用户名: 密码: 验证码:
弥渡、巍山盆地中更新世地质特征及其演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弥渡、巍山盆地位于扬子准地台(Ⅰ)和唐古拉—昌都—兰坪—思茅褶皱系(Ⅳ)两个一级构造单元的接合部位,大地构造位置极为特殊。弥渡盆地位于红河断裂带的北东处,巍山盆地位于红河断裂带的南西处,两盆地属于走滑拉分盆地。
     本文以弥渡、巍山盆地各阶地沉积物为研究重点,并对其进行热释光测年,来分析山脉的隆升速率、盆地的形成演化和沉积环境演变等情况。
     通过野外调查,发现在弥渡、巍山盆地之间的山脉两侧发育了各种类型的阶地,其沉积物主要为更新统松毛坡组(Qps),岩性主要为灰、灰黄、紫、紫红色中—厚层状砾岩、砂砾岩、砂岩为主,夹灰黑、灰白、褐色粘土岩、粉砂岩和数层煤层。阶地类型为基座阶地。
     弥渡盆地共发育五级阶地,其分布情况为:Ⅰ级阶地主要分布于盆地西侧冷官营-小家营-奇家营一带,高程在1690m-1750m之间,热释光测年值为200.48±22.05Ka;Ⅲ阶地主要分布于盆地西侧大红箐-龙华寺-三甲村-三合中村一带,高程在1750m-1830m之间,热释光测年值为239.06±26.30Ka,隆升速率为0.23m/ka;Ⅳ阶地主要分布于盆地西侧平安庄、大纪罗、三合上村等地,高程在1900m-2100m之间,热释光测年值为320.85±35.29Ka,隆升速率为0.59m/ka;V阶地分布于盆地西侧大树坪、小纪罗、天目山等地,高程在2150m-2250m之间,热释光测年值为332.07±36.59Ka,隆升速率为0.042m/ka。
     巍山盆地共发育四级阶地,其分布情况为:Ⅰ级阶地主要分布于盆地南侧的热水塘处,其高程为1661m,根据热释光测年为118.64±13.05Ka,隆升速率为0.134m/ka;Ⅱ级阶地在盆地西侧分布于南山村-向旭下村-向阳中村一带,盆地东侧分布于黄乐村-瓦窑村一带,热释光测年值为137.23±15.09K,隆升速率为0.25m/ka;Ⅲ级阶地主要分布于盆地东侧的新村-河上湾-东厂-小禾里-谢家村-琪盘山-石龙山一带,呈狭长条带分布,高程在1750m-1900m之间,热释光测年值为258.52±28.44Ka,隆升速率为1.46m/ka;Ⅳ级阶地主要分布于盆地东侧的李青元、小黄草坝、黄草坝等地,高程在2050m-2200m之间,热释光测年值为511.35±56.25Ka,隆升速率为0.86m/ka。
     通过对山脉隆升速率的分析可知:巍山盆地与弥渡盆地之间的分水岭地带形成于50万年来的差异性升降运动,两侧隆升速率基本相当,而且表现出早期快速隆升,晚期隆升速率减缓的趋势。
     根据以上分析可知弥渡盆地共有5次间隙隆升阶段,巍山盆地共有4次间隙隆升阶段。
     弥渡盆地发展演化阶段:(1)332.07±36.59Ka至320.85±35.29Ka期间为湖泊相沉积,气候温和,浅水等环境;(2):320.85±35.29Ka至239.06±26.30 Ka期间为洪积扇堆积-河流相-浅湖-半深湖-浅湖-沼泽-三角洲相的沉积环境,共分两个旋回。(3):239.06±26.30 Ka至200.48±22.05Ka期间为湖泊近岸沉积;(4)200.48±22.05Ka至10Ka期间为湖泊近岸-沼泽-河湖相-湖泊近岸-浅湖-湖泊近岸的沉积环境。
     巍山盆地演化阶段:(1):511.35±56.25Ka至258.52±28.44Ka期间为洪积扇沉积。其沉积相从下往上依次为洪积扇(扇根)-洪积扇(扇中)-洪积扇(扇端)-河流沼泽相沉积,气候温和,植被茂盛。(2):258.52±28.44Ka至137.23±15.09Ka期间为河流相沉积。(3):137.23±15.09Ka至118.64±13.05Ka期间底部为湖泊近岸-沼泽相沉积,往上出现3个洪积扇(扇根)-洪积扇(扇中)-洪积扇(扇端)由细变粗的进积型的反旋回层序,说明当时盆地处于紧缩状态;(4):118.64±13.05Ka至lOKa期间为河流相沉积。
     弥渡、巍山盆地属于走滑拉分盆地,是在红河断裂带右旋走滑拉伸作用下形成的。
Midu and Weishan basins are located in the joint unit of Yangzi quasi-floor (Ⅰ) and Tanggula--Changdu--Lanping--Simao fold lines(Ⅳ), whose tectonic location is extremely complex. Midu basin is located in the North East of the Red River fault zone. Weishan basin is located in the South West of the Red River fault zone, and both two basins belong to slip pull-apart basins.
     In this paper, Midu and Weishan basin sediments are to study and to gain thermo luminescence dating, and to analyze the uplift rate of the mountains, sedimentary basin formation, evolution of environmental changes and so on.
     Through a field survey, we discover that in Midu and Weishan basins, on both sides of the mountains between Midu and Weishan mountains, various types of terraces grow, and it is mainly Pleistocene sediments from the loose hair slope Group (Qps) and litho logy is mainly grey, grey-yellow, purple, purple-thick layered rocks, gravel, sandstone and clip-black, gray, Brown clay, rock, siltstone and the amount of the seam. Terraces type is the base terraces.
     There are totally five development terrace levels among Midu basin, and its distribution is:level I terraceis located to the West of Lengguanying-Xiaojiaying-Qijiaying,the elevation is about 1690m to 1750m, and the TL dating value is 200.48±22.05Ka;level III terrace is located to the West of Dahongqing-Lonhhuasi-Sanjiacun-Sanhezhongcun, the elevation is about 1750m to 1830m, the TL dating value is 239.06±26.30Ka, uplift rate is 0.23m/ka; level IV terraces are mainly located in the basin to the West of Pingan Village, Daluoji and Sanheshang Village. The elevation is about 1900m to 2100m, the TL dating value is 320.85±35.29Ka, uplift rate is 0.59m/ka; level V terrace is on the West side of Dashuping, Xiaoluoji and Tinmushan.The elevation is about 2150m-2250m, the TL dating value is 332.07±36.59Ka, and uplift rate is 0.042m/ka.
     There are totally four development terrace levels among Weishan basin, and its distribution is:level I terrace is located to the south of Reshuitang, the elevation is about 1661m, and the TL dating value is 118.64±13.05Ka;level IIterrace is located to the West of Nanshancun, xiangxuxiacun, xiangyangzhongcun, the TL dating value is 137.23±15.09Ka, uplift rate is 0.25m/ka; levelⅢterraces are mainly located in Xincun, heshangwan, dongchang, xiaoheli, xiejiacun, qipanshan, shilongshan. The elevation is about 1750m-1900m, the TL dating value is 258.52±28.44Ka, uplift rate is 1.46m/ka; level IV terrace is on the east side of Liqingyuan, xiaohuangbacun, huangbacun. The elevation is about 2050m-2200m, the TL dating value is 511.35±56.25Ka, and uplift rate is 0.86m/ka.
     Through the uplift rate analysis:Weishan basin and Midu basin watershed areas are between the difference of 50 million years to lifting movement, both sides uplift rate is pretty basic and show a rapid rise early, and a rate slowed later.
     According to the above analysis shows the Midu basin, a total of 5 time gap uplifting stage, and as to Weishan basin, there are 4 time gap uplifting stage.
     Midu basin development evolution stages:(1) of 332.07±36.59Ka to 320.85±35.29Ka period for lake sediments, mild climate, shallow water environments such as; (2):320.85±35.29Ka to 239.06±26.30 Ka period for pluvial stacked-fluvial-on the Lake-deep lake-Lake-swamp-Delta phase of depositional environments, divided into two cycles. (3): 239.06±26.30 Ka to 200.48±22.05Ka Lakes coastal deposition during; (4) of 200.48±22.05Ka to 10Ka Lakes coastal-during swamp-Lake and river-lake shore-on the Lake-Lake shore sedimentary environments.
     Weishan basin evolution stages:(1):511.35±56.25Ka to 258.52±28.44Ka period of alluvial fan deposits. The sedimentary facies were from the bottom up alluvial fans (fan root)- alluvial fans (fan in)-alluvial fans (fan side)-River marsh facies, mild climate, lush vegetation. (2):258.52±28.44Ka to 137.23±15.09Ka period of fluvial deposits. (3):137.23±15.09Ka to 118.64±13.05Ka during the bottom of the lake shore-swamp facies, up there three alluvial fans (fan root)-alluvial fans (fan in)-alluvial fans (fan side) into the product by the fine thicken the type of anti-cyclic sequences, indicating that basin in a tight state; (4): 118.64±13.05Ka to 10Ka period of fluvial deposits.
     Midu and Weishan basins are strike-slip pull-apart basin, basin, is dextral strike-slip fault zone in the Red River formed under tension.
引文
[1]刘池洋.盆地构造动力学研究的弱点、难点及重点[J].地学前缘,2005,12(3):113-124
    [2]刘池洋,孙海山.改造型盆地类型划分[J].新疆石油地质,1999,20(2)79-82
    [3]李吉均,文世宣,张青松等.青藏高原形成隆升的时代,幅度和形式探讨.中国科学(B辑),1979,6:608-616
    [4]李吉均,方小敏.青藏高原隆起与环境变化研究.科学通报,1998,43(15):1569-1574
    [5]Harrison T M, Copeland P. Kidd W S F,Yin A,Raising tibet.Science,1992,255;1663-1670
    [6]吴样定,林振耀.青藏高原近2000年来气候变珏的韧步探讨、全国气候变化学术讨论会论文集,1981,18-25
    [7]Scharer U, Taopponnier P. LacassinR.et al. Intraplate tectonics in Asia:a precise age Of for large-scale Mioeene movenment alongthe Ailao Shah-Red River shear zone, China[J]. Eaith Planet, Sci. Lett,1990,97:65-77,
    [8]陈文寄,啥里森TM,洛费拉ON.哀牢山—红河剪切带的热年代学研究-多重扩散域模式的应用实例[J].地震地质.1992,14(2):121-128.
    [9]Wang Jianghai, An Yin, T. Mark Harrision.etc. A tectonic model forCenzoc igneous activities in the eastern Indo—Asian collision zone[J]. Earth Planet. Sci, Lett,2001,188.123-133
    [10]张进江;钟大赉;桑海清;周勇;哀牢山—红河构造带古新世以来多期活动的构造和年代学证据[J].地质科学,2006年02期
    [11]张进江,钟大赉,季建清,丁林,桑海清;东喜马拉雅构造结大陆碰撞以来构造年代学框架及其与哀牢山红河构造带的对比[J].矿物岩石地球化学通报,2001年04期
    [12]云南省地矿局第一区测大队.1973.1:20万大理幅区域地质调查报告、矿产报告
    [13]大理的自然地理.http://www.i3721.com/xx/tbjak/wnj/xkbywsc/200605/10373.htrml.
    [14]云南省地质矿产局区域地质调查大队.1975.1:20万巍山幅区域地质调查报告、矿产报告
    [15]李海兵,杨经绥,2004.青藏高原北部白垩纪隆升的证据.地学前缘,11(4):345-359.
    [16]崔之久,高全洲,刘耕年,等,1996.夷平面、古岩溶与青藏高原隆升.中国科学(D辑),26(4):378-386.
    [17]潘桂棠,丁俊,姚东生,等,2004.青藏高原及邻区地质图(1:500000)及说明书.成都:成都地图出版社,1-133.
    [18]潘桂棠,王培生,徐耀荣,等,1990.青藏高原新生代构造演化.北京:地质出版社,1-165.
    [19]潘裕生,1999.青藏高原的形成与隆升.地学前缘,6(3):153-163
    [20]伍永秋,崔之久,葛道凯,等,1999.青藏高原何时隆升到现代的高度-以昆仑山垭口地区为例.地理科学,19(6):481-484.
    [21]Cui, rZ. J., Wu, J. Q, I iu, G. N., et aL 1998. On Kunlun-Yel low River tectonic movement. Science in China(Sr. D),41(6):592-600.
    [22]丁林,钟大赉,潘裕生,等,1995.东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据.科学通报,40(16):1479-1500
    [23]王国灿,向树元,John, I. G.,等,2003.东昆仑东段哈拉郭勒哈图一带中生代的岩石隆升剥露-锆石和磷灰石裂变径迹年代学证据.地球科学-中国地质大学学报,28(6):645-652.
    [24]王国灿,杨巍然,马华东,等,2005.东西昆仑晚新生代以来构造隆升作用对比.地学前缘,12(3):157-166.
    [25]周文戈,谢鸿森,赵志丹,等,哀牢山变质带元江-墨江剖面岩石的纵波波速特征及其地质意义[J].地球物理学报,1998,41(增刊):48-54
    [26]董云鹏,朱炳泉,常向阳,等.哀牢山缝合带中两类火山岩地球化学特征及其构造意义[J]地球化学,2000.29(1):6-13
    [27]魏启荣,沈上越,莫宣学.哀牢山硅质岩特征及其意义[J].地质科技情报,1998,17(2):29-34
    [28]胡瑞忠,毕献武.哀牢山金矿带金成矿流体He和Ar同位素地球化学[J].中国科学(D辑),1999,29(4):321-330
    [29]凌其聪,程惠兰,沈上越.哀牢山南段蛇绿岩变质橄榄岩的矿物化学及其成因意义[J].云南地质,1999,18(1):47-52
    [30]胡长寿,刘发刚,张伟民.哀牢山岩群的低压变质作用特征[J].云南地质,1998,17(2):168-174
    [31]马文璞.区域构造解析-方法理论和中国板块构造[M].北京:地质出版社,1992.
    [32]云南省地质矿产局。云南省岩石地层。武汉:中国地质大学出版社,1996,1-366
    [33]从柏林,吴根耀等,中国滇西地区古特提斯演化的岩石学记录,《亚洲的增生》[M].北京:地质出版社1994,
    [34]李兴振,王培生,西南三江地区特提斯构造演化与成矿[M].北京:地质出版社,1999年
    [35]贾民育,邢灿飞,孙少安.滇西重力变化二维图像及其与5级(Ms)以上地震的关系[J].地壳形变与地震,1995,15(3):9-19.
    [29]刘平江,等.川滇地块的震源机制解特征及其地球动力学解释[J].地震学报,2007,29(5):449-458。
    [36]张希等.川滇地区近期地壳运动的应变积累[J].大地测量与地球动力学,2007,27(4):8-15
    [37]TAPPONNIER P R.LACASSIN P H..LELOUPU.et a1.The Ailao—Shan/Red River metamorphic belt:Tertiary 1eft—lateral shear between Indochina and South China[J].Nature, 1990,343:431-437.
    [38]虢顺民.红河活动断裂带[M].北京:高等教育出版社,2001:1-2,122-126.
    [39]谢建华,夏斌,张宴华.印度-欧亚板块碰撞期间红河断裂带活动性的数值模拟研究[J].热带海洋学报,2007,26(6)
    [40]林元武.红河断裂北段地球化学分段特征及其与地震活动性的关系[J].西北地震学报,1994,16(4):92-98
    [41]李光容,金德山.程海断裂带挽近期活动性研究[J].1990,9(4):1-2.
    [42]俞维贤,张建国,周光全等.2001年永胜6级地震的地表破裂与程海断裂[J].地震研究,2005,28(2):125.
    [43]俞维贤,王彬,毛燕等.程海断裂带断层泥中石英碎砾表面SEM特征及断层活动状态的分析[J].中国地震,2004,20(4):351.
    [44]李光容,金德山.程海断裂带挽近期活动性研究[J].1990,9(4):1-2.
    [45]刘春莲,杨建林.影响湖相沉积岩中有机碳分布的主要因素—以三水盆地为例.沉积学报,19(10):113-116.
    [46]石英,童国榜,王苏民等.云南鹤庆盆地晚第四纪硅藻植物群与环境.海洋地质与第四纪地质,1998,18(4):79-86.
    [47]沈吉,王苏民,羊向末湖沽沉苷1物中有机碳稳定同位素测定及其古气候环境意义.海洋与湖招,1996.27:400-404
    [48]张平中.王先彬等.湖相有机质的氢指数及碳厨位组成一湖面波动评价的指标-以RH孔为例;科学通报,1995,40:1682-1685
    [49]羊向东.王苏民.童国榜等.云南鹤庆古湖晚更新世的孢糟记录及其古气候学意义.四纪研究,1998,(4):335-343
    [50]张进,马宗晋,任文军.2005.宁夏中南部新生界沉积特征及其与青藏高原演化的关系。地质学报,79(6):757-73.
    [51]唐良栋.云南东部早寒武世沉积相古地理[J].云南地质,1994,13(3):240-252.
    [52]杨平,胡勇.2006.柴达木盆地石炭纪古生态与沉积环境[J].新疆石油地质,27(3):280-284.
    [53]Mail AD原著,孙枢等译.沉积盆地分析原理.石油工业出版社.1991
    [54]王晓鹏,吴根耀,钟大赉.受红河断裂控制的晚第三纪走滑松弛盆地—以漠沙盆地为例[J].地质科学,2001,36(3):370.
    [55]赵永胜,云南星云湖断陷湖盆中粘土矿物组合特征与沉积环境关系的初步探讨[J].海洋与湖沼,1993,vol.24,No.5:447-455
    [56]华解明,傅耀军,白喜庆. 我国煤矿区水文地质勘查与环境地质评价现状及发展趋势.煤田地质与勘探.2006,34(3).40-43.
    [57]刘贻军,孟祥化,葛铭.云南楚雄前陆盆地晚三叠世沉积建造及盆地演化[31].现代地质,1998,12(4):576-581
    [58]罗建宁等,昆明盆地盘龙江三角洲平原至滇池湖区第四纪沉积相研究,成都地质矿产研究所所刊,1984,(第五号),1-20
    [59]滇黔桂石油勘探局区域勘探项目经理部。滇西第三系诸盆地含油气远景评价(内部资料)。1994
    [60]陈敬安,万国江,黄荣贵.云南程海沉积物粒度研究[J].环境科学进展,1999,Vol.7,No.4
    [61]龙瑞华,李百福,Brenner M,等。云南中部杞麓湖地区晚更新世-全新世植被研究[J].云南地质,1991。
    [62]王平,熊盛青.油气放射性勘探原理方法与应用[M].北京:地质出版社,1997.
    [63]许军才,邓居智,刘庆成,等.天然热释光方法测量中几种影响因素初探[J]. 东华理工学院学报(自科科学版),2005,28(1):65-67.
    [64]卢冰,张富元,章伟艳,等.天然热释光技术在南海东部表层沉积物油气潜力勘查中的应用[J].海洋地质与第四纪地质,2005,25(3):103-112.
    [65]Burke, K and Dewey, J. F.,1973 Plume-generated triple junctions:key indicators in applying plate tectonicsto older rocks. J. Gcol.81:406-433
    [66]钟大赉,吴根耀,翟国明等.滇川西部古特提斯造山带[M].北京:科学出版社,1998,1-231
    [67]Aitchison, J. C, Ali, J. R, Davis, A.M.,2007. When and where did India and Asia collode?Journal of Geophys-cal Research,112, B05423:1-19.
    [68]虢顺民,计凤桔,向宏发,等.2001.红河活动断裂带[M].北京:海洋出版社.
    [69]朱俊江,詹文欢,丘学林,等.2004.红河断裂带两侧地震震源机制及构造意义[J].大地构造与成矿学,28(3):239-247.
    [70]林元武.红河断裂北段地球化学分段特征及其与地震活动性的关系[J].西北地震学报,1994,16(4):92-98
    [71]虢顺民,计风桔,董兴权,等.1995.云南红河断裂带大水塘—南沙段第四纪断错水系初步研究[G]//《活动断裂研究》编委会.活动断裂研究理论与应用.北京:地
    [72]张玉泉,谢应雯。哀牢山-金沙江富碱侵入岩年代学和Nd-Sr同位素特征[J].中国科学,D辑,1997,27(4):289-293
    [73]张建国,汪良谋,徐煜坚等.1993.红河断裂深部震源环境介质力学性质分析[J].地震地质,15(2):131-137
    [74]Crosson R.S.Crustal structural modeling of earthquake data simultaneous least squares estimation of hypocenter and velocity parameters[J]. J. Geophys Res,1976,81(17): 3036-3046.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700