用户名: 密码: 验证码:
硅基周期波导微腔集成光器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅基光子学在近几年来得到飞速的发展,它被认为是最具实用前景和发展潜力的集成光技术。一方面,人们对硅的认识和利用的历史较为悠久。在半导体产业中,硅的制备、加工技术非常成熟,这有利于使用现有的商用基础设施进行大规模量产,减小芯片开发的成本。其次,由于在硅上制作光子器件的工艺兼容于标准CMOS工艺,使其能够和已经十分成熟的集成电路技术融合,实现在单一芯片上集成所需的各种功能。当然,在制作硅有源光器件如激光器、探测器等方面还存在一定困难,但最近的研究表明可以通过键合技术或外延生长等技术来弥补硅材料在这几方面的不足。绝缘层上硅(SOI)是一种较理想的高折射率对比的材料平台,这对于减小光器件的尺寸非常有利。但是,由于光波导器件受限于衍射极限,典型的传统光波导器件比同一硅衬底上集成的电子器件的尺寸大的多。90年代初提出的光子晶体技术可以有效的实现波长甚至亚波长量级的光子器件,这为大规模光子器件的集成提供了一种极具潜力的技术方向。在SOI平台上利用现有加工技术最容易制作的光子晶体器件包括二维周期结构的光子晶体平板和一维周期结构的周期介质波导。通过在这些结构中引入线缺陷或点缺陷,就可以形成光子晶体波导组件或光子晶体微腔,在这基础上可以构建尺寸极紧凑的各种功能器件。与平板光子晶体微腔相比,周期介质波导微腔通常结构更加紧凑,模式体积更小,而且更容易加工实现。
     本文基于SOI材料平台,对极小模式体积(V)-高品质因子(Q)硅基周期波导微腔的结构设计、优化及基于该类型微腔的器件进行了较广泛的研究,并在实验上进行了一些初步的探索和尝试。主要的研究内容包括以下几个方面:
     1.从平板波导的麦克斯韦方程解出发,推导了对称和非对称平板波导模式限制的极限即最小导模模场尺寸,给出了最小模斑的尺寸及其波导尺寸条件的公式。该部分的结果为后继章节研究亚波长模式体积的波导微腔提供一个理论参考,对于大规模集成波导阵列的设计亦有一定指定意义。
     2.提出和分析了一种基于混合表面等离子波的周期介质波导微腔。利用混合表面等离子波导深亚波长的模式限制以及低损耗的特性,设计出Q值超过2000的波导微腔,且实现了Q/V值11倍的提升。据我们所知,本文得到的Q值是目前见诸报道的表面等离子波微腔中最高的。
     3.提出和分析了一类基于狭缝和空芯波导的高Q值低模式体积的低折射率周期波导微腔。由于该结构完全基于介质材料,没有如第二章所研究的混合表面等离子波导微腔所具有金属本征吸收损耗,因此这种低折射率芯的全介质波导微腔可以获得Q值超过105或更高,模式体积为10-(λ/2n)3数量级。
     4.提出和设计了一种基于周期介质波导微腔的超紧凑通道下载滤波器。使用时域耦合模理论分析了该滤波器响应特性,推导出实现完全下载以及入射端口无反射的条件。有限差分时域方法计算表明下载效率超过99%,典型的器件尺寸仅为7μm或14μm。
     5.针对本文提出的周期波导微腔器件结构,采用电子束光刻结合感应耦合等离子刻蚀等加工工艺,在SOI平台上初步制作了一些基本的波导微腔结构,采用垂直光纤-光栅耦合测试系统对其进行了频谱测试,对本文提出的器件的原理性验证进行了有益的尝试和探索。
     本文的研究主要集中在理论分析和器件设计方面,在实验方面只进行了初步的研究积累。作者希望在后续的工作中能够利用实验条件对所提器件进行充分验证,并期望能为超紧凑规模集成光路提供一类基本的波导微腔组件。
Silicon photonics is recently fast developed as a promising integrated optoelectronics tech-nology. On one hand, it has been a long history since people learned and utilized silicon. In semiconductor industry, the commercially available technology for preparation and fabrication of silicon devices is very mature, which is beneficial to mass production of silicon photonic devices with a lower cost. On the other hand, the silicon photonic devices can be integrated with the well-developed conventional electronic devices in a monolithic substrate, thanks to their compatibility with the standard CMOS fabrication technology. The photonic devices and electronic devices can be merged in such a fashion to achieve diverse functions that they would meet the increasing de-mand for higher speed and lower power consumption. Although silicon is not an idea material for realizing the necessary active devices e.g. laser and detector, recent studies addressed these problems using the chip-bonding or epitaxy germanium technology.
     Silicon-on-insulator (SOI) is a large-index-contrast material platform which is very helpful for achieving ultrasmall footprint. However, the conventional silicon photonic devices are much larger than their electronic counterparts transistors, because the minimum size of traditional pho-tonic components is bounded by the diffraction limit. Photonic crystal proposed in the early90s, provides a promising alternative technology for realizing wavelength-scale or subwavelength-scale photonic components. The most achievable photonic crystal structures implemented on SOI are photonic crystal slabs and periodic dielectric waveguides. Introducing linear and point defects in such photonic crystal structures will produce so called photonic crystal waveguides and cavities, which can be further designed to form various functional devices. Compared with the photonic crystal slab cavities, periodic waveguide cavities have the advantages of ultracompact footprint, smaller mode volume and easy to fabricate and implement.
     This study involves the design, optimization, fabrication and characterization of ultrasmall-V high-Q nanobeam photonic crystal cavities. Our work includes mainly the following five parts:
     1. Based on the Maxwell solutions of a three-layer slab optical waveguide, we derived the condition for the mode confinement limit of symmetric and asymmetric tri-layer slab waveguides. The results of this part provides a theoretical baseline for engineering subwavelength mode con-finement cavities, and also contributes the design of ultracompact wave array.
     2. We proposed and analyzed a high-Q nanobeam periodic waveguide cavity based on hybrid-plasmonic-photonic periodic structure. Due to the deep-subwavelength mode confinement and low-loss characteristics of hbyrid-plasmonic-photonic waveguide, the designed nanobeam cavity shows a high-Q larger than2000and11times improvement of the Q/V. As far as we know, the Q factor achieved in this work stands for the highest value in such similar plasmonic cavity with so small mode volume.
     3. We proposed and investigated all-dielectric ultrasmall-V and ultrahigh-Q nanobeam pho-tonic crystal cavities based on slotted and hollow-core periodic dielectric waveguides. Because the strong confinement of low-index core and the discontinuity of electric field at the boundary of slot or hollow-core, Q-factors larger than105and mode volume in the order of10-2(λ/2n)3can be achieved simultaneously.
     4. We proposed and designed two types of channel drop filters based on the nanobeam pho-tonic crystal cavities. Using the temporal coupled mode theory, we analyzed and derived the con-ditions for reflectionless complete-dropping. Finite difference time domain method verified that the dropping efficiency is larger than99%and the typical lengthes of these two type filters are only7μm and14μm.
     5. Using electron beam lithography (EBL) and induced plasmon etching (IPC), we fabricated some basic nanobeam cavities components on SOI platfrom. These silicon nanobeam cavities were characterized by scanning electron microscopy and vertical fiber-grating coupling test system. These preliminary experimental work paves the way for the further study in the future.
     The work of this thesis mostly focus on theoretical analysis and components design, and only a few experimental work were carried out. The author hopes that the proposed components can be well verified in the future experimental study and can contribute to the ultracompact photonic compnents for future large scale photonic integration.
引文
[1]John D. Joannopoulos. Photonic crystals:molding the flow of light[M]. New Jersey:Princeton University Press,2008.
    [2]Kerry J Vahala. Optical microcavities.[J]. Nature,2003,424(6950):839-846.
    [3]Gordon E. Moore. Cramming more components onto integrated circuits[J]. Electronics,1965,38(8):114-117.
    [4]P.P. Gelsinger. Microprocessors for the new millennium:Challenges, opportunities, and new frontiers. In IEEE International Solid-State Circuits Conference. Digest of Technical Papers. IEEE,2001,22-25.
    [5]International Technology Roadmap for Semiconductors(ITRS),2011.
    [6]S. E. Miller. Integrated optics:an introduction[J]. Bell System Technical Journal,1969,48(7):205969.
    [7]I. Young, E. Mohammed, J. Liao, A. Kern, S. Palermo, B. Block, M. Reshotko, P. Chang. Optical I/O technology for tera-scale computing. In IEEE International Solid-State Circuits Conference. IEEE,2009, 468-469.
    [8]Graham T. Reed. Device physics:the optical age of silicon.[J]. Nature,2004,427(6975):595-6.
    [9]G T Reed, A P Knights. Silicon photonics:an introduction[M]. Chichester:John Wiley & Sons,2004.
    [10]R. Soref, B. Bennett. Electrooptical effects in silicon[J]. IEEE Journal of Quantum Electronics,1987, 23(1):123-129.
    [11]Ansheng Liu, Richard Jones, Ling Liao, Dean Samara-Rubio, Doron Rubin, Oded Cohen, Remus Nico-laescu, Mario Paniccia. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor.[J]. Nature,2004,427(6975):615-8.
    [12]Haisheng Rong, Ansheng Liu, Richard Jones, Oded Cohen, Dani Hak, Remus Nicolaescu, Alexander Fang, Mario Paniccia. An all-silicon Raman laser.[J]. Nature,2005,433(7023):292-4.
    [13]G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson. Silicon optical modulators[J]. Nature Photon-ics,2010,4(8):518-526.
    [14]T. Pinguet, B. Analui, E. Balmater, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, Y. Liang, G. Masini, A. Mekis, S. Mirsaidi, A. Narasimha, M. Peterson, D. Rines, V. Sadagopan, S. Sahni, T.J. Sleboda, D. Song, Y. Wang, B. Welch, J. Witzens, J. Yao, S. Abdalla, S. Gloeckner, P. De Dobbelaere, G. Capellini. Monolithically integrated high-speed CMOS photonic transceivers. In 5th IEEE International Conference on Group IV Photonics. IEEE,2008,362-364.
    [15]Mario Paniccia. Integrating silicon photonics[J]. Nature Photonics,2010,4(8):498-499.
    [16]IBM silicon integrated nanophotonics research,2012.
    [17]Andrew W. Poon, Linjie Zhou, Jianping Chen, Yong-Zhen Huang, Jinzhong Yu, Jian-Jun He, Hon K. Tsang. Integrated Photonics Research in China[J]. Optics and Photonics News,2011,22(9):22.
    [18]Yingtao Hu, Xi Xiao, Hao Xu, Xianyao Li, Kang Xiong, Zhiyong Li, Tao Chu, Yude Yu, Jinzhong Yu. High-speed silicon modulator based on cascaded microring resonators[J]. Optics Express,2012, 20(14):15079.
    [19]Lin Yang, Ruiqiang Ji, Lei Zhang, Jianfeng Ding, Qianfan Xu. On-chip CMOS-compatible optical signal processor[J]. Optics Express,2012,20(12):13560.
    [20]Yonghui Tian, Lei Zhang, Lin Yang. Electro-optic directed AND/NAND logic circuit based on two parallel microring resonators[J]. Optics Express,2012,20(15):16794.
    [21]Ting Hu, Huiye Qiu, Ping Yu, Chen Qiu, Wanjun Wang, Xiaoqing Jiang, Mei Yang, Jianyi Yang. Wavelength-selective 4×4 nonblocking silicon optical router for networks-on-chip[J]. Optics Letters, 2011,36(23):4710.
    [22]Wanjun Wang, Yong Zhao, Haifeng Zhou, Yinlei Hao, Jianyi Yang, Minghua Wang, Xiaoqing Jiang. CMOS-Compatible 1 X 3 Silicon Electrooptic Switch With Low Crosstalk[J]. IEEE Photonics Technol-ogy Letters,2011,23(11):751-753.
    [23]Weiwei Chen, Wanjun Wang, Zhao Gong, Qiang Zhou, Xiaoqing Jiang, Jianyi Yang, Haiquan Zhou. Mach-Zehnder-Based Four-Port Switching Module on SOI[J]. IEEE Photonics Technology Letters, 2012,24(15):1313-1315.
    [24]余金中.硅光子学[M].北京:科学出版社,2011.
    [25]何赛灵,戴道锌.微纳光子集成[M].北京:科学出版社,2010.
    [26]M. Smit, J. van der Tol, M. Hill. Moore's law in photonics[J]. Laser & Photonics Reviews,2012,6(1):1-13.
    [27]D. Miller. Device Requirements for Optical Interconnects to Silicon Chips[J]. Proceedings of the IEEE, 2009,97(7):1166-1185.
    [28]Lars Thylen. A Moores law for photonics. In 2006 International Symposium on Biophotonics, Nanopho-tonics and Metamaterials. IEEE,2006,256-263.
    [29]Kengo Nozaki, Akihiko Shinya, Shinji Matsuo, Yasumasa Suzaki, Toru Segawa, Tomonari Sato, Yoshihiro Kawaguchi, Ryo Takahashi, Masaya Notomi. Ultralow-power all-optical RAM based on nanocavities[J]. Nature Photonics,2012,6(4):248-252.
    [30]Masaya Notomi, Kengo Nozaki, Shinji Matsuo. Ultralow-power integrated nanophotonics for future chips. In Opto-Electronics and Communications Conference (OECC).2012,99-100.
    [31]Masaya Notomi. Strong Light Confinement With Periodicity[J]. Proceedings of the IEEE,2011, 99(10):1768-1779.
    [32]Sergey I Bozhevolnyi, Valentyn S Volkov, Eloise Devaux, Jean-Yves Laluet, Thomas W Ebbesen. Channel plasmon subwavelength waveguide components including interferometers and ring resonators.[J]. Nature, 2006,440(7083):508-11.
    [33]K Sakoda. Optical properties of photonic crystals[M]. Springer series in optical sciences. New York: Springer,2005.
    [34]Jan Hendrik Wulbern, Jan Hampe, Alexander Petrov, Manfred Eich, Jingdong Luo, Alex K.-Y. Jen, Andrea Di Falco, Thomas F. Krauss, Jurgen Bruns. Electro-optic modulation in slotted resonant photonic crystal heterostructures[J]. Applied Physics Letters,2009,94(24):241107.
    [35]Karl Welna, Simone L. Portalupi, Matteo Galli, Liam O'Faolain, Thomas F. Krauss. Novel photonic crystal nanocavity design with high tolerance to disorder. In IEEE Photonics Conference 2012. IEEE, 2012,270-271.
    [36]Thomas F. Krauss, Richard M. De La Rue, Stuart Brand. Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths [J]. Nature,1996,383(6602):699-702.
    [37]Liam O'Faolain, Thomas P. White, David O'Brien, Xiadong Yuan, Michael D. Settle, Thomas F. Krauss. Dependence of extrinsic loss on group velocity in photonic crystal waveguides[J]. Optics Express,2007, 15(20):13129.
    [38]Daryl M. Beggs, Thomas P. White, Liam O'Faolain, Thomas F. Krauss. Ultracompact and low-power optical switch based on silicon photonic crystals[J]. Optics Letters,2008,33(2):147.
    [39]Peter T Rakich, Marcus S Dahlem, Sheila Tandon, Mihai Ibanescu, Marin Soljacic, Gale S Petrich, John D Joannopoulos, Leslie A Kolodziejski, Erich P Ippen. Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal.[J]. Nature Materials,2006,5(2):93-6.
    [40]Yidong Huang, Xiaoyu Mao, Chao Zhang, Lei Cao, Kaiyu Cui, Wei Zhang, Jiangde Peng. Photonic crystal waveguides and their applications [J]. Chinese Optics Letters,2008,6(10):704-708.
    [41]Kaiyu Cui, Qiang Zhao, Xue Feng, Yidong Huang, Yongzhuo Li, Da Wang, Wei Zhang. Thermo-optic switch based on transmission-dip shifting in a double-slot photonic crystal waveguide[J]. Applied Physics Letters,2012,100(20):201102.
    [42]Kaiyu Cui, Yidong Huang, Gengyan Zhang, Yongzhuo Li, Xuan Tang, Xiaoyu Mao, Qiang Zhao, Wei Zhang, Jiangde Peng. Temperature dependence of ministop band in double-slots photonic crystal waveg-uides[J]. Applied Physics Letters,2009,95(19):191901.
    [43]Cheng Ren, Jie Tian, Shuai Feng, Haihua Tao, Yazhao Liu, Kun Ren, Zhiyuan Li, Bingying Cheng, Daozhong Zhang. Haifang Yang. High resolution three-port filter in two dimensional photonic crystal slabs[J]. Optics Express,2006,14(21):10014.
    [44]Lin Gan, Zhiyuan Li. Designs and experiments on infrared two-dimensional silicon photonic crystal slab devices[J]. Frontiers of Optoelectronics,2012,5(1):21-40.
    [45]Cheng Ren, Li-Feng Cheng, Feng Kang, Lin Gan, Dao-Zhong Zhang, Zhi-Yuan Li. Optical properties of the two-port resonant tunneling filters in two-dimensional photonic crystal slabs[J]. Chinese Physics B, 2012,21(10):104210.
    [46]Ya-Zhao Liu, Rong-Juan Liu, Shuai Feng, Cheng Ren, Hai-Fang Yang, Dao-Zhong Zhang, Zhi-Yuan Li. Multichannel filters via Γ-M and Γ-K waveguide coupling in two-dimensional triangular-lattice photonic crystal slabs[J]. Applied Physics Letters,2008,93(24):241107.
    [47]Ya-Zhao Liu, Shuai Feng, Jie Tian, Cheng Ren, Haihua Tao, Zhi-Yuan Li, Bing-Ying Cheng, Dao-Zhong Zhang, Qiang Luo. Multichannel filters with shape designing in two-dimensional photonic crystal slabs[J]. Journal of Applied Physics,2007,102(4):043102.
    [48]Bing Chen, Lin Huang, Chunliang Liu, Yongdong Li, Guizhong Liu. A simple broadband T-shaped waveguide branch in photonic crystals[J]. Optics Communications,2012,285(1):41-45.
    [49]Jianhong Zhou, Xu Di, Da Mu, Jinhua Yang, Wenbo Han. Improved broad bandwidth intersections in photonic crystals[J]. Optics Communications,2012,285(1):38-40.
    [50]Tianbao Yu, Lingjuan He, Xinhua Deng, Liguang Fang, Nianhua Liu. Power splitter based on photonic crystal waveguides with an air holes array[J]. Optical Engineering,2011,50(11):114601.
    [51]Tianbao Yu, Jiehui Huang, Nianhua Liu, Jianyi Yang, Qinghua Liao, Xiaoqing Jiang. Design of a compact polarizing beam splitter based on a photonic crystal ring resonator with a triangular lattice[J]. Applied Optics,2010,49(11):2168.
    [52]Tianbao Yu, Qi Jie Wang, Jun Zhang, Jian Yi Yang, Siu Fung Yu. Ultracompact 2×2 Photonic Crystal Waveguide Power Splitter Based on Self-Imaging Effect Realized by Asymmetric Interference[J]. IEEE Photonics Technology Letters,2011,23(16):1151-1153.
    [53]Zhifeng Yang, Aimin Wu, Na Fang, Xulin Lin, Xunya Jiang, Shichang Zou, Xi Wang. Millimeter-scale self-collimation in planar photonic crystals fabricated by CMOS technology [J]. Optics Communications, 2010,283(4):604-607.
    [54]Chen Wang, Chang-Zhu Zhou, Zhi-Yuan Li. On-chip optical diode based on silicon photonic crystal heterojunctions[J]. Optics Express,2011,19(27):26948.
    [55]Jin-Xin Fu, Jin Lian, Rong-Juan Liu, Lin Gan, Zhi-Yuan Li. Unidirectional channel-drop filter by one-way gyromagnetic photonic crystal waveguides [J]. Applied Physics Letters,2011,98(21):211104.
    [56]Shanhui Fan, J D Joannopoulos, Joshua N Winn, Adrian Devenyi, J C Chen, Robert D Meade. Guided and defect modes in periodic dielectric waveguides [J]. Journal of the Optical Society of America B,1995, 12(7):1267-1272.
    [57]C Sauvan, G Lecamp, P Lalanne, J Hugonin. Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities [J]. Optics Express,2005,13(1):245-255.
    [58]P R Villeneuve, Shanhui Fan, J D Joannopoulos, K Y Lim, G S Petrich, L A Kolodziejski, R Reif. Air-bridge microcavities [J]. Applied Physics Letters,1995,67(2):167.
    [59]J S Foresi, P R Villeneuve, J Ferrera, E R Thoen, G Steinmeyer, Shanhui Fan, J D Joannopoulos, L C Kimerling, HI Smith, E P Ippen. Photonic-bandgap microcavities in optical waveguides[J]. Nature,1997, 390(6656):143-145.
    [60]Kuo-Yi Lim, D. J. Ripin, G. S. Petrich, L. A. Kolodziejski, E. P. Ippen, M. Mondol, Henry I Smith, P. R. Villeneuve, S. Fan, J. D. Joannopoulos. Photonic band-gap waveguide microcavities:Monorails and air bridges[J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures, 1999,17(3):1171.
    [61]D. J. Ripin, Kuo-Yi Lim, G. S. Petrich, Pierre R. Villeneuve, Shanhui Fan, E. R. Thoen, J D Joannopou-los, E P Ippen, L A Kolodziejski. Photonic band gap airbridge microcavity resonances in GaAs/AlxOy waveguides[J]. Journal of Applied Physics,2000,87(3):1578.
    [62]Bradley Schmidt, Vilson Almeida, Christina Manolatou, Stefan Preble, Michal Lipson. Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection[J]. Applied Physics Letters,2004,85(21):4854.
    [63]Jacob Robinson, Christina Manolatou, Long Chen, Michal Lipson. Ultrasmall Mode Volumes in Dielectric Optical Microcavities[J]. Physical Review Letters,2005,95(14):143901.
    [64]P Velha, J C Rodier, P Lalanne, J P Hugonin, D Peyrade, E Picard, T Charvolin, Emmanuel Hadji. Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide[J]. New Journal of Physics.2006, 8(9):204-204.
    [65]P Velha, J C Rodier, P Lalanne, J P Hugonin, D Peyrade, E Picard, T Charvolin, Emmanuel Hadji. Ultra-compact silicon-on-insulator ridge-waveguide mirrors with high reflectance[J]. Applied Physics Letters, 2006,89(17):171121-171123.
    [66]P Velha, E Picard, T Charvolin, Emmanuel Hadji, J.C. Rodier, P Lalanne, D Peyrade. Ultra-High Q/V Fabry-Perot microcavity on SOI substrate[J]. Optics Express,2007,15(24):16090.
    [67]Ahmad Rifqi Md Zain, Nigel P Johnson, Marc Sorel, Richard M. De La Rue. Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI)[J]. Optics Express,2008,16(16):12084.
    [68]Ahmad Rifqi Md Zain, Marco Gnan, Harold M. H. Chong, Marc Sorel, Richard M. De La Rue. Tapered Photonic Crystal Microcavities Embedded in Photonic Wire Waveguides With Large Resonance Quality-Factor and High Transmission[J]. IEEE Photonics Technology Letters,2008,20(1):6-8.
    [69]Ahmad Rifqi Md Zain, N P Johnson, M Sorel, R M De La Rue. Coupling strength control in photonic crystal/photonic wire multiple cavity devices[J]. Electronics Letters,2009,45(5):283-284.
    [70]Ahmad Rifqi Md Zain, NP Johnson, Marc Sorel, R.M. De La Rue. High Quality-Factor 1-D-Suspended Photonic Crystal/Photonic Wire Silicon Waveguide Micro-Cavities[J]. IEEE Photonics Technology Let-ters,2009,21(24):1789-1791.
    [71]Parag B. Deotare, Murray W. McCutcheon, Ian W. Frank, Mughees Khan, Marko Loncar. High quality factor photonic crystal nanobeam cavities[J]. Applied Physics Letters,2009,94(12):121106.
    [72]Kevin Foubert, Loic Lalouat, Benoit Ouzel, Emmanuel Picard, David Peyrade, Frederique de Fornel, Em-manuel Hadji. An air-slotted nanoresonator relying on coupled high Q small V Fabry-Perot nanocavi-ties[J]. Applied Physics Letters,2009,94(25):251111.
    [73]Parag B Deotare, Murray W McCutcheon, Ian W Frank, Mughees Khan, Marko Loncar. Coupled photonic crystal nanobeam cavities[J]. Applied Physics Letters,2009,95(3):31102-31103.
    [74]Laurent-Daniel Haret, Takasumi Tanabe, Eiichi Kuramochi, Masaya Notomi. Extremely low power op-tical bistability in silicon demonstrated using 1D photonic crystal nanocavity[J]. Optics Express,2009, 17(23):21108.
    [75]Michele Belotti, Matteo Galli, Dario Gerace, Lucio C Andreani, Giorgio Guizzetti, Ahmad Rifqi Md Zain, Nigel P Johnson, Marc Sorel, Richard M De La Rue. All-optical switching in silicon-on-insulator photonic wire nano-cavities[J]. Optics Express,2010,18(2):1450.
    [76]Ahmad Rifqi Md Zain, Nigel P Johnson, Marc Sorel, Richard M De La Rue. Design and Fabrication of High Quality-Factor 1-D Photonic Crystal/Photonic Wire Extended Microcavities[J]. IEEE Photonics Technology Letters,2010,22(9):610-612.
    [77]Yiyang Gong, Jelena VuCkovic. Photonic crystal cavities in silicon dioxide[J]. Applied Physics Letters, 2010,96(3):31103-31107.
    [78]B. C. Richards, J. Hendrickson, J. D. Olitzky, R. Gibson, M. Gehl, K. Kieu, U. K. Khankhoje, A. Homyk, A. Scherer, J.-Y. Kim, Y.-H. Lee, G. Khitrova, H. M. Gibbs. Characterization of 1D photonic crystal nanobeam cavities using curved microfiber[J]. Optics Express,2010,18(20):20558.
    [79]Eiichi Kuramochi, Hideaki Taniyama, Takasumi Tanabe, Kohei Kawasaki, Young-Geun Roh, Masaya Notomi. Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO-2 claddings and on air claddings[J]. Optics Express,2010,18(15):15859.
    [80]Murray W. McCutcheon, Parag B. Deotare, Yinan Zhang, Marko Loncar. High-Q transverse-electric/transverse-magnetic photonic crystal nanobeam cavities[J]. Applied Physics Letters,2011, 98(11):111117.
    [81]Mughees Khan, Thomas Babinec, Murray W. McCutcheon, Parag Deotare, Marko Loncar. Fabrication and characterization of high-quality-factor silicon nitride nanobeam cavities[J]. Optics Letters,2011, 36(3):421.
    [82]Qimin Quan, Ian B Burgess, Sindy K Y Tang, Daniel L Floyd, Marko Loncar. High-Q, low index-contrast polymeric photonic crystal nanobeam cavities[J]. Optics Express,2011,19(22):22191.
    [83]S. Sergent, M. Arita, S. Kako, S. Iwamoto, Y. Arakawa. High-Q (5000) AlN nanobeam photonic crystal cavity embedding GaN quantum dots[J]. Applied Physics Letters,2012,100(12):121103.
    [84]S. Sergent, M. Arita, S. Kako, K. Tanabe, S. Iwamoto, Y. Arakawa. High-Q AlN photonic crystal nanobeam cavities fabricated by layer transfer[J]. Applied Physics Letters,2012,101(10):101106.
    [85]W. H. P. Pernice, C. Xiong, C. Schuck, H. X. Tang. High-Q aluminum nitride photonic crystal nanobeam cavities[J]. Applied Physics Letters,2012,100(9):091105.
    [86]Judson D. Ryckman, S. M. Weiss. Low mode volume slotted photonic crystal single nanobeam cavity[J]. Applied Physics Letters,2012,101(7):071104.
    [87]Boris Desiatov, Ilya Goykhman, Uriel Levy. Parabolic tapered photonic crystal cavity in silicon[J]. Ap-plied Physics Letters,2012,100(4):041112.
    [88]Y Zhang, M Khan, Y Huang, J Ryou, P Deotare, R Dupuis, Marko Loncar. Photonic crystal nanobeam lasers[J]. Applied Physics Letters,2010,97(5):51104.
    [89]Yacine Halioua, Alexandre Bazin, Paul Monnier, Timothy J. Karle, Isabelle Sagnes, Gunther Roelkens, Dries Van Thourhout, Fabrice Raineri, Rama Raj. III-V photonic crystal wire cavity laser on silicon wafer[J]. Journal of the Optical Society of America B,2010,27(10):2146.
    [90]Byeong-Hyeon Ahn, Ju-Hyung Kang, Myung-Ki Kim, Jung-Hwan Song, Bumki Min, Ki-Soo Kim, Yong-Hee Lee. One-dimensional parabolic-beam photonic crystal laser[J]. Optics Express,2010,18(6):5654-5660.
    [91]Sejeong Kim, Byeong-Hyeon Ahn, Ju-Young Kim, Kwang-Yong Jeong, Ki Soo Kim, Yong-Hee Lee. Nanobeam photonic bandedge lasers[J]. Optics Express,2011,19(24):24055.
    [92]Po-Tsung Lee, Tsan-Wen Lu, Li-Hsun Chiu. Dielectric-Band Photonic Crystal Nanobeam Lasers[J]. Journal of Lightwave Technology,2012, PP(99):1-1.
    [93]Tsan-Wen Lu, Li-Hsun Chiu, Pin-Tso Lin, Po-Tsung Lee. One-dimensional photonic crystal nanobeam lasers on a flexible substrate[J]. Applied Physics Letters.2011,99(7):071101.
    [94]Tsan-wen Lu, Pin-tso Lin, Po-tsung Lee. Photonic crystal horizontally slotted nanobeam cavity for silicon-based nanolasers[J]. Optics Letters,2012,37(4):569-571.
    [95]Ishita Mukherjee, Ghazal Hajisalem, Reuven Gordon. One-step integration of metal nanoparticle in pho-tonic crystal nanobeam cavity[J]. Optics Express,2011,19(23):22462.
    [96]Giuseppe Cocorullo, Mario Iodice, Ivo Rendina. All-silicon Fabry-Perot modulator based on the thermo-optic effect[J]. Optics Letters,1994,19(6):420-422.
    [97]A Cutolo, M Iodice, A Irace, P Spirito, L Zeni. An electrically controlled Bragg reflector integrated in a rib silicon on insulator waveguide[J]. Applied Physics Letters,1997,71(2):199-201.
    [98]C A Barrios, V R Almeida, R P Anepucci, Michal Lipson. Electrooptic modulation of silicon-on-insulator submicrometer-size waveguide devices[J]. Journal of Lightwave Technology,2003,21(10):2332-2339.
    [99]Bradley Schmidt, Qianfan Xu, Jagat Shakya, Sasikanth Manipatruni, Michal Lipson. Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes [J]. Op-tics Express,2007,15(6):3140-3148.
    [100]Biao Qi, Ping Yu, Yubo Li, Xiaoqing Jiang, M. Yang, Jianyi Yang. Analysis of Electrooptic Modula-tor with 1D Slotted Photonic Crystal Nanobeam Cavity[J]. IEEE Photonics Technology Letters,2011, 23(14):992-994.
    [101]P R Villeneuve, D S Abrams, Shanhui Fan, J D Joannopoulos. Single-mode waveguide microcavity for fast optical switching[J]. Optics Letters,1996,21(24):2017-9.
    [102]Sophie Schonenberger, Thilo Stoferle, Nikolaj Moll, Rainer F. Mahrt, Marcus S. Dahlem, Thorsten Wahlbrink, Jens Bolten, Thomas Mollenhauer, Heinrich Kurz, Bert J. Offrein. Ultrafast all-optical modulator with femtojoule absorbed switching energy in silicon-on-insulator[J]. Optics Express,2010, 18(21):22485.
    [103]William S. Fegadolli, Jose E. B. Oliveira, Vilson R. Almeida, Axel Scherer. Compact and low power consumption tunable photonic crystal nanobeam cavity[J]. Optics Express,2013,21(3):3861.
    [104]J.C. Chen, H.A. Haus, P.R. Villeneuve, J.D. Joannopoulos. Optical filters from photonic band gap air bridges[J]. Journal of Lightwave Technology,1996,14(11):2575-2580.
    [105]Berndt Kuhlow, Georges Przyrembel, Stephanie Schliiter, Walter Fiirst, Ralf Steingruber, Christiane Weimann. Photonic Crystal Microcavities in SOI Photonic Wires for WDM Filter Applications [J]. Journal of Lightwave Technology,2007,25(1):421-431.
    [106]Sudeep Mandal, David Erickson. Nanoscale optofluidic sensor arrays[J]. Optics Express,2008, 16(3):1623-1631.
    [107]Bowen Wang, Mehmet A. Dundar, Richard Notzel, Fouad Karouta, Sailing He, Rob W. van Der Heijden. Photonic crystal slot nanobeam slow light waveguides for refractive index sensing[J]. Applied Physics Letters,2010,97(15):151105.
    [108]a Yariv, Y Xu, RK Lee. Coupled-resonator optical waveguide:a proposal and analysis[J]. Optics Letters, 1999,24(11):711-3.
    [109]F Riboli, P Bettotti, L Pavesi. Band gap characterization and slow light effects in one dimensional photonic crystals based on silicon slot-waveguides[J]. Optics Express,2007,15(19):11769-11775.
    [110]A. Martinez, J. Garcia, P. Sanchis, F. Cuesta-Soto, J. Blasco, J. Martf. Intrinsic losses of coupled-cavity waveguides in planar-photonic crystals[J]. Optics Letters,2007,32(6):635.
    [111]Yuki Kawaguchi, Kunimasa Saitoh, Masanori Koshiba. Design of low-loss one-dimensional planar-photonic crystal coupled-cavity waveguides. In Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC). IEEE,2008,1-3.
    [112]Yuki Kawaguchi, Naoya Kono, Kunimasa Saitoh, Masanori Koshiba. Loss Reduction Mechanism for Coupled Cavity Waveguides in One-Dimensional Photonic Crystals[J]. Journal of Lightwave Technology, 2008,26(20):3461-3467.
    [113]Yuki Kawaguchi, Kunimasa Saitoh, Masanori Koshiba. Design of Taper Structure for Highly Efficient Coupling Between 1-D Photonic Crystal Coupled Resonator Optical Waveguide and Straight Waveg-uide[J]. Journal of Lightwave Technology,2009,27(14):2924-2929.
    [114]Yuki Kawaguchi, Kunimasa Saitoh, Masanori Koshiba. Analysis of Leakage Losses in One-Dimensional Photonic Crystal Coupled Resonator Optical Waveguide Using 3-D Finite Element MethodfJ], Journal of Lightwave Technology,2010,28(20):2977-2983.
    [115]Yuki Kawaguchi, Kunimasa Saitoh. Three-dimensional Vector Finite Element Analysis of Leakage Losses in One-dimensional Photonic Crystal Coupled Resonator Optical Waveguides [J]. Integrated Photonics Research, Silicon and Nanophotonics (IPRSN),2010,2-4.
    [116]Hsi-Chun Liu, Amnon Yariv. Synthesis of high-order bandpass filters based on coupled-resonator optical waveguides (CROWs).[J]. Optics Express,2011,19(18):17653-68.
    [117]Hsi-chun Liu, Christos Santis, Amnon Yariv. Coupled-Resonator Optical Waveguides (CROWs) Based on Grating Resonators with Modulated Bandgap. In Slow and Fast Light.2011,11102.
    [118]Hsi-chun Liu, Amnon Yariv. Designing Bessel Filters Based on Coupled-Resonator Optical Waveguides for Dispersion-Free Slow Light[J]. CLEO,2011,0:6-7.
    [119]Hsi-Chun Liu, Amnon Yariv. "Ideal" optical delay lines based on tailored-coupling and reflecting, coupled-resonator optical waveguides.[J]. Optics Letters,2012,37(11):1964-6.
    [120]Hsi-chun Liu, Christos Santis, Amnon Yariv. Coupled-Resonator Optical Waveguides (CROWs) Based on Tapered Grating-Defect Resonators. In CLEO.2012, CM3M.3.
    [121]Hsi-Chun Liu, Amnon Yariv. Designing coupled-resonator optical waveguides based on high-Q tapered grating-defect resonators.[J]. Optics Express,2012,20(8):9249-63.
    [122]Shiyun Lin, Juej un Hu, Lionel Kimerling, Kenneth Crozier. Design of nanoslotted photonic crystal waveg-uide cavities for single nanoparticle trapping and detection[J]. Optics Letters,2009,34(21):3451-3453.
    [123]S Mandal, X Serey, D Erickson. Nanomanipulation using silicon photonic crystal resonators [J]. Nano Letters,2010,10(1):99-104.
    [124]Matt Eichenfield, Jasper Chan, Ryan M Camacho, Kerry J Vahala, Oskar Painter. Optomechanical crys-tals[J]. Nature,2009,462(7269):78-82.
    [125]Matt Eichenfield, Ryan Camacho, Jasper Chan, Kerry J Vahala, Oskar Painter. A picogram-and nanometre-scale photonic-crystal optomechanical cavity.[J]. Nature,2009,459(7246):550-5.
    [126]Parag B Deotare, Irfan Bulu, Ian W Frank, Qimin Quan, Yinan Zhang, Rob Ilic, Marko Loncar. All optical reconfiguration of optomechanical filters.[J]. Nature communications,2012.3:846.
    [127]Jing Ma, Michelle L. Povinelli. Effect of periodicity on optical forces between a one-dimensional periodic photonic crystal waveguide and an underlying substrate[J]. Applied Physics Letters,2010,97(15):151102.
    [128]Steven Johnson, John Joannopoulos. Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis[J]. Optics Express,2001,8(3):173.
    [129]葛德彪,闫玉波.电磁波时域有限差分方法[M].西安:西安电子科技大学出版社,2005.
    [130]朱凝.基于硅纳米线波导的平面集成光器件的设计,制作与检测[D].[博士学位论文],浙江大学,2009.
    [131]C. Manolatou, S.G. Johnson, S. Fan, P.R. Villeneuve, H.a. Haus, J.D. Joannopoulos. High-density inte-grated optics[J]. Journal of Lightwave Technology,1999,17(9):1682-1692.
    [132]William L Barnes, Alain Dereux, Thomas W Ebbesen. Surface plasmon subwavelength optics.[J]. Nature, 2003,424(6950):824-30.
    [133]Pierre Berini. Long-range surface plasmon polaritons[J]. Advances in Optics and Photonics,2009, 1(3):484.
    [134]Limin Tong, Jingyi Lou, Eric Mazur. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides[J]. Optics Express,2004,12(6):1025.
    [135]刘德明.光纤光学[M].普通高等教育”十一五”规划教材.北京:科学出版社,2008.
    [136]马春生,刘式墉.光波导模式理论[M].长春:吉林大学出版社,2006.
    [137]陈军.光学电磁理论[M].北京:科学出版社,2005.
    [138]Junichi Takahara, Suguru Yamagishi, Hiroaki Taki, Akihiro Morimoto, Tetsuro Kobayashi. Guiding of a one-dimensional optical beam with nanometer diameter[J]. Optics Letters,1997,22(7):475.
    [139]Kerry Vahala. Optical microcavities[M]. World Scientific,2004.
    [140]Ju-Hyung Kang, You-Shin No, Soon-Hong Kwon, Hong-Gyu Park. Ultrasmall subwavelength nanorod plasmonic cavity [J]. Optics Letters,2011,36(11):2011.
    [141]Eyal Feigenbaum, Meir Orenstein. Optical 3D cavity modes below the diffraction-limit using slow-wave surface-plasmon-polaritons[J]. Optics Express,2007,15(5):2607.
    [142]Jingjing Li, Nader Engheta. Subwavelength plasmonic cavity resonator on a nanowire with periodic permittivity variation[J]. Physical Review B,2006,74(11).
    [143]B. Han, C. Jiang. Plasmonic slow light waveguide and cavity[J]. Applied Physics B,2009,95(1):97-103.
    [144]Michael Barth, Stefan Schietinger, Sabine Fischer, Jan Becker, Nils Nusse, Thomas Aichele, Bernd Lochel, Carsten Sonnichsen, Oliver Benson. Nanoassembled plasmonic-photonic hybrid cavity for tai-lored light-matter coupling. [J]. Nano letters,2010,10(3):891-5.
    [145]Min-Kyo Seo, Soon-Hong Kwon, Ho-Seok Ee, Hong-Gyu Park. Full three-dimensional subwavelength high-Q surface-plasmon-polariton cavity[J]. Nano letters,2009,9(12):4078-82.
    [146]Bumki Min, Eric Ostby, Volker Sorger, Erick Ulin-Avila, Lan Yang, Xiang Zhang, Kerry Vahala. High-Q surface-plasmon-polariton whispering-gallery microcavity.[J]. Nature,2009,457(7228):455-8.
    [147]P. Ginzburg, E. Feigenbaum, M. Orenstein.2D Photonic Band Gap Cavities Embedded in a Plasmonic Gap Structure-Zero Modal Volume? In IEEE LEOS Annual Meeting Conference Proceedings. IEEE, 2005,392-393.
    [148]Xiaodong Yang, Atsushi Ishikawa, Xiaobo Yin, Xiang Zhang. Hybrid photonic-plasmonic crystal nanocavities[J]. ACS nano,2011,5(4):2831-8.
    [149]Volker J Sorger, Rupert F Oulton, Jie Yao, Guy Bartal, Xiang Zhang. Plasmonic Fabry-Perot nanocav-ity.[J]. Nano letters,2009,9(10):3489-93.
    [150]J-C Weeber, A Bouhelier, G Colas Des Francs, L Markey, A Dereux. Submicrometer in-plane integrated surface plasmon cavities.[J]. Nano letters,2007,7(5):1352-9.
    [151]Eyal Feigenbaum, Meir Orenstein. "Nearly Zero" Modal Volume Cavities Using Localized Plasmons with Some Retardation Effects. In Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies. Optical Society of America,2008, QTuD5.
    [152]Yun-Feng Xiao, Bei-Bei Li, X Jiang, Xiaoyong Hu, Yan Li, Qihuang Gong. High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip[J]. Journal of Physics B:Atomic, Molecular and Optical Physics,2010,43(3):035402.
    [153]Binfeng Yun. Guohua Hu, Yiping Cui. A nanometric plasmonic waveguide filter based on Fabry-Perot resonator[J], Optics Communications,2011,284(1):485-489.
    [154]Feifei Hu, Huaxiang Yi. Wavelength demultiplexing structure based on arrayed plasmonic slot cavities[J]. Optics Letters,2011,36(8):1500-1502.
    [155]Liu Jian-Long, Lin Jie, Zhao Hai-Fa, Zhang Yan, Liu Shu-Tian. Numerical analysis of surface plasmon nanocavities formed in thickness-modulated metal-insulator-metal waveguides [J]. Chinese Physics B, 2010,19(5):054201.
    [156]Jorg Petschulat, Christian Helgert, Michael Steinert, Norbert Bergner, Carsten Rockstuhl, Falk Lederer, Thomas Pertsch, Andreas Tunnermann, Ernst-Bernhard Kley. Plasmonic modes of extreme subwave-length nanocavities[J]. Optics Letters,2010,35(16):2693.
    [157]Martin Kuttge, F Javier Garcfa de Abajo, Albert Polman. Ultrasmall mode volume plasmonic nanodisk resonators.[J]. Nano letters,2010,10(5):1537-41.
    [158]Chang-Ling Zou, Yun-Feng Xiao, Zheng-Fu Han, Chun-Hua Dong, Xiang-Dong Chen, Jin-Ming Cui, Guang-Can Guo, Fang-Wen Sun. High-Q nanoring surface plasmon microresonator[J]. Journal of the Optical Society of America B,2010,27(12):2495.
    [159]William L Barnes, Alain Dereux, Thomas W Ebbesen. Surface plasmon subwavelength optics[J]. Nature, 2003,424(6950):824-830.
    [160]Myung-Ki Kim, Seung Hoon Lee, Muhan Choi, Byeong-Hyeon Ahn, Namkyoo Park, Yong-Hee Lee, Bumki Min. Low-loss surface-plasmonic nanobeam cavities[J]. Optics Express,2010,18(11):11089.
    [161]R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, X. Zhang. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation[J]. Nature Photonics,2008.2(8):496-500.
    [162]R Coccioli, M Boroditsky, K W Kim, Y Rahmat-Samii.E Yablonovitch. Smallest possible electromagnetic mode volume in a dielectric cavity[J]. Optoelectronics, IEE Proceedings,1998,145(6):391-397.
    [163]Stefan A. Maier. Effective Mode Volume of Nanoscale Plasmon Cavities[J]. Optical and Quantum Elec-tronics,2006,38(1-3):257-267.
    [164]Stefan A. Maier. Plasmonic field enhancement and SERS in the effective mode volume picture[J]. Optics Express,2006,14(5):1957.
    [165]Eiichi Kuramochi, Masaya Notomi, Satoshi Mitsugi, Akihiko Shinya, Takasumi Tanabe, Toshifumi Watanabe. Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect [J]. Applied Physics Letters,2006,88(4):041112.
    [166]P B Deotare, M W McCutcheon, I W Frank, M Khan, R Shankar, Marko Loncar. High Quality Factor 1D Photonic Crystal Cavities in Silicon. In Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (CLEO/QELS). [Deotare, Parag B.; McCutcheon, Murray W.; Frank, Ian W.; Khan, Mughees; Shankar, Raji; Loncar, Marko] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. Deotare, PB, Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. E-Mail:pdeotare@se,2009,54-55.
    [167]Qimin Quan, Parag B. Deotare, Marko Loncar. Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide[J]. Applied Physics Letters,2010,96(20):203102.
    [168]Marko Loncar. High Quality Factor Photonic Crystal Nanobeam Cavities and their Applications. In Integrated Photonics and Nanophotonics Research and Applications. Optical Society of America,2009, IMF4.
    [169]Yinan Zhang, Irfan Bulu, Wai-Ming Tam, Ben Levitt, Jagdish Shah, Tancredi Botto, Marko Loncar. High-Q/V air-mode photonic crystal cavities at microwave frequencies[J]. Optics Express,2011,19(10):9371.
    [170]Yinan Zhang, Marko Loncar. Ultra-high quality factor optical resonators based on semiconductor nanowires[J]. Optics Express,2008,16(22):17400-17409.
    [171]Qimin Quan, Marko Loncar. Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities[J]. Optics Express,2011,19(19):18529.
    [172]Y N Zhang, M W McCutcheon, I B Burgess, Marko Loncar. Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities[J]. Optics Letters,2009,34(17):2694-2696.
    [173]Alexander Gondarenko, Michal Lipson. Low modal volume dipole-like dielectric slab resonator[J]. Optics Express,2008,16(22):17689-17694.
    [174]Jie Gao, James F. McMillan, Ming-Chung Wu, Jiangjun Zheng, Solomon Assefa, Chee Wei Wong. Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes[J]. Applied Physics Letters,2010,96(5):051123.
    [175]Kartik Srinivasan, Oskar Painter. Momentum space design of high-Q photonic crystal optical cavities[J]. Optics Express,2002,10(15):670-684.
    [176]Yoshihiro Akahane, Takashi Asano, Bong-Shik Song, Susumu Noda. High-Q photonic nanocavity in a two-dimensional photonic crystal.[J]. Nature,2003,425(6961):944-7.
    [177]Vilson R. Almeida, Qianfan Xu, Carlos A. Barrios, Michal Lipson. Guiding and confining light in void nanostructure[J]. Optics Letters,2004,29(11):1209.
    [178]Qianfan Xu, Vilson R. Almeida, Roberto R. Panepucci, Michal Lipson. Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material[J]. Optics Letters,2004, 29(14):1626.
    [179]D G Rabus. Integrated ring resonators:the compendium[M]. Springer series in optical sciences. New York:Springer,2007.
    [180]Dmitri K. Gramotnev, Sergey I. Bozhevolnyi. Plasmonics beyond the diffraction limit[J]. Nature Photon-ics,2010,4(2):83-91.
    [181]Y Xu, Y Li, Rk Lee, A Yariv. Scattering-theory analysis of waveguide-resonator coupling[J]. Physical review. E,2000,62(5):7389-404.
    [182]BK Min, JE Kim. Channel drop filters using resonant tunneling processes in two-dimensional triangular lattice photonic crystal slabs[J]. Optics Communications,2004,237(1-3):59-63.
    [183]Emmanuel Drouard, Haroldo T. Hattori, Christian Grillet, Andrzej Kazmierczak, Xavier Letartre, Pedro Rojo-Romeo, Pierre Viktorovitch. Directional channel-drop filter based on a slow Bloch mode photonic crystal waveguide section [J]. Optics Express,2005,13(8):3037.
    [184]T. Niemi, L.H. Frandsen, K.K. Hede, A. Harpoth, P.I. Borel, M. Kristensen. Wavelength-division demulti-plexing using photonic crystal waveguides[J]. IEEE Photonics Technology Letters,2006,18(1):226-228.
    [185]Shanhui Fan, Pierre R. Villeneuve, J. D. Joannopoulos. Channel Drop Tunneling through Localized States[J]. Physical Review Letters,1998,80(5):960-963.
    [186]Shanhui Fan, PR Villeneuve, JD Joannopoulos, MJ Khan. Theoretical analysis of channel drop tunneling processes[J]. Physical Review B,1999,59(24):15882-15892.
    [187]Bok-Ki Min, Jae-Eun Kim, Hae Yong Park. High-efficiency surface-emitting channel drop filters in two-dimensional photonic crystal slabs[J]. Applied Physics Letters,2005,86(1):011106.
    [188]Hitomichi Takano, Yoshihiro Akahane, Takashi Asano, Susumu Noda. In-plane-type channel drop filter in a two-dimensional photonic crystal slab[J]. Applied Physics Letters,2004,84(13):2226.
    [189]Yoshihiro Akahane, Takashi Asano, Hitomichi Takano, Bong-Shik Song, Yoshinori Takana, Susumu Noda. Two-dimensional photonic-crystal-slab channel-drop filter with flat-top response[J]. Optics Ex-press,2005,13(7):2512.
    [190]T. Asano, Y. Akahane. Y. Tanaka. S. Noda. Multichannel add/drop filter based on in-plane hetero photonic Crystals[J]. Journal of Lightwave Technology,2005,23(3):1449-1455.
    [191]Akihiko Shinya, Satoshi Mitsugi, Eiichi Kuramochi, Masaya Notomi. Ultrasmall multi-channel resonant-tunneling filter using mode gap of width-tuned photonic-crystal waveguide[J]. Optics Express,2005, 13(11):4202.
    [192]Lan-Lan Lin, Zhi-Yuan Li, Bin Lin. Engineering waveguide-cavity resonant side coupling in a dynami-cally tunable ultracompact photonic crystal filter[J]. Physical Review B,2005,72(16):1-10.
    [193]Shanhui Fan, Pierre Villeneuve. John Joannopoulos, Hermann Haus. Channel drop filters in photonic crystals[J]. Optics Express,1998,3(1):4.
    [194]C. Manolatou, M.J. Khan, Shanhui Fan, P.R. Villeneuve, H.a. Haus, J.D. Joannopoulos. Coupling of modes analysis of resonant channel add-drop filters[J]. IEEE Journal of Quantum Electronics.1999, 35(9):1322-1331.
    [195]Shanhui Fan, Pierre Villeneuve, J. Joannopoulos, H. Haus. Loss-induced on/off switching in a channel add/drop filter[J]. Physical Review B,2001.64(24):245302.
    [196]Shanhui Fan. Sharp asymmetric line shapes in side-coupled waveguide-cavity systems[J]. Applied Physics Letters,2002,80(6):908.
    [197]Min Qiu, Bozena Jaskorzynska. Design of a channel drop filter in a two-dimensional triangular photonic crystal[J]. Applied Physics Letters,2003,83(6):1074-1076.
    [198]Kyu H Hwang, G Hugh Song. Design of a high-Q channel add-drop multiplexer based on the two-dimensional photonic-crystal membrane structure[J]. Optics Express,2005,13(6):1948.
    [199]Ziyang Zhang, Min Qiu. Compact in-plane channel drop filter design using a single cavity with two degenerate modes in 2D photonic crystal slabs[J]. Optics Express,2005,13(7):2596-2604.
    [200]M.J. Khan, C. Manolatou, P.R. Villeneuve, H.a. Haus, J.D. Joannopoulos. Mode-coupling analysis of mul-tipole symmetric resonant add/drop filters[J]. IEEE Journal of Quantum Electronics,1999,35(10):1451-1460.
    [201]Hitomichi Takano, Bong-Shik Song, Takashi Asano, Susumu Noda. Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal[J]. Applied Physics Letters,2005,86(24):241101.
    [202]Akihiko Shinya, Satoshi Mitsugi, Eiichi Kuramochi, Masaya Notomi. Ultrasmall multi-port channel drop filter in two-dimensional photonic crystal on silicon-on-insulator substrate[J]. Optics Express,2006, 14(25):12394-400.
    [203]Hitomichi Takano, Bong-Shik Song, Takashi Asano, Susumu Noda. Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal[J]. Optics Express,2006,14(8):3491-3496.
    [204]Chongjun Jin, Shanhui Fan, Shouzhen Han, Daozhong Zhang. Reflectionless multichannel wavelength demultiplexer in a transmission resonator configuration[J]. IEEE Journal of Quantum Electronics.2003, 39(1):160-165.
    [205]A. S. Jugessur, P Pottier, R. M. De La Rue. Engineering the filter response of photonic crystal microcavity filters [J]. Optics Express,2004,12(7):1304.
    [206]Sangin Kim, Ikmo Park, Hanjo Lim, Chul-Sik Kee. Highly efficient photonic crystal-based multichannel drop filters of three-port system with reflection feedback[J]. Optics Express,2004,12(22):5518-5525.
    [207]Hongliang Ren, Chun Jiang, Weisheng Hu, Mingyi Gao, Jingyuan Wang. Photonic crystal channel drop filter with a wavelength-selective reflection micro-cavity[J]. Optics Express,2006,14(6):2446.
    [208]S Noda, A Chutinan, M Imada. Trapping and emission of photons by a single defect in a photonic bandgap structure[J]. Nature,2000,407(6804):608-610.
    [209]Takashi Asano, Bong-Shik Song, Yoshinori Tanaka, Susumu Noda. Investigation of a channel-add/drop-filtering device using acceptor-type point defects in a two-dimensional photonic-crystal slab[J]. Applied Physics Letters,2003,83(3):407-409.
    [210]Hermann A. Haus. Waves and fields in optoelectronics[M]. Solid state physical electronics series. New Jersey:Prentice-Hall,1984.
    [211]H.a. Haus, Y. Lai. Narrow-band optical channel-dropping filter[J]. Journal of Lightwave Technology, 1992,10(1):57-62.
    [212]J.N. Damask. Practical design of side-coupled quarter-wave shifted distributed-Bragg resonant filters [J]. Journal of Lightwave Technology,1996,14(5):812-821.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700