用户名: 密码: 验证码:
松辽盆地晚期构造反转与油气成藏效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松辽盆地晚期构造反转形成了丰富的地质响应,形成了盆地内部的反转构造,并造成了盆地的沉积、沉降中心向西迁移,盆地的差异抬升剥蚀。松辽盆地晚期构造反转控制了流体动力场的演化,进而对油气运聚具有重要的控制作用。
     利用地震大剖面的解释、平衡剖面分析,认识盆地构造演化特征;综合应用镜质体反射率、泥岩声波时差、磷灰石裂变径迹分析方法对松辽盆地晚期的抬升剥蚀特征进行了系统的刻画。松辽盆地晚期构造反转形成五大反转构造带,同时沉积、沉降中心逐步向西迁移。晚期抬升剥蚀作用具有空间分区性,盆地东部抬升剥蚀早、抬升剥蚀量大,而西部抬升剥蚀晚、抬升剥蚀量小,整体产生差异翘倾作用。抬升剥蚀作用在时间上具有幕式性,经历了二大幕四小幕:第一幕快速抬升为晚白垩世-始新世末期,抬升剥蚀速率30~50m/Ma;第一幕缓慢抬升为始新世-古近纪末期,剥蚀速率较小;第二幕快速抬升为渐新世-中新世,剥蚀速率大于50m/Ma;第二幕缓慢抬升为中新世-现今,剥蚀速率小于10m/Ma。松辽盆地晚期构造活动是对中国东部及邻区中新生代系列板块拼贴和重组事件的响应,特别是对伊泽耐奇板块俯冲消亡、太平洋板块向欧亚板块俯冲拼贴和同本海拉张和闭合的响应。
     利用欠压实泥岩分布及探井地层测试数据、钻杆测试数据,分析了松辽盆地流体动力场特征。松辽盆地发育嫩江组、青山口组、泉头组一、二段和登娄库组一、二段等四套欠压实泥岩;储层流体动力场划分为内部高压—异常高压系统、中部常压系统和外部低压—异常低压系统等三大压力系统。构造-流体相互作用表现在,三大流体动力系统受控于盆地晚期的构造反转,而坳陷层的构造样式受控于盆地内部的欠压实泥岩。
     应用含氮化合物油气示踪方法、自生伊利石K-Ar测年方法,分析了典型油藏的油气运聚历史。松辽盆地晚期成藏时间集中分布在晚白垩世-古近纪早期,大庆长垣为典型的快速背斜油气充注过程,是在构造泵吸作用控制下的高效快速成藏。晚期构造活动对油气运聚具有重要的控制作用,是运移的主要动力来源。
The late stage tectonic inversion of Songliao Basin formed abundant geological response. It made the reverse structure inner the basin, induced the sedimentary & subsiding center of the basin move to the west, and resulted in different uplift-erosion of the basin. The late stage tectonic inversion of Songliao Basin also dominated the evolution of fluid dynamical field, what's more controlled the migration and collection of petroleum badly.
     By the analysis of seismic-geological profile and balanced section, we learned the structural evolution of the basin. According to the colligate use of vitrinite reflectivity (Ro), the sonic curve (AC) of mudstones and apatite fission track, systemic depict were made for the late stage uplift-erosion natures of Songliao Basin. The late stage tectonic inversion of Songliao Basin made five reverse structural belts, at the same time, the sedimentary & subsiding center migrated west gradully. The late stage uplift-erosion of the basin had different nature for subareas in the space. East of the basin was uplifted earlier and more, while west later and less. The whole basin became warped differently. The uplift-erosion of the basin had different acts in the time, which include two big acts, four small acts. The first act of quickly uplifting happened form late Cretaceous to the end of Eocene, with the uplift-erosion rate 30~50m/Ma; the first act of slowly uplifting happened form Eocene to the end of Palaeogene, with much smaller erosion rate. The second act of quickly uplifting happened form Oligocene to Miocene, with the erosion rate over 50m/Ma; the second act of slowly uplifting happened form Miocene to nowadays, with erosion rate lower than 10m/Ma. The late stage tectonic movements of Songliao Basin were response to series plate patching up and reforming events in Mesozoic-Cenozoic of east China and near areas. That was especially response to Izanaqi plate subducting-dieing out, Pacific plate subducting down to-patching with Eurasia plate, and Japan Sea opening-closing.
     Using the distributing of under-compacted mudstones, formation testing (RFT) and drill stem testing (DST) data of wells, we analyzed the features of fluid dynamical field in Songliao Basin. There are four sets of under-compacted mudstones in Songliao Basin, which are Nenjiang formation, Qingshankou formation, the first & second members of Quantou formation and the first & second members of Denglouku formation. The fluid dynamical field of reservoirs could be divided into three systems, which are inside high-abnormal high pressure, middle normal pressure and exterior low-abnormal low pressure system. The interaction between structure and fluid shows as three fluid systems are controlled by late stage tectonic reverse of the Basin; the structural style of depress strata are determined by under-compacted mudstones inner the Basin.
     With nitric compound oil-gas tracking, autogenetic illite K-Ar dating, oil-gas migrating & assembling history was analyzed for typical reservoirs. The late stage reservoiring of Songliao Basin was fastened during late Cretaceous to early Palaeogene. Daqing Placanticline reservoirs were typical quick filling process of anticlines, which was quick and effective reservoiring. Late stage tectonic movements of Songliao Basin obviously controlled oil-gas migrating & assembling, and it was the main dynamic source of petroleum migrating.
引文
Aydin A.Fractures,faults,and hydrocarbon entrapment,migration and flow.Marine and petroleum geology.2000.17:797-814.
    Buschkuehle B.E.,Machel H.G.Diagenesis and paleofluid in the Devonian southest-cairn carbonate complex in Alberta,Canada.Marine and petroleum geology.2002.
    Brandan M.T..Decompostion of fission-track grain age distributions.American Journal of science,1992,292:565-536.
    Bally,A.W.ed.Seismic expression of structural styles,1983,3:P.3.3.13-18.
    Brodie J, White N.Sedimentary basins inversion caused by igneousunderplating:Northwest European continental shelf.Geology.1994,22:147-150.
    Buchanan P.G.. ,et al. Sandbox experiments of inverted listric and planar fault systems:Tectonophysics,1991,188:97-115.
    Carter A.& Moss S.T..Combined detrital-zircon fission-track and U-Pb dating:a new approach to understanding hinterland evolution.Geology,1999,27(3):235-238.
    Casanova J.,Negrel Ph.,Kloppman W.et al.Origin of deep saline groundwater in the Vienne granitic rocks (France):constraints inferred from boron and strontium isotopes.Geofluids,2001.1:91-102
    Cooper,M.A.& Williams,G.D.(eds).Inversion Tectonics. Geological Society Special Publication Blackwell Scientffic Publications.1989,44.
    Chan A.M.,Parry W.T.,and Bowman J.R.,Diagenetic hematite and manganese oxides and fault-related fluid flow in Jurassic sandstones,Southeastern Utah.AAPG bulletin,2000,84(9):1281-1310.
    Crespo T.M.,Delgado A,Catena E.V.,et al.The latest past-variscan fluids in the Spanish central system:evidence from fluid inclusion and stable isotope data.Marine and petroleum geology.2002.
    Dalhberg E.C..Applied hydrodynamics in petroleum exploration,2nded.:New york,Springer-Verla,1994,295.
    Dikin A P.1995.Radiogenic isotope geology.Cambridge:Cambridge university press:245-276
    Dong H.,Hall CM.,Peacor D.R.,Halliday A.N..Mechanism of argon retention in clays revealed by laser 40Ar-39Ar dating.Science,1995,267:355-359.
    Dong H.,Hall CM.,Peacor D.R.,Halliday A.N..40Ar/39Ar dating of clay diagenesis using authigenic-detrital mixtures.Earth planet Science letter,2000,175:309-325.
    Galy A.& France L.C.The late Oligocene- Early Miocene Himalayan belt constraints deduced from isotopic compositions of Early Miocene turbidites in the Bengal Fan.Tectonophysics,1996,260:109-118.
    Glasmann J.R.,Clark R.A.,Larter S.,etal.Diagenesis in Bergen High area,North Sea:relationship to hydrocarbon maturation and fluid flow,Brent sandstone. AAPG bulletin,1989,73:1341-1360.
    Gleedow,Duddy,etal.Fission track lengths in the apatite annealing zone and the interpretation of mixed ages.Earth and planetary science letters,1986,78:245-254.
    Gordon R G & D M Jurdy.Cenozoic global plate motions.J.Geophys.Res.,1986,91:12389-12406
    Garden I.R.,Guscott S.C.,Burley S.D,et al.An exhumed palaeo-hydrocarbon migration fairway in a faulted carrier system,entrada sandstone of SE Utah USA. geofluids,2001.1:195-213.
    Grobe M,Machel,H.G.Saline groundwater in the Munsterland cretaceous basin,Germany:clues to its origin and evolution.Marine and petroleum geology.2002.
    Harding,T.P.Structural inversion at Rambutan oil field,Soufh Sumatra Basin,in Harding, T.P.Graben hydrocarbon occurrences and structural styles.AAPG Bulltion,1984,68(3):333—362.
    Hitchon B,Perkins E.H.,Gunter W.D.,Recovery of trace metals in formation waters using acid gases from natural gas.Applied geochemistry,2001.16:1481-1497.
    Horner D.R..Pressure build-up in wells:proceedings of the third world petroleum congress.The Hague,1951,Section Ⅱ :503-521.
    Hurford A.J..Standardization of fission track dating calibration:recommendation by the fission track working group of the IUGS subcommision on geochronology.Chem.Geol.(Isotopicgeoscience section),1990,80:171-178.
    Jolivet L,K Tamaki and Fournier M..Japan Sea,opening history and mechanism:a synthesis.Journal of Geophysical Research,1994,99(B11):22,237-22,259
    Jolivet,L.,Philippe,H.and Claude R..Tectonic setting of western Pacific marginal basins.Tectonophysics,1989,160:23-47
    Kelly J.,Parnell J.,Chen H.H.,Application of fluid inclusions to studies of fractured sandstone reservoirs.Journal of geochemical exploration.2000.69-70:705-709.
    Ketcham R A,Ddonelick R A,Carlson W D.Variability of apatite fission-track annealing kinetics Ⅲ:Extrapolation to geological time scales[J].American Mineralogist,1999,84:1235-1255.
    Ketcham R A,Donelick R A,Donelick M B.AFTSolve:A program for multi-kinetic modeling of apatite fission-track data.Geological Materials Research,2000,2(1):1-32.
    Kong F.C.,Lawver L.A.,Lee T.Y..Evolution of the Southern Taiwan-Sinzi floded zone and opening of the Southern Okinawa trogh.Journal of Asian earth sciences,2000,18:325-341.
    Lowell,J.D.Structural styles in petroleum exploration.Oil and Gas Consultant International Inc,1985.
    Law B E, Nuccio V.F.and Barker C.E..Kinky vitrinite reflectance well profiles.AAPG,1989,73(8):721~730.
    Lee M,Aronson J.L. Savin S.M..Timing and condition of Permian Rotliegende Sandstone diagenesis,South North Sea:K-Ar and Oxygen isotopic data.AAPG bulletin, 1989,73:195-125.
    Lee T-Y and L A Lawver.Cenozoic plate reconstruction of Southeast Asia.Tectonophysics,1995,251:85-138
    Liewig N.,Clauer N.,Sommer F.Rb-Sr and K-Ar dating of clay diagenesis in Jurassic sandstone oil-reservoir,North Sea.AAPG bulletin,1987.,71:1461-1474.
    Magara K著,陈荷立等译.压实与流体运移.北京:石油工业出版社,1986.
    Mietra,S.Geometry and kinematic evolution of inversion structures.AAPG Bull,1993,77(7):1159-1191.
    Maruyama S,J G Liu and T Seno.Mesozoic and Cenozoic evolution of Asia.In Evolution of the Pacific Ocean Margins,edited by Z.Ben-Avraham,1989,PP.75-99.Oxford University Press,New York.
    Maruyama S,Tetsuzo S.Orogeny and relative plate motions:example of the Japanese islands.Tectonophysics,1986,127:305-329.
    Mcgoldrick P.J.and Gleadow A.J.W..FT dating of lower Palaeozoic sandstones at Tatong,Northern Central Victoria.Journal of the Geological society of Australia,1977,24:461-464.
    Patriat G H and Achache J.Indo-Eurasian collision chronology has implications for crustal shorting and driving mechanism of plates.Nature,1984,311:615-621
    Ren J Y,Tamaki K,Li S T,et al..Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas.Tectonophysics,2002,344:175-205
    Rossi C.,Kalin O.,Arribas J.,Tortosa A,Diagenesis,prevalence,and reservoir quality of Triassic TAGI sandstone from ourhoud field,Berkine(Ghadames)basin Algeria.Marine and petroleum geology,2002.in press.
    SibuetJ.C.,Hsu S.K.,Pichon X.L..East Asia plate tectonics since 15Ma:constraints from the Taiwan region.Tectonophysics,2002,344:103-134.
    Thyne G.,A model for diagenetic mass transfer between adjacent sandstone and shale.Marine and petroleum geology,2001.18:743-755.
    Tamaki K.Opening tectonics of the Japan Sea.In Backarc Basins:Tectonics and Magmatism(B.Taylor eds.,Pleum Press,Newyork),1995,407-419
    Worrall D M,V Kruglyak,F Kunst and V Kuznetsov.Tertiary tectonics of the Sea of Okhotsk,Russia:Far-field effects of the India_Eurasia collision.Tectonics,1996,15(4):813-826
    Zhou Y C,Littke R.Numerical simulation of the thermal maturation,oil generation and migration in the Songliao Basin,Northeastern China.Marine and Petroleum geology,1999,16:771-792.
    陈发景等.中国中新生代含油气盆地构造和动力学背景.现代地质,1993,3(6).
    方石,刘招君,郭巍.松辽盆地与大兴安岭新生代热构造耦合研究.核技术,2005,28(9):717-721.
    窦立荣,李志.构造作用对油气藏的改造.新疆石油地质,2003,24(5):396-399.
    冯子辉,霍秋立,王雪.松辽盆地北部氦气成藏特征研究.天然气工业.2001.21(5).
    付广,王剑秦.地壳拾升对油气藏保存条件的影响.天然气地球科学,2000,11(2):18-24.
    高瑞祺,蔡希源等著.松辽盆地油气田形成条件与分布规律.北京:石油工业出版社,1997
    郝芳.超压盆地生烃作用动力学与油气成藏机理.北京:科学出版社,2005
    何生,王青玲.关于用镜质体反射率恢复底层剥蚀厚度的问题讨论.地质论评,1980,35(2):120-126.
    侯启军,冯子恢,邹玉良.松辽盆地齐家-古龙凹陷油气成藏期次研究.石油试验地质,2005,27(4):390-394.
    黄福堂.松辽盆地油气水地球化学.北京:石油工业出版社,1999.
    康铁笙,王世成.地质热历史研究的裂变径迹方法.北京:地质出版社,1991
    李娟,舒良树.松辽盆地中、新生代构造特征及其演化.南京大学学报(自然科学),2002,38(4):525-531.
    李明诚.石油与天然气运移(第三版).北京:石油工业出版社,2004,27-31.
    刘和甫,陆伟文,王玉新.鄂尔多斯西缘冲断一褶皱带形成与形变,见:杨俊杰等主编.鄂尔多斯盆地西缘掩冲带构造与油气.科学技术出版社,1990.
    刘和甫,梁慧社,蔡立国.大山两侧前陆冲断系构造样式与前陆盆地演化.地球科学,1994,19(6):727-741.
    刘和甫.伸展构造及其反转作用.地学前缘,1995,2(1):113-124.
    刘和甫,李晓清,刘立群等.伸展构造与裂谷盆地成藏区带.石油与天然气地质,2005,26(5):547-552.
    楼章华,曾允孚.扶杨油层孔隙水成冈与砂岩成岩相研究.沉积学报.1995.vol13(增刊):63-70.
    梅廉夫,徐思煌.沉积盆地沉积物天然水力压裂理论及意义.地质科技情报,1997,16(1): 39-45.
    宋岩,王毅,王震亮,等.天然气运聚动力学与气藏形成[M].北京:石油工业出版社,2002.
    王庭斌.新近纪以来的构造运动是中国气藏形成的重要因素.地质论评,2004,50(1):33-42.
    魏国齐,贾承造,李本亮,等.中国中西部中新生代两期前陆盆地与天然气勘探.见:中国石油勘探与生产分公司.中国中西部前陆盆地冲断带油气勘探文集.北京:石油工业出版社,2002,35-43.
    文东光,沈照理等.水-岩相互作用的地球化学模拟理论及其应用。中国地质大学出版社,1-56.
    吴元燕,平俊彪.中国油气藏破坏类型及分布.2002,48(4):377-383.
    向才富.松辽盆地晚期流体动力场演化与油气运聚规律研究.中国科学院广州地球化学研究所出站报告,2005.
    夏新宇,宋岩等.构造抬升对地层压力的影响及克拉2气田异常压力成冈.天然气工业,2001,21(1):30-33.
    解习农,李思田.1996.断裂带流体作用及动力学模型.地学前缘,3(3):145-151.
    解习农,李思田,胡祥云,等.莺歌海盆地底辟带热流体输导系统及其成冈机理.中国科学(D 辑),1999,29(3):247-256.
    辛仁臣,田春志,窦同君.油气成藏年代学分析.地学前缘,2000,7(3):48-54.
    杨峰平,陈发景,王玉华等.松辽盆地中央坳陷磷灰石裂变径迹分析.石油勘探与开发,1995,22(6):20-25.
    杨万里,高瑞祺,郭庆福,等.松辽盆地陆相油气生成、运移和聚集.黑龙江科学技术出版社,1985.
    杨甲明,龚再升,吴景富等.油气成藏动力学研究系统概要(上).中国海上油气地质.2002.16(2):92-97.
    袁万明,王世成,李胜荣,杨志强.两藏冈底斯带构造活动的裂变径迹证据.科学通报,2001,46(20):1739-1742.
    曾联波,周天伟,吕修祥.构造挤压对库车坳陷异常地层压力的影响.地质论评,2004,50(5):471-475.
    赵孟军,张水昌,刘丰忠.油藏演化的两个极端过程.石油勘探与开发,2003,31(5):21-23.
    郑民,孟自芳.新构造运动活跃的库车盆地含油气系统特征.中山大学学报(自然科学版),2005,44.304-308.
    张有瑜,董爱正,罗修全.油气储层自生伊利石分离提纯及其K-Ar同位素测年技术研究.矿物岩石地球化学通报,2001,20(4):461-464.
    张功成等.裂陷盆地分析原理和方法.石油工业出版社,1996.
    真柄钦次,石油圈闭的地质模型.北京:中国地质大学出版社,1991.
    中国石油地质志编写组.中国石油地质志(vol.2).北京:石油工业出版社,1987.
    周耀琪,吴智平.地层间断面的时间结构研究.北京:地质出版社,2000.
    周祖翼,毛风鸣,廖宗廷等.裂变径迹年龄多成分分离技术及其在沉积盆地物源分析中的应用.沉积学报,2001,19(3):456-458.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700