用户名: 密码: 验证码:
喷射沉积气体流场与雾化机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雾化器的结构对射流流场会产生很大的影响,因而雾化器设计也是喷射成形及液体雾化领域至关重要的核心技术。本文运用理论分析、数值模拟和试验研究相结合的方法,对单级和双级雾化器流场及流场中液体的波动与破碎状态进行了系统研究分析,以期为实现对单相及两相流场的有效控制奠定基础。
     采用计算流体力学软件Fluent提供的k-ε湍流模型和RSM湍流模型对四个不同出气口交角的单级紧配合式雾化器气体流场分析,结果表明雾化器在10atm的工作压力下随着出气口交角从5°增大到65°,k-ε湍流模型计算出的主射流区间散射角为15.0°到17.4°,而RSM湍流模型给出的主射流阶段张角为17.2°到19.0°,两个模型的计算结果相近。将模拟结果与实测的气体流速对比发现,计算结果与实验数据吻合良好,其中RSM模型相对精确。喷嘴出气口喷出的气体经导液管保护套反射后会在导液管前方形成一个气体流速的环峰。两种模型给出的结果均显示:随着出气口交角的增大,环形速度峰转变为一个速度单峰的合并位置会逐渐远离导液管,并在导液管前方形成一个涡流区域,且该区域中心气体反向流向导液管。同时,在该区域内沿轴线相对流动的气流交汇处会出现气流速度接近于零的“驻点”。同时,改变雾化器出气口交角会对涡流区域的位置产生微弱的影响。流场动态分析表明:对于不同工作压力下处于稳定状态的气体流场,增加气体压力时不改变气体流场结构,涡流区域的范围与位置也不发生变化,气压的增加仅促使气体流速的增加;从中心入口引入微弱的气体扰动将会在整个流场中产生周期性的气体射流波动。
     对于双级雾化器,通过模拟与实验确定了上下雾化器的装配关系:上、下雾化器之间的装配距离不大于15mm,下雾化器中心孔径为65mm。上、下雾化器同时工作时,上雾化器喷出的气流可以有效地抑制上下雾化器之间的涡流区。当下雾化器处于摆动极限位置时,可以有效地促使射流角度发生偏转:上、下雾化器工作压力均为10atm且下雾化器摆动5°时,射流主段的偏转角约为5°;只有下雾化器工作压力为10atm且其摆动角度为5°时,射流主段的偏转角约为6°。
     对雾化过程的研究发现:在一次雾化过程中液柱的Weber数在130.1~160.9范围内时为波动破碎向膜状破碎的转变区间。“波动破碎”源于Kelvin-Helmholtz不稳定影响,气液界面的波动导致大液滴的脱落和液柱的破碎。初级雾化中的“膜状破碎”受到涡流区域的气体静压力与动压力的共同作用并使液柱变形为液膜继而破碎成小液滴。对破碎粉末观察表明空心粉末的形成是液膜破碎震动和自身表面张力共同作用的结果。
     文中还对不同直径的入射液滴运动轨迹进行了分析。入射液滴会受到导液管前方涡流区域的作用,当液滴入射速度为50m/s时,直径大于35μm的液滴会顺利穿越导液管前方的涡流区域,其运动受涡流区的影响较小。直径相同的液滴,入射速度越大则越容易穿越涡流区域。文中计算了50μm、100μm和150μm的液滴在相对气体流速为100m/s与200m/s的流场中液滴内部的温度场分布,在给定条件下液滴的冷却速度范围集中在104~105数量级。三个直径的液滴在100m/s的相对气体流速中,当温度降到液相线以下时,液滴内部温度场内温度波动不超过2℃,而在200m/s的相对气流中降到液相线以下时温度场内温度波动不超过1℃。
The design of the atomizer is a key technology in both spray forming and theatomization of the liquid, and affects the gas-only and the gas-liquid flow field.This research about the gas flow field is based on the atomizer designed byourselves. Theory analysis is combined with numerical simulation and experimentto analyze the flow fields generated by the single layer atomizer and the doublelayer atomizer, and the fluctuation and breakup of the liquid in the gas flow field.All these are the foundation to control the gas-only and gas-liquid flow field.
     Both k-ε turbulence model and Reynolds stress turbulence model (RSM)provided by FLUENT, a commercial CFD software, are applied to calculate the gasflow field formed by four atomizers with different intersection angles. Thescattering angle of the main part of gas spray increased from15.0°to17.4°givenby k-ε model and17.2°to19.0°given by RSM model, as the nozzle intersectionangle increased from5°to65°at the operating gas pressure of10atm, and the twomodels give similar results. Comparing the simulation results with the experimentaldata, they agree well with each other, and RSM model is more accurate. In the gasflow field, the gas sprayed from the nozzle is reflected by the out surface of theprotector of the delivery tube, and an annular speed peak comes up downstream ofthe delivery tube. The results by both k-ε model and RSM model show that theposition where the annular speed peak merged into one single peak moves fartherfrom the delivery tube as the nozzle intersection angle increased. There is arecirculation zone in front of the delivery tube, and the gas moves towards thedelivery tube in the center of this area. The confluence of opposite gas flow is theso-called ‘stagnation point’ of the gas speed, where the gas speed nearly drops tozero. Increasing the intersection angle affects the position of the recirculation, butthere is only a limited effect. Dynamic analysis has also been done to the gas flowfield. Observing different gas flow fields under different gas inlet pressures, it’sfound that the increasing of the gas inlet pressure doesn’t change the structure ofgas flow field and the position of the recirculation zone, but only makes the gasmove faster. A slight disturbance is introduced from the center inlet, which leads toa periodic jet fluctuation.
     In the study about double layer atomizer, the assembly relation between uplayer and under layer nozzles is determined by both simulation and experiment. Thedistance between up layer and under layer nozzles is no more than15mm, and thediameter of under layer central opening is65mm. When both two nozzles areworking together, the gas spray from up nozzle can restrain the scope of the largerecirculation between the two nozzles. When these two nozzle are working under10atm operating pressure and the scanning angle of the under nozzle is5°, thedeflection angle of gas flow in the main part is5°from the axis. But when onlyunderlayer nozzle is working under10atm operating pressure and the scanningangle of the under nozzle is also5°, the deflection angle of gas flow in the mainpart is6°.
     The primary and secondary breakups have been analyzed in the paper. Duringthe primary breakup process, when the Weber number is in the range of130.1~160.9, vibration breakup is transforming into sheet breakup. The vibrationbreakup is based on the Kelvin-Helmholtz instability, and the disturbances on theinterface make big droplets separate from the liquid column and lead the liquidcolumn to break into fragments. The results indicate that sheet breakup is the resultof gas static pressure and dynamic pressure, which made the liquid columntransform into liquid sheet then break into little droplets. Those droplets generatedafter sheet breakup are smaller than those after vibration breakup. Observing thepowders after breakup, it’s found that hollow powder is out of the vibration of thelocal liquid sheet after breakup and its own surface tension.
     The trajectories of droplets with different diameters have been calculated inthe paper. The movements of droplets are affected by the recirculation. When theadmission velocity of droplets is50m/s, the ones with diameters larger than35μmcan go through the recirculation zone easily without being influenced. For thedroplets with same diameter, the faster get into the flow field, the easier go throughthe recirculation zone. It’s analyzed that the whole flow field and temperature fieldin the droplets with50μm,100μm and150μm diameters moving within the gasflow of100m/s and200m/s relative velocity. The cooling speed of the droplets areof the order of104~105just in the context of the given situation. When thetemperature of droplets is below the liquidus, the differences of the temperaturewithin droplets are no more than2℃in gas flow with100m/s relative velocity, and no more than1℃in gas flow with200m/s relative velocity.
引文
[1] Aksoy A, Unal R. Effects of gas pressure and protrusion length of meltdelivery tube on powder size and powder morphology of nitrogen gasatomised tin powders[J]. Powder Metallurgy.2006,49(4):349-354
    [2] Kim T S, Ryu J Y, Lee J K, et al. Synthesis of Cu-base/Ni-base amorphouspowder composites[J]. Materials Science and Engineering a-StructuralMaterials Properties Microstructure and Processing.2007,449:804-808
    [3] Singh D, Dangwal S. Effects of process parameters on surface morphology ofmetal powders produced by free fall gas atomization[J]. Journal of MaterialsScience.2006,41(12):3853-3860
    [4]欧阳鸿武,黄伯云,陈欣,等.开涡状况下紧耦合气雾化的成膜机理[J].中国有色金属学报.2005,(07):1000-1005
    [5] Metz R, Machado C, Houabes M, et al. Nitrogen spray atomization of moltentin metal: Powder morphology characteristics[J]. Journal of MaterialsProcessing Technology.2008,195(1-3):248-254
    [6] ünal R. The influence of the pressure formation at the tip of the melt deliverytube on tin powder size and gas/melt ratio in gas atomization method[J].Journal of Materials Processing Technology.2006,180(1-3):291-295
    [7] Zeoli N, Gu S. Numerical modelling of droplet break-up for gasatomisation[J]. Computational Materials Science.2006,38(2):282-292
    [8] Zeoli N, Gu S. Computational simulation of metal droplet break-up, coolingand solidification during gas atomisation[J]. Computational MaterialsScience.2008,43(2):268-278
    [9] Zhou Y Z, Lee S, McDonell V G, et al. Influence of operating variables onaverage droplet size during linear atomization[J]. Atomization and Sprays.1997,7(4):339-358
    [10] Pariona M M, Bolfarini C, Kiminami C S. Atomization stage analysis ofliquid dynamic compaction process by fractional factorial design[J].Zeitschrift Fur Metallkunde.1998,89(7):494-497
    [11]Heck U, Fritsching U, Bauckhage K. Gas flow effects on twin-fluid atomizationof liquid metals[J]. Atomization and Sprays.2000,10(1):25-46
    [12] Cao F Y, Sun J F, Cui C S, et al. Numerical simulation of atomization gasfields in various atomizing processes[J]. Acta Metallurgica Sinica.2002,15(3):279-284
    [13] Schmidt D P, Chiappetta L M, Goldin G M, et al. Transient multidimensionalmodeling of air-blast atomizers[J]. Atomization and Sprays.2003,13(4):373-393
    [14] Markus S, Cui C, Fritsching U. Analysis of deposit growth in spray formingwith multiple atomizers[J]. Materials Science and Engineering a-StructuralMaterials Properties Microstructure and Processing.2004,383(1):166-174
    [15] Czisch C, Fritsching U. Atomizer design for viscous-melt atomization[C].3rdInternational Conference on Spray Deposition and Melt Atomization (SDAM2006)/6th International Conference on Spray Forming (ICSF VI), Bremen,GERMANY,2006. Elsevier Science Sa:21-25
    [16] Jepsen R A, O'Hern T, Demosthenous B, et al. Diagnostics for liquiddispersion due to a high-speed impact with accident or vulnerabilityassessment application[J]. Measurement Science&Technology.2009,20(2)
    [17] Yeh C-L. Turbulent flow simulation of liquid jet emanating from pressure-swirl atomizer[J]. Heat and Mass Transfer.2008,44(3):275-280
    [18] Shim Y, Choi G, Kim D. Numerical modeling of hollow-cone fuelatomization, vaporization and wall impingement processes under highambient temperatures[J]. International Journal of Automotive Technology.2008,9(3):267-275
    [19] Prasad A, Henein H. Droplet cooling in atomization sprays[J]. Journal ofMaterials Science.2008,43(17):5930-5941
    [20] Tong M M, Browne D J. Direct numerical simulation of melt-gashydrodynamic interactions during the early stage of atomisation of liquidintermetallic[J]. Journal of Materials Processing Technology.2008,202(1-3):419-427
    [21] Tong M M, Browne D J. Modelling compressible gas flow near the nozzle ofa gas atomiser using a new unified model[J]. Computers&Fluids.2009,38(6):1183-1190
    [22] Mates S P, Settles G S. A study of liquid metal atomization using close-coupled nozzles, Part1: Gas dynamic behavior[J]. Atomization and Sprays.2005,15(1):19-40
    [23] Lukhtura F I. One-dimensional theory of off-design supersonic gas jets[J].Fluid Dynamics.1993,28(1):35-41
    [24] Donaldson C D, Snedeker R S. A study of free jet impingement. Part1. Meanproperties of free and impinging jets[J]. J. Fluid Mech.1971,45(2):281-319
    [25]曹福洋,崔成松,范洪波,等.喷射成形过程工艺参数作用规律的理论预测[J].中国有色金属学报.1999,(02):5-11
    [26]赵文军.摆动雾化喷射成形过程及镁合金沉积组织分析[D].哈尔滨工业大学硕士学位论文.2007:8,22-26
    [27]曹福洋.喷射成形过程的数值模拟及基础工艺研究[D].哈尔滨工业大学博士学位论文.2001:80-85
    [28] Ulf Gummeson P, Gustafson D A. A review of:“Modern Developments inDowder Metallurgy Volume20”[J]. Materials and Manufacturing Processes.1991,6(2):361-364
    [29] Bewlay B P, Cantor B. Gas velocity-measurements from a close-coupledspray deposition atomizer[J]. Materials Science and Engineering a-StructuralMaterials Properties Microstructure and Processing.1989,118:207-222
    [30] Ting J, Anderson I E. A computational fluid dynamics (CFD) investigation ofthe wake closure phenomenon[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing.2004,379(1-2):264-276
    [31] Ting J, Connor J, Ridder S. High-speed cinematography of gas-metalatomization[J]. Materials Science and Engineering a-Structural MaterialsProperties Microstructure and Processing.2005,390(1-2):452-460
    [32] Ting J, Peretti M W, Eisen W B. The effect of wake-closure phenomenon ongas atomization performance[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing.2002,326(1):110-121
    [33]蒋向阳,陈振华,周多三,等.多级雾化过程中液滴破碎和粉末微观结构的形成[J].中南矿冶学院学报.1994,(01):71-75
    [34]孙剑飞,曹福洋,崔成松,等.金属雾化过程中气体流场动力学行为[J].粉末冶金技术.2002,(02):79-81
    [35]胡春波,王坤,曾卓雄,等.液滴破碎模糊计算研究[J].西北工业大学学报.2003,(05):536-539
    [36]李会雄,陈听宽.高温熔融液滴破碎特性实验研究[J].核动力工程.2003,(04):302-306+322
    [37]陈硕,尚智,王丹,等.简单剪切流条件下液滴破碎和碰撞模拟[J].工程热物理学报.2007,(S1):189-192
    [38]温利军,张胤.喷射成形液滴运动及传热的数值模拟[J].内蒙古科技大学学报.2008,(01):42-45
    [39] Zucker R D, Biblarz O. Fundamentals of gas dynamics[M]. Wiley,2002:71-75
    [40] Seiner J M, Norum T D. Aerodynamic Aspect of Shock Containing JetPlumes[C]. AIAA6th Aeroacoustics Conferance, Hartford,1980.AIAA Paper80-0965
    [41] Sciubba E, Zeoli N. A study of sootblower erosion in waste-incinerating heatboilers[J]. Journal of Energy Resources Technology-Transactions of the Asme.2007,129(1):50-53
    [42] Kamnis S, Gu S, Zeoli N. Mathematical modelling of Inconel718particles inHVOF thermal spraying[J]. Surface&Coatings Technology.2008,202(12):2715-2724
    [43] Zeoli N, Gu S. Computational validation of an isentropic plug nozzle designfor gas atomisation[J]. Computational Materials Science.2008,42(2):245-258
    [44] Zeoli N, Gu S, Kamnis S. Numerical modelling of metal droplet cooling andsolidification[J]. International Journal of Heat and Mass Transfer.2008,51(15-16):4121-4131
    [45] Zeoli N, Gu S, Kamnis S. Numerical simulation of in-flight particle oxidationduring thermal spraying[J]. Computers&Chemical Engineering.2008,32(7):1661-1668
    [46] Liepmann H W, Roshko A. Elements of gasdynamics[M]. Dover Pubns,1957:88-91
    [47] Anderson J D. Fundamentals of aerodynamics[M]. McGraw-Hill,2001:532-543
    [48] Mates S P, Settles G S. A study of liquid metal atomization using close-coupled nozzles, Part2: Atomization behavior[J]. Atomization and Sprays.2005,15(1):41-59
    [49] Czisch C, Fritsching U. Flow-adapted design option for free-fall atomizers[J].Atomization and Sprays.2008,18(6):511-522
    [50] Fritsching U. Droplets and particles in sprays: tailoring particle propertieswithin spray processes[J]. China Particuology.2005,3(1-2):125-133
    [51] Lohner H, Czisch C, Schreckenberg P, et al. Atomization of viscous melts[J].Atomization and Sprays.2005,15(2):169-180
    [52] Garbero M, Vanni M, Fritsching U. Gas/surface heat transfer in spraydeposition processes[J]. International Journal of Heat and Fluid Flow.2006,27(1):105-122
    [53] Huang Z J, Czisch C, Schreckenberg P, et al. Technical note: Powderproduction by gas atomization of bioglass melt[J]. Particle&ParticleSystems Characterization.2006,22(5):345-351
    [54] Markus S, Fritsching U. Discrete break-up modeling of melt sprays[J].International Journal of Powder Metallurgy.2006,42(4):23-32
    [55] Heinlein J, Schulte G, Fritsching U, et al. Mapping the structure of a liquidspray by means of neural networks[J]. Chemical Engineering and Processing.2007,46(12):1357-1364
    [56] Czisch C, Fritsching U. Atomizer design for viscous-melt atomization[J].Materials Science and Engineering a-Structural Materials PropertiesMicrostructure and Processing.2008,477(1-2):21-25
    [57] Orszag S A. Analytical theories of turbulence[J]. Journal of Fluid Mechanics.1970,41(02):363-386
    [58] Smagorinsky J. General circulation experiments with the primitiveequations[J]. Monthly weather review.1963,91(3):99-164
    [59] Deardorff J W. A numerical study of three-dimensional turbulent channelflow at large Reynolds numbers[J]. Journal of Fluid Mechanics.1970,41(02):453-480
    [60] Pitsch H. Large-eddy simulation of turbulent combustion[J]. Annual Reviewof Fluid Mechanics.2006,38:453-482
    [61] Wagner C A, HüTTL T, Sagaut P. Large-eddy simulation for acoustics[M].Cambridge Univ Pr,2007:89-91
    [62] Stoll R, Porté-Agel F. Large-eddy simulation of the stable atmosphericboundary layer using dynamic models with different averaging schemes[J].Boundary-Layer Meteorology.2008,126(1):1-28
    [63] Tennekes H, Lumley J L. A first course in turbulence[M]. The MIT press,1972:55-59
    [64] Spalart P R, Allmaras S R. A one-equation turbulence model for aerodynamicflows[J]. La recherche aérospatiale.1994,1(1):5-21
    [65] Jones W, Launder B E. The prediction of laminarization with a two-equationmodel of turbulence[J]. International Journal of Heat and Mass Transfer.1972,15(2):301-314
    [66] Launder B E, Sharma B I. Application of the energy-dissipation model ofturbulence to the calculation of flow near a spinning disc[J]. InternationalCommunications in Heat and Mass Transfer.1974,1(2):131-137
    [67] Wilcox D C, Aeronautics A I o, Astronautics. Turbulence modeling forCFD[M]. DCW industries La Canada, CA,1998:128-131
    [68] Bardina J E. Turbulence modeling validation, testing, and development[M].National Technical Information Service, distributor,1997:9-10
    [69] Menter F R. Two-equation eddy-viscosity turbulence models for engineeringapplications[J]. Aiaa Journal.1994,32(8):1598-1605
    [70] Launder B, Reece G, Rodi W. Progress in the development of a Reynolds-stress turbulence closure[J]. Journal of Fluid Mechanics.1975,68(03):537-566
    [71] Chen C, Riley J J, McMurtry P A. A study of Favre averaging in turbulentflows with chemical reaction[J]. Combustion and Flame.1991,87(3-4):257-277
    [72] Hinze J. Turbulence[M]. MacGraw Hill Book Company,1975:80
    [73] Schmitt F G. About Boussinesq's turbulent viscosity hypothesis: historicalremarks and a direct evaluation of its validity[J]. Comptes Rendus Mécanique.2007,335(9-10):617-627
    [74] Versteeg H K, Malalasekera W. The Finite Volume Method[M]. Longman,1995:59-66
    [75] Launder B, Spalding D. The numerical computation of turbulent flows[J].Computer methods in applied mechanics and engineering.1974,3(2):269-289
    [76] Sarkar S, Lakshmanan B. Application of a reynolds stress turbulence modelto the compressible shear-layer[J]. Aiaa Journal.1991,29(5):743-749
    [77] Launder B E, Spalding D B. Lectures in mathematical models ofturbulence[M]. Academic Press,1972:55-60
    [78] Gibson M, Launder B. Ground effects on pressure fluctuations in theatmospheric boundary layer[J]. Journal of Fluid Mechanics.1978,86(03):491-511
    [79] Launder B E. Second-moment closure: present... and future?[J]. InternationalJournal of Heat and Fluid Flow.1989,10(4):282-300
    [80] Daly B J, Harlow F H. Transport Equations in Turbulence[J]. Physics ofFluids.1970,13(11):2634-2649
    [81] Lien F S, Leschziner M A. Assessment of turbulence-transport modelsincluding non-linear RNG eddy-viscosity formulation and second-momentclosure for flow over a backward-facing step[J]. Computers&Fluids.1994,23(8):983-1004
    [82] Fu S, Launder B, Leschziner M. Modelling strongly swirling recirculating jetflow with Reynolds-stress transport closures[C].1987:p.17-6-1to17-6-6.
    [83] Launder B E. Second-moment closure and its use in modelling turbulentindustrial flows[J]. International Journal for Numerical Methods in Fluids.1989,9(8):963-985
    [84] Henkes R A W M, Van Der Vlugt F F, Hoogendoorn C J. Natural-convectionflow in a square cavity calculated with low-Reynolds-number turbulencemodels[J]. International Journal of Heat and Mass Transfer.1991,34(2):377-388
    [85] Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics offree boundaries[J]. Journal of Computational Physics.1981,39(1):201-225
    [86] Torrey M D, Cloutman L D, Mjolsness R C, et al. NASA-VOF2D: acomputer program for incompressible flows with free surfaces[J]. NASASTI/Recon Technical Report N.1985,86:30116
    [87] Noh W, Woodward P. SLIC (simple line interface calculation)[C].1976.Springer:330-340
    [88] Upadhyaya G S. Powder Metallurgy Technology[M]. CambridgeInternational Science Publishing,1998:10-12
    [89] Sarkar S. Three-dimensional multiphase flow modeling of spray coolingusing parallel computing[D]. University of Arkansas3334179.2008:54
    [90] Yule A J, Dunkley J J. Atomization of melts for powder production and spraydeposition[M]. Oxford University Press, USA,1994:1-6
    [91] Lavernia E J, Wu Y. Spray atomization and deposition[M]. Wiley,1997:7-14
    [92] Liu H. Science and engineering of droplets: fundamentals andapplications[M]. William Andrew Publishing,2000:4-10
    [93] Sutton G P. Rocket propulsion elements: an introduction to the engineeringof rockets/George P. Sutton, Donald M. Ross[M]. Wiley,1976:170-175
    [94] Scaife G. From galaxies to turbines: science, technology, and the Parsonsfamily[M]. Institute of Physics,1999:203-207
    [95] Zhao W J, Cao F Y, Ning Z L, et al. A computational fluid dynamics (CFD)investigation of the flow field and the primary atomization of the closecoupled atomizer[J]. Computers and Chemical Engineering.2012,40(11):58-66
    [96] Underhill R P, Grant P S, Cantor B, et al. Modelling of droplet behaviourduring spray forming using fluent[J]. International Journal of Non-Equilibrium Processing.1997,10(2):201-216
    [97]陈振华.金属液体的雾化问题[J].粉末冶金技术.1998,(04):42-49+44
    [98] Bradley D. On the atomization of liquids by high-velocity gases[J]. Journalof Physics D: Applied Physics.1973,6(14):1724
    [99] Bradley D. On the atomization of a liquid by high-velocity gases: II[J].Journal of Physics D: Applied Physics.1973,6(18):2267
    [100]陈斌,郭烈锦,张西民,等.喷嘴雾化特性实验研究[J].工程热物理学报.2001,(02):237-240
    [101]王振国,周进,鄢小清,等.气液同轴离心式喷嘴雾化特性实验研究[J].国防科技大学学报.1996,(01):7-11
    [102] Markus S, Fritsching U, Bauckhage K. Jet break up of liquid metal in twinfluid atomisation[J]. Materials Science and Engineering a-StructuralMaterials Properties Microstructure and Processing.2002,326(1):122-133
    [103] Stapper B E, Sowa W A, Samuelsen G S. An Experimental Study of theEffects of Liquid Properties on the Breakup of a Two-Dimensional LiquidSheet[J]. Journal of Engineering for Gas Turbines and Power.1992,114(1):39-45
    [104] Lozano A, Barreras F, Hauke G, et al. Longitudinal instabilities in an air-blasted liquid sheet[J]. Journal of Fluid Mechanics.2001,437:143-173
    [105] Lozano A, Garcia-Olivares A, Dopazo C. The instability growth leading to aliquid sheet breakup[J]. Physics of Fluids.1998,10(9):2188-2197
    [106] Weast R C, Astle M J, Beyer W H. CRC handbook of chemistry andphysics[M]. CRC press Boca Raton, FL,1988:2-66
    [107] Rayleigh L. Investigation of the character of the equilibrium of anincompressible heavy fluid of variable density[J]. Proceedings of the LondonMathematical Society.1983,14:170-177
    [108] Taylor G. The instability of liquid surfaces when accelerated in a directionperpendicular to their planes. I[J]. Proceedings of the Royal Society ofLondon. Series A, Mathematical and Physical Sciences.1950:192-196
    [109] Antipas G S E. Modelling of the break up mechanism in gas atomization ofliquid metals. Part I: The surface wave formation model[J]. ComputationalMaterials Science.2006,35(4):416-422
    [110] Garcia-Cordovilla C, Louis E, Pamies A. The surface tension of liquid purealuminium and aluminium-magnesium alloy[J]. Journal of Materials Science.1986,21(8):2787-2792
    [111] McCuan J. Retardation of Plateau-Rayleigh Instability: A DistinguishingCharacteristic Among Perfectly Wetting Fluids[J]. Arxiv preprintmath/9701214.1997,
    [112]王立锋,范征锋,叶文华,等.用NND格式模拟Kelvin-Helmholtz不稳定性[J].计算物理.2010,(02):168-172
    [113] Hasegawa H, Fujimoto M, Phan T D, et al. Transport of solar wind intoEarth's magnetosphere through rolled-up Kelvin-Helmholtz vortices[J].Nature.2004,430(7001):755-758
    [114] Reuter D C, Simon-Miller A A, Lunsford A, et al. Jupiter cloud composition,stratification, convection, and wave motion: A view from new horizons[J].Science.2007,318(5848):223-225
    [115] Gamezo V N, Khokhlov A M, Oran E S, et al. Thermonuclear supernovae:Simulations of the deflagration stage and their implications[J]. Science.2003,299(5603):77-81
    [116]张波,葛蕴藻. X射线脉冲星周期的变化与吸积盘边界的K-H不稳定性[J]. Chinese Journal of Astronomy and Astrophysics.1989,(03):244-251
    [117] Kelvin L. XLVI. Hydrokinetic solutions and observations[J]. PhilosophicalMagazine Series4.1871,42(281):362-377
    [118] Chandrasekhar S. Hydrodynamic and hydromagnetic stability[M]. DoverPubns,1961:481-498
    [119] Helmholtz H V. über discontinuierliche Flüssigkeits-Bewegungen [On thediscontinuous movements of fluids[J]. Monatsberichte der K niglichenPreussische Akademie der Wissenschaften zu Berlin [Monthly Reports of theRoyal Prussian Academy of Philosophy in Berlin].1868,23:215-228
    [120] Meiron D I, Baker G R, Orszag S A. Analytic structure of vortex sheetdynamics. Part1. Kelvin–Helmholtz instability[J]. Journal of FluidMechanics.1982,114:283-298
    [121] Collings E. Materials properties handbook: titanium alloys[M]. Asm Intl,1994:125-129
    [122] Aune R, Battezzati L, Brooks R, et al. Surface tension and viscosity ofindustrial alloys from parabolic flight experiments—Results of theThermoLab project[J]. Microgravity Science and Technology.2005,16(1):11-14
    [123] Gurney C J. The stability and control of curved liquid jet break-up[D].University of BirminghamPh.D.2010:241
    [124] Ibrahim E A, Akpan E T. Three-dimensional instability of viscous liquidsheets[J]. Atomization and Sprays.1996,6(6):649-665
    [125] Lozano A, Barreras F. Experimental study of the gas flow in an air-blastedliquid sheet[J]. Experiments in Fluids.2001,31(4):367-376
    [126] Dumouchel C. On the experimental investigation on primary atomization ofliquid streams[J]. Experiments in Fluids.2008,45(3):371-422
    [127] Pilch M, Erdman C A. Use of breakup time data and velocity history data topredict the maximum size of stable fragments for acceleration-inducedbreakup of a liquid-drop[J]. International Journal of Multiphase Flow.1987,13(6):741-757
    [128]孙剑飞.镍基高温合金(GH742)喷射成形过程热传输与组织形成机制
    [D].哈尔滨工业大学博士学位论文.1999:25-34
    [129] Zhao H, Liu H F, Xu J L, et al. Experimental study of drop size distributionin the bag breakup regime[J]. Industrial&Engineering Chemistry Research.2011,50(16):9767-9773
    [130] Chou W H, Faeth G M. Temporal properties of secondary drop breakup in thebag breakup regime[J]. International Journal of Multiphase Flow.1998,24(6):889-912
    [131] Bird J C, de Ruiter R, Courbin L, et al. Daughter bubble cascades producedby folding of ruptured thin films[J]. Nature.2010,465(7299):759-762
    [132] Pilch M, Erdman C, Reynolds A B, et al. Acceleration induced fragmentationof liquid drops[M]. The Commission,1981:508-514
    [133] Kauffman C, Nicholls J. Shock-wave ignition of liquid fuel drops[J]. AiaaJournal.1971,9:880-885
    [134] Fox R W, McDonald A T, Pritchard P J. Introduction to fluid mechanics[M].John Wiley&Sons New York,1985:39-50
    [135] Coutanceau M, Defaye J R. Circular cylinder wake configurations: A flowvisualization survey[J]. Applied Mechanics Reviews.1991,44:255
    [136] Schlichting H, Gersten K. Boundary-layer theory[M]. Springer Verlag,2000:33-37
    [137] Lavernia E J, Gutierrez E M, Szekely J, et al. Mathematical model of theliquid dynamic compaction process. Part1: Heat flow in gas atomization[J].International journal of rapid solidification.1988,4(1-2):89-124
    [138] Mathur P, Apelian D, Lawley A. Analysis of the spray deposition process[J].Acta Metallurgica.1989,37(2):429-443
    [139] Annavarapu S, Apelian D, Lawley A. Spray casting of steel strip: Processanalysis[J]. Metallurgical and Materials Transactions A.1990,21(12):3237-3256

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700