grover R.J., Hance R.J. (1970) Effect of ratio of soil to water on adsorption of linuron and atrazine. Soil Sci. 109: 136-13
    Gschwend P.M., Wu S.C. (1985) On the constancy of sediment-water partition coefficients of Hydrophobic organic pollutants. Environ. Sci. Technol. 19: 90-96
    Higgo, J.J.W., Rees, L.V.C. (1986) Adsorption of actinides by marine sediments: effect of the sediment/seawater radio on the measured distribution radio. Environ. Sci. Technol. 20:483-490
    Ho Y.S., McKay G. (1998) Kinetic Models for the Sorption of Dye from Aqueous Solution by Wood. Process Safe. Environ. Protect. 76: 183-191
    Ho Y.S., McKay G (1999a) Batch Lead(II) Removal from Aqueous Solution by Peat: Equilibrium and Kinetics. Process Safe. Environ. Protect. 77: 165-173
    
    Ho Y.S., McKay G. (1999b) The sorption of lead(II) ions on peat. Water Res. 33: 578-584
    Ingleton I., Simmons P. (1996) Factors affecting silver biosorption by an industrial strain of Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 65: 21-28
    Kadukova J., vircikova E. (2005) Comparison of differences between copper bioaccumulation and biosorption. Environ Intern. 31: 227-232
    Kazy S.K., Sar P., Asthana R.K., Singh S.P. (1999) Copper uptake and its compartmentalization in Pseudomonas aeruginosa strains: chemical nature of cellular metal. World J. Microbiol. Biotechnol. 15: 599-605
    Li Y.H., Burkhardt L., Buchholtz M, O'Hara P., Santschi P.H. (1984) Partition of radiotracers between suspended particles and seawater. Geochim. Cosmochim. Acta. 48: 2011-2019
    Mattuschka B., Straube G, Trevors J.T. (1994) Silver, copper and lead accumulation by Pseudomonas stutzeri AG259 and Streptomyces albus: electron microscopy and energy dispersive X-ray studies. Biometals. 7:201-208
    McKay G., Ho Y.S. (1999) Pseudo-second order model for sorption processes. Process Biochem. 34: 451-465
    McKinley J.P., Jenne E.A. (1991) Experimental investigation and review of the solids concentration effect in adsorption studies. Environ. Sci. Technol. 25: 2082-2087
    Meszaros R. Nagy M., Varga I. (1999) Nonequilibrium aspects of adsorption from a dilute aqueous solution of 1-Propanol onto activated carbon: interrelation between the sorbent "Concentration" effect and metastability. Langmuir. 15: 1307-1312
    Nyffeler, U.P., Li, Y.H. Santschi, P.H. (1984) A kinetic approach to describe trace-element distribution between particles and solution in natural aquatic systems. Geochim. Cosmochim. Acta. 48: 1513-1522
    O' Connor, D.J., Connolly, J.P. (1980) The effect of concentration of adsorbing solids on the partition coefficient. Water Res. 14: 1517-1523
    Ozdemir G, Ceyhan N., Ozturk T., Akirmak F., Cosar T. (2004) Biosorption of chromium(VI), cadmium(II) and copper(II) by Pantoea sp. TEM 18. J. Chem. Eng. 102: 249-253
    Ozturk A., Artan T., Ayar A. (2004) Biosorption of nickel(II) and copper(II) ions from aqueous solution by Streptomyces coelicolor A3(2). Colloid Surf. B. 34: 105-110
    Philip L., Iyengar L., Venchobachar C. (1995) Biosorption of copper(II) by Pseudomonas aeruginosa. Int. J. Environ. Pollut. 5: 92-99
    Pan, G, Krom, M.D., Herut B. (2002) Adsorption-desorption of phosphate on airborne dust and riverborne particulates in East Mediterranean seawater. Environ. Sci. Technol. 36: 3519-3524
    Pan, G, Liss, P.S. (1998a) Metastable-equilibrium adsorption theory I. Theoretical. J. Colloid Interface Sci. 201:71-76
    Pan, G, Liss, P.S. (1998b) Metastable-equilibrium adsorption theory II. Experimental. J. Colloid Interface Sci. 201:77-85
    Pan, G, Liss, P.S., Krom, M.D. (1999) Particle concentration effect and adsorption reversibility. Colloid Surf. A-Physicochem. Eng. Asp. 151: 127-138
    Pardo R., Herguedas M., Barrado E., Vega M. (2003) Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida. Anal. Bioanal. Chem. 376: 26-32
    Puranik P.R., Paknikar K.M. (1999) Biosorption of lead, cadmium, and zinc by Citrobacter strain MCM B-181: Characterization studies. Biotechnol. Prog. 15: 228-237
    Sadowski Z. (2001) Effect of biosorption of Pb(II), Cu(II) and Cd(II) on the zeta potential and flocculation of Nocardia sp. Mineral Eng. 14: 547-552
    Sar P., Kazy S.K., Asthana R.K., Singh S.P. (1999) Metal adsorption and desorption by lyophilized Pseudomonas aeruginosa. Int. Biodeterior. Biodegrad. 44:101-110
    Scheidegger A.M., Sparks D.L. (1996) A critical assessment of sorption-desorption mechanisms at the soil mineral/water interface. Soil Sci. 161: 812-831
    Senthilkumar S., Bharathi S., Nithyanandhi D., Subburam V. (2000) Biosorption of toxic heavy metals from aqueous solutions. Bioresour Technol. 75:163-165
    Sugawara H., Yoda A., Kitamoto K., Yamasaki M. (1997) Isolation and characterization of nickel-accumulating yeasts. Appl Microbiol Biotechnol. 48:373-478
    Tsezos M., Remoudaki E., Angelatou V. (1995) A systematic study on equilibrium and kinetics of biosorptive accumulation, The case of Ag and Ni. Int. Biodeterior. Biodegrad. 35:129-153
    Ucan M., Ayar A. (2002) Sorption equilibria of chlorinated anilines in aqueous solution on resin-bound cobalt ion. Colloid Surf A. 207:41-47
    Verburg, K., Baveye, P. (1994) Hysteresis in the binary exchange of cations on 2:1 clay minerals: a critical review. Clay Clay Min. 42:207-220
    Voice, T.C., Weber, W.J. (1983) Sorption of hydrophobic compounds by sediments, soils, and suspended solids-I: Theory and background. Water Res. 17:1433-1441
    Voice, T.C., Weber, W.J. (1985) Sorbent concentration effects in liquid/solid partitioning. Envrion. Sci. Technol. 19:789-796
    Volesky B. (1990) In: Volesky, B. (Ed.), Biosorption of Heavy Metals. CRC Press, Boca Raton, FL
    Volesky B. (1994) Advances in biosorption of metals: selection of biomass types. FEMS Microbiol Rev. 14:291-302
    Volesky B., Holan Z.R. (1995) Biosorption of heavy metals. Biotechnol Prog. 11:235-250
    Wehrheim B., Wettern M. (1994) Biosorption of cadmium, copper and lead by isolated mother cell walls and whole cells of Chlorella fusca. Appl. Microbiol. Biotechnol. 41:725-728
    Wilde E.W., Benemann J.R. (1993) Bioremoval of heavy metals by the use of microalgae. Biotech. Adv. 11:781-812
    Wong P.K., Lam K.C., So C.M. (1993) Removal and recovery of copper(Ⅱ) from industrial effluents by immobilized cells of Pseudomonas putida Ⅱ-11. Appl. Microbiol. Biotechnol. 39:127-131
    Wong P.K., So C.M. (1993) Copper accumulation by a strain of Pseudomonas putida. Microbios. 73: 113-121
    Yun Y.S., Volesky B. (2003) Modeling of Lithium Interference in Cadmium Biosorption. Environ. Sci. Technol. 37:3601-3608
    屠娟,张利,赵力,俞耀庭.(1995)非活性黑根霉菌对废水中重金属离子的吸附.环境科学.16:12-15
    潘纲.(2003)亚稳平衡吸附(MEA)理论—传统吸附热力学面临的挑战与发展.环境科学学报.23:156-17
    Akthar N.M.D., Sastry K.S., Mohan P.M. (1996) Mechanism of metal ion biosorption by fungal biomass. BioMetals. 9: 21-28
    Bai R.S., Abraham T.E. (2002) Studies on enhancement of Cr(VI) biosorption by chemically modified biomass of Rhizopus nigricans. Water Res. 36: 1224-1236
    Beveridge T.J., Murray R.GE. (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J. Bacteriol. 141:876-887
    Bux R, Kasan H.C. (1994) Comparision of selected methods for relative assessment of surface charge on waste sludge biomass. Water SA. 20: 73-76
    Chen X.C., Wang Y.P., Lin Q., Shi J.Y., Wu W.X., Chen Y.X. (2005) Biosorption of copper(II) and zinc(II) from aqueous solutions by Pseudomonas putida CZ1. Colloid Surf B-Biointerfaces 46: 101-107
    Chen X.C., Shi J.Y., Chen Y.X., Xu X.H., Xu S.Y., Wang Y.P. (2006) Tolerance and biosorption of copper and zinc by Pseudomonas putida CZ1 isolated from metal-polluted soil. Can. J. Microbiol. 52: 308-316
    
    Conley R.T. (1972) Infrared Spectroscopy, 2nd ed.; Allyn and Bacon, Inc.: Boston
    Crist R.H., Oberholser K., Shank N., Nguyen N. (1981) Nature of bonding between metallic ions and algal cell walls. Environ. Sci. Technol. 15: 1212-1217
    Crist R.H., Oberholser K., Schwartz D., Marzoff J., Ryder D., Crist D.R. (1988) Interactions of metals and protons with Algae. Environ. Sci. Technol. 22: 755-760
    Doyle R.J., Matthews T.H., Streips U.N. (1980) Chemical basis for selectivity of metal ions by the Bacillus subtilis cell wall. J. Bacteriol. 143: 471-480
    Drake L.R., Lin S., Rayson GD. (1996) Chemical modifications and metal binding studies of Datura innoxia. Environ. Sci. Technol. 30: 110-114
    Dupont L., Guillon E., Bouanda J., Dumonceau J., Aplincourt M. (2002) EXAFS and XANES studies of retention of copper and lead by a lignocellulosic biomaterial. Environ. Sci. Technol. 36: 5062-5066
    Gadd GM. (1986) The uptake of heavy metals by fungi and yeasts: The chemistry and physiology of the process and applications for biotechnology. In Immobilisation of Ions by Biosorption, ed. Eccles H.H. and Hunt S., Ellis Horwood, Chichester, UK, pp. 135-147
    Gardea-Torresdey J.L., Becker-Hapak M.K., Hosea J.M., Darnall D.W. (1990) Effect of chemical modification of algal carboxyl groups on metal ion binding. Environ. Sci. Technol. 24: 1372-1378
    Gardea-Torresdey J.L., Tang L., Salvador J.M. (1996) Copper adsorption by esterified and unesterified fractions of sphagnum peat moss and its different humic substances. J. Hazard Mater. 48: 191-206
    Greene B., Hosea M., McPherson R., Henzl M., Alexander M.D., Darnall D.W. (1986) Interaction of gold (I) and gold (III) complexes with algal biomass. Environ. Sci. Technol. 20: 627-632
    Guibal E., Roulph C, Cloirec P.L. (1995) Infrared spectroscopic study of uranyl biosorption by fungal biomass and materials of biological origin. Environ. Sci. Technol. 29: 2496-2502
    Huang C, Huang C.P. (1996) Application of Aspergillus oryzae and Rhizopus oryzae for Cu (II) removal. Water Res. 9: 1985-1990
    Kapoor A., Viraraghavan T. (1997) Heavy metal biosorption sites in Aspergillus niger. Bioresour. Technol. 61: 221-227
    Kiefer E., Sigg L., Schosseler P. (1997) Chemical and spectroscopic characterization of algae surfaces. Environ. Sci. Technol. 31: 759-764
    Kretschmer K.C., Gardea-Torresdey J., Chianelli R., Webb R. (2002) Determination of copper binding in Anabaena flos-aquae purified cell walls and whole cells by X-ray absorption spectroscopy. Microchem. J. 71: 295-304
    
    Kuyucak N., Volesky B. (1989) The mechanism of cobalt biosorption. Biotechnol. Bioeng. 33: 823-831
    Lin S., Rayson GD. (1998) Impact of surface modification on binding affinity distributions of Datura innoxia biomass to metal ions. Environ. Sci. Technol. 32: 1488-1493
    
    Loudon, GM. (1984) Organic Chemistry, p.1196. Addison-Wesley, Reading, Massachusetts, USA.
    Mantsch H.H., Chapman D., Eds. (1995) Infrared Spectroscopy of Biomolecules, Wiley Liss, Inc.: New York, p120
    Meitzner G, Huang E.S. (1992) Analysis of mixtures of compounds of copper using K-edge X-ray absorption spectroscopy. Anal. Bioanal. Chem. 342: 61-64
    Muzzarelli R.A.A. (1977) Chitin. Pergamon Press, Oxford, England
    Pagnanelli R, Papini M.P., Toro L., Trifoni M., Veglio F. (2000) Biosorption of metal ions on Arthrobacter sp.: biomass characterization and biosorption modeling. Environ. Sci. Technol. 34: 2773-2778
    Pakunc D., Foster A., Heald S., Laflamme G. (2004) Speciation and characterization of arsenic in gold ores and cyanidation tailings using X-ray absorption spectroscopy. Geochim. Cosmochim. Acta. 68: 969-983
    Romero-Gonzalez M.E., Williams C.J., Gardiner P.H.E., Gurman S J., Habesh S. (2003) Spectroscopic studies of the biosorption of gold(III) by dealginated seaweed waste. Environ. Sci. Technol. 37: 4163-4169
    Sachs S., Bubner M., Schmeide K., Choppin G.R., Heise K.H., Bernhard G (2002) Carbon-13 NMR spectroscopic studies on chemically modified and unmodified natural and synthetic humic acids. Talanta 57: 999-1009
    Schiewer S., Wong M.H. (1999) Metal binding stoichiometry and isotherm choice in biosorption. Environ. Sci. Technol. 33: 3821-3828
    
    Ternay A.L. (1979) Contemporary Organic Chemistry, 2nd ed. Saunders WB Company, p 783
    Tiemann K.J., Gardea-Torresdey J.L., Gamez G, Dokken K. (1998) Interference studies for multi-metal binding by medicago sativa (alfalfa). Proceedings of the 1998 Conference of Hazardous Waste Research 63-75
    Tiemann K.J., Gardea-Torresdey J.L., Gamez G, Dokken K., Sias S., Renner M.W., Furenlid L.R. (1999) Use of X-ray absorption spectroscopy and esterification to investigate Cr(III) and Ni(II) ligands in alfalfa biomass. Environ. Sci. Technol. 33: 150-154
    Tobin J.M., Cooper D.G, Neufeld R.J. (1990) Investigation of the mechanism of metal uptake by denatured Rhizopus arrhizus biomass. Enzyme. Microb. Technol. 12: 591-595
    Toner B., Manceau A., Marcus M.A., Millet D.B., Sposito G (2005) Zinc Sorption by a Bacterial Biofilm. Environ. Sci. Technol. 39: 8288-8294
    Tsezos M., Volesky B. (1982) The mechanism of uranium biosorption by Rhizopus arrhizus. Biotechnol. Bioengng. 24: 385-401
    Wang J.L. (2002) Biosorption of copper(II) by chemically modified biomass of Saccharomyces cerevisiae. Process Biochem. 37: 847-850
    Wang L., Chua H., Zhou Q., Wong P.K., Sin S.N., Lo W.L., Yu P.H. (2003) Role of cell surface components on Cu2+ adsorption by Pseudomonas putida 5-x isolated from electroplating effluent. Water Res. 37:561-568
    Wieber J., Kulik F., Pethica B.A., Zuman P. (1988) Sorption on lignin, wood and celluloses. III. Copper(Ⅱ) and zinc(Ⅱ) ions. Colloids Surf. 33:141-152
    Yan G., Viraraghavan T. (2000) Effect of pretreatment on the bioadsorption of heavy metals on Mucor rouxii. Water SA. 26:119-123
    Yee N., Benning L.G., Phoenix V.R., Ferris F.G. (2004) Characterization of Metal-Cyanobacteria Sorption Reactions: A Combined Macroscopic and Infrared Spectroscopic Investigation. Environ. Sci. Technol. 38 : 775-782
    Yun Y.S., Volesky B. (2003) Modeling of lithium interference in cadmium biosorption. Environ. Sci. Technol. 37:3601-3608
    Atkinson R.J., Posner A.M., Quirk P. (1967) Adsorption of potential-determining ions at the ferric oxide aqueous electrolyte interface. J. Phys. Chem. 71:550-558
    Berthelin J., Munier-Lamy C., Leyval C. (1995) Effect of microorganisms on mobility of heavy metals in soils. In Huang P.M., Berthelin J., Bollag J.M., McGill W.B., Pago A.L. ed. Environmental Impact of Soil Component, Mineral-organic and Microorganisms Interaction on Environmental Quality. Boca Raton: CRC Press/Lewis Publishers, 3-17
    Chen X.C., Wang Y.P., Lin Q., Shi J.Y., Wu W.X., Chen Y.X. (2005) Biosorption of copper(Ⅱ) and zinc(Ⅱ) from aqueous solutions by Pseudomonas putida CZ1. Colloid Surf B-Biointerfaces 46: 101-107
    Chen X.C., Shi J.Y., Chen Y.X., Xu X.H., Xu S.Y., Wang Y.P. (2006) Tolerance and biosorption of copper and zinc by Pseudomonas putida CZ1 isolated from metal-polluted soil. Can. J. Microbiol. 52: 308-316
    Ehrlich H.L. (1996) How microbe influence mineral growth and dissolution. Chem. Geol. 132:1-3
    Ferris F.G., Fyfe W.S, Beveridge T.J. (1987) Bacteria as nucleation sites for authigenic minerals in a metal-contaminated lake sediment. Chem. Geol. 63:225-232
    Flemming C.A., Ferris F.G., Beveridge T.J., Bailey G.W. (1990) Remobilization of toxic heavy metals adsorbed to bacterial wall-clay composites. Appl. Environ. Microbiol. 56:3191-3203
    Fortin D., Ferris F.G., Scott S.D. (1998) Formation of Fe- silicates and Fe-oxides on bacterial surfaces in samples collected near hydrothermal vents on the Southern Explorer Ridge in the Northeast Pacific Ocean. Am. Miner. 83:1399-1418
    Huang Q.Y., Wu J.M., Chen W.L., Li X.Y. (2000) Adsorption of Cadmium by soil colloids and minerals in presence of Rhizobia. Pedosphere. 10:299-307
    Kalinowski B.E., Liermann L.J., Brantley S.L., Barnes A., Pantano C.G. (2000) X-ray photoelectron evidence for bacteria-enhanced dissolution of hornblende. Geochim. Cosmochim. Acta. 64: 1331-1343
    Kurek E., Czavan J., Bollag J.M. (1982) Sorption of cadmium by microorganisms in competition with other soil constituents. Appl. Environ. Microbiol. 43: 1011-1015
    Liermann L.J., Kalinowski B.E., Brantley S.L., Ferry J.G. (2000) Role of bacterial siderophores in dissolution of hornblende. Geochim. Cosmochim. Acta. 64:587-602
    Lovely D.R., Stolz J.F., Nord G.L., Phillips E.J.P. (1987) Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature. 330:252-254
    Macaskie L.E., Empson R.M., Cheetham A.K., Grey C.P., Skarnulis A.J. (1992) Uranium bioaccumulation by a Citrobacter sp. as a result of enzymically mediated growth of polycrystalline HUO_2PO_4. Science. 257:782-784
    Myers C.R., Nealson K.H. (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science. 240:1319-1321
    Nordstrom D.K., Southam G. (1997) Geomicrobiology of sulfide mineral oxidation. Rev. Mineral. Geochem. 35:361-382
    Rougers J.R., Bennett P.C., Choi W.J. (1998) Feldspars as a source of nutrients for microorganism. Am. Miner. 83:1532-1540
    Schultz-Lam S., Fortin D., Davis B.S., Beveridge T.J. (1996) Mineralization of bacterial Surfaces. Chem. Geol. 132:171-182.
    Urrutia M.M., Beveridge T.J. (1994) Formation of fine-grained metal and silicate precipitates on a bacteria surface (Bacillus subtilis). Chem. Geol. 116:261-280
    Walker S.G., Flemming C.A., Ferris F.G., Beveridge T.J. Bailey G.W. (1989) Physicochemical interaction of Escherichia Coli cell envelopes and Bacillus subtilis cell walls with two clays and ability of the composite to immobilize heavy metals from solution. Appl. Environ. Microbiol. 55: 2976-2984
    何宏平,郭九皋,朱建喜,杨丹.(2001)蒙脱石、高岭石、伊利石对重金属离子吸附容量的实验研 究,岩石矿物学杂志.20(4):573-578
    魏俊峰,吴大清,彭金莲,刁桂仪.(2000)铜(Ⅱ)在高岭石表面的吸附.矿物岩石.20(3):19-22
    徐磊辉.(2003)耐重金属细菌对土壤胶体矿物体系表面特性及铜和镉离子吸附解吸的影响.华中农业大学硕士学位论文
    张桂银,董元彦,李学垣,魏静,毕淑琴.(2001)不同pH、电解质浓度条件下草酸对针铁矿吸附Cd(Ⅱ)的影响及机制.植物营养与肥料学报.7(3):305-310
    Baker W.E. (1970) The role of humic acids from Tasmanian podzol soils in mineral degradation and metal mobilization. Geochim. Cosmochim. Acta. 37:269-281
    Beveridge T.J. (1978) The response of cell walls of Bacillus subtilis to metals and electron microscopic strains. Can. J. Microbial. 24:89-104
    Beveridge T.J., Koval S.F. (1981) Binding of metals to cell envelopes of Escherichia Coli K-12. Appl. Environ. Microbiol. 42:325-335
    Beveridge T.J., Murray R.G. E. (1976) Uptake retention of metal by cell walls of Bacillus Subtilis. J. Bacterial. 27:1502-1518
    Beveridge T.J., Murray R.G.E. (1980) Sites of metal deposition in the cell wall of Bacillus Subtils. J. Bacterial. 141: 876-887
    Blaylock M.J., Salt D.E., Dushenkov S., Zakarova O., Gussman C., Kapulnik Y., Ensley B.D., Raskin I. (1997) Enhanced accumulation of Pb in Indian mustard by soil applied chelation agents. Environ. Sci. Tech. 31: 860-865
    Chanmugathas P., Bollag J.M. (1987) Microbial role in immobilization and subsequent mobilization of cadmium in soil suspensions. Soil Sci. Soc. Am. J. 51:1184-1191
    Chanmugathas P., Bollag J.M. (1988) A column study of biological mobilization of cadmium in soil suspension. Arch. Environ. Contamin. Toxicol. 17:229-235
    Kayser A., Wenger K., Keller A. (2000) Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: the use of NTA and sulfur amendments. Environ. Sci. Technol. 34:1778-1783
    Mercer J.F.B. (1998) Menkes syndrome and animal models. Am. J. Clin. Nutr. 67:1022-1028
    Munier-Lamy C., Berthelin T.J. (1987) Formation of polyelectrolyte complexes with (Fe, Al) and trace (V, Cu) elements during neterotrophic microbial leaching of rocks. Geomicrobial J. 5:119-124
    Paul E.A., Clark F.E. (1990) Soil Microbiology and Biochemistry. New York: Academic Press
    Quantin C., Becquer T., Rouiller J.H., Berthelin J. (2002) Redistribution of metal in a new Caledonia Ferralsol after microbial weathering. Soil Sci. Soc. Am. J. 66:1797-1804
    Robert M., Berthelin J. (1986) Role of biological and biochemical factors in soil minerals weathering. In: Huang P.M., Schnizer M.ed. Interactions of Soil Minerals with Natural Organics and Microbes. Madison: Soil Sci Soc Am, Special Publication, 17:453-465
    Salt D.E., Smith R.D., Raskin I. (1998) Phytoremediation. Annual Rev Plant Phys Plant Mol Bio. 49: 643-668
    Siegel S.M., Keller P., Siegel B.Z., Galun E. (1986) Metal Speciation, Separation and Recovery. Proc Intern Symp. Chicago: Kluwer Academic Publishers, 77-94
    Sitaula B.K., Almas A., Baken L.R., Singh B.R. (1999) Assessment of heavy metals associated with bacteria in soil. Soil Biol. Biochem. 31 : 315-316
    Sposito G. (1983) The chemical forms of trace metals in soil. In: Thornton L. ed. Applied Environmental Geochemistry. London: Academic Press, 123-131
    Stanhope K.G., Young S.D., Hutchinson J.J. (2000) Use of isotopic dilution techniques to assess the mobilization of nonlabile Cd by chelating agents in phytoremediation. Environ. Sci. Technol. 34:4123-4127
    Wasay S.A., Barrington S.F., Tokunaga S. (1998) Remediation of soil polluted by heavy metals using salts of organic acids and chelating agents. Environ. Technol. 19:269-380
    施积炎.(2004)海州香薷和鸭跖草铜吸收机理和分子形态研究.浙江大学博士学位论文
    王远鹏.(2006)重金属污染土壤的微生物分子生态及对修复效应的影响.浙江大学博士学位论文
    吴龙华,骆永明,卢蓉晖等.(2000)铜污染土壤修复的有机调控研究Ⅱ.根际土壤铜的有机活化效应.土壤.32(2):67-70
    杨仁斌,曾清如,周细红等.(2000)植物根系分泌物对铅锌尾矿污染土壤中重金属的活化效应.农业环境保护.19(3):152-155

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700