用户名: 密码: 验证码:
煤矿热动力灾害控制机理及远程应急救援系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿井火灾和瓦斯爆炸是我国煤矿开采面临的重大灾害事故,这些事故往往造成大量人员伤亡和财产损失,可能还会诱发次生灾害。本文根据此类事故救灾过程难度系数大、技术要求高、危险性强的特点,运用通风系统学、流体动力学、燃烧与热力学、爆炸动力学等相关理论,对矿井热动力灾害进行了大量的实验研究、数值模拟和理论分析,研究热动力灾害控制机理及应急救援设备的配置方法所涉及的关键科学问题。取得了如下创新性成果:
     对主进风巷火灾的各类可燃物蔓延模型、燃烧产物及其危害进行分析。推导了顺流、逆流、不同倾角条件下火灾蔓延速度计算公式,分析了烟气流在巷道内扩散、蔓延的运移规律。对烟流滚退距离进行无因次分析,得出了修正的无因次烟流滚退距离公式,计算了特定条件下的临界风速。
     研究了复杂通风系统中主进风巷火灾应急救援远程控制系统建设原理,提出了灾变过程中由被动抗灾转向主动救灾的思想。通过FDS模拟平巷火灾中不同风速和热释放速率的烟流滚退距离,拟合出三者关系式:L=19.43*ln0.911*QD/v~3;计算临界风速并与前人的实验拟合公式对比,获取最佳的参数设置;模拟相同燃烧参数不同倾斜角度的区段巷道火灾烟流滚退变化规律。针对通风系统实况建立三维巷网模型,模拟分析远程应急救援系统启动前后的火灾蔓延规律、烟流运动路径、温度分布情况,证明了远程应急救援系统配置的实用性、可行性及数值模拟的通用性。
     结合主进风巷火灾应急救援远程控制系统的工作原理,提出了灾变过程中保证烟流区高效灭火和非烟流区安全撤人的风量分配方法。利用数值模拟和理论计算的方法,确定了抑制火灾蔓延和烟流滚退的风量配置,从而保证非烟流区达到原有风量的60%,并且可设定救灾过程中关键巷道最佳风量分配阈值。在救灾系统简化风网基础上建立了风量参数监测子系统。通过简化风网结构迭代解算反演出火风压的动态值,将其代入灾变风网中迭代解算,获取救灾过程中各分支风量的动态结果。
     在瓦斯爆炸传播机理及其对周围通风设施的破坏效应研究基础上,根据救灾过程中通风系统恢复原理,提出了在可能发生瓦斯爆炸的区域、易于破坏的关键通风设施位置选择性预“埋”常开风门,灾变后自动关闭恢复通风系统的新思路。建立了现场瓦斯爆炸频发的局部通风系统模型,对不同位置和巷道配置方式下的弱面通风设施破坏效应进行了试验研究。根据超压值和弱面板破坏片度的统计结果确定了多处通风设施的破坏优先级,为通风设施的防爆配置提供了参考。
     结合巷道火灾救灾、瓦斯爆炸后通风系统恢复的特点,以及灾变过程的调控方法对应急救援设备的要求,研发了基于PLC和光通信的矿用本安兼隔爆型控制器和地面中心站,动态监测井下灾害频发点、区域风量、风门开关状态及开度调控情况。设计了具有防夹、克服巷道变形、开度可调功能的风门结构,风门的动力源具备井下压气和备用高压气瓶的“双保险”功能,系统电源具有外电和备用电池的“双保险”功能。开发了地面中心站和上位机软件,实现了救灾系统远程人工控制、智能控制和井下自动控制相结合的“三保险”功能,以及救灾过程中风网风量的远程智能调控及分支风量动态显示。该系统在龙东煤矿进行了安装调试,通过演习体现了救灾过程远程风量智能调控技术的良好效果。针对三个煤矿远程应急救援系统现场建设的实况,分析了其配置方案、工作原理及应用效果。研究成果为煤矿热动力灾害远程应急救援系统的建立提供了理论依据和技术保证,为井下工作人员的生命安全提供了保障。对今后井下通风设施的配置和灾变过程的应急救援具有重要的理论意义和实践价值。另外,针对相关研究成果发表论文10篇,其中EI已收录3篇,待收录EI源刊3篇。
Mine fire and gas explosion are the major disasters which coal mines facing inChina, the disasters often cause heavy casualties and property losses, but also maytrigger secondary disasters. Based on characteristics of the large difficulty coefficient,high technical requirements, and high risk in the process of an accident relief. Usingtheories of the ventilation systematics, fluid dynamics, combustion andthermodynamics, explosion dynamics. A large number of experiments, numericalsimulation and theoretical analysis on the mine thermal power disaster have beendone, and the control mechanism and the key scientific issues involved in theconfiguration of the emergency rescue equipment were studied. Innovative resultswere achieved as followed:
     This paper analyzed the spread model, combustion products and hazards of allkinds of combustibles in the intake airflow roadway. Formula of fire spread speeed onthe conditions of downstream, reflux, and different inclination were derived, and themigration law of gas flow diffusion and spread in the roadway were analyzed. By thedimensionless analysis on backflow distances of smoke, the modified dimensionlessformula of backflow distances of smoke was concluded, and critical wind speed wascalculated under certain conditions.
     Principle of remote rescue system for intake airflow roadway fire of complexventilation system was researched. The idea on the transformation from passivedisaster resistance to active relief in catastrophic process was put forward. Thedistance of smoke backflow under different airflow speed and heat release rate in thedrift fire disaster was simulated by FDS and the three-parameter relationship wasexpressed as L=19.43*ln0.911*QD/v~3. The critical wind speed was calculated andcompared with the experimental fitting formula to obtain the best parameter settings,and the law of smoke backflow under the same combustion parameters and differentinclination in the section of the roadway was simulated.3D roadway network modelwas established based on the actual ventilation system to simulate and analyze laws offire spread, path of the plume movement and temperature distribution before and afterthe startup of remote rescue system. It proved useful and feasibile of the configurationof remote rescue system, and versatile of numerical simulation.
     According to the working principle of remote rescue system in main intake fire,this paper presented air distribution methods to ensuring the high efficientfire-fighting in smoke flow zone and safety evacuation in non-smoke flow zone during disasters. Numerical simulation and theoretical calculation methods were usedto calculate the air quantity suppressing fire spread and smoke backflow, whichensured the air quantity in non-smoke flow reach60%of the original air volume andset the optimal air distribution threshold value for the key roadways in the reliefprocess. Monitoring subsystem of air quantity parameters was established based onsimplified network of disaster relief system. Iterative solution was used to inverse thedynamic value of fire pressure by simplifying network, which was substituted into theventilation network to get the dynamic results of the air quantity for each branch inthe relief process. The adjustable air doors were designed to remotely control theopening of air doors and achieve the optimal air quantity distribution.
     Based on the research of gas explosion propagation mechanism and damageeffects on the surrounding ventilation and the ideas of recovering ventilation system,we put forward the idea on selectively pre-buried “normally open” air doors in thearea where gas explosion probably might occur and positions where ventilationfacilities were easily damaged. Air doors could close automatically once disasterhappened. Local ventilation system model for gas explosion happening frequently wasestablished,to test the destructive effect on the ventilation facility of weak face indifferent locations and different ways of roadway configuration. According to theoverpressures and destroyed pieces of weak face, the priority of the destruction ofventilation facilities was determined, which provided references for theexplosion-proof configuration for ventilation facilities.
     According to the characteristics of roadway fire relief and ventilation systemrecovery after gas explosion happened and equipments of control methods for rescueequipments, intrinsically safe and flame proof controller based on PLC and opticalcommunications and ground supervising center were developed to dynamicallymonitor positions with frequently occurring disasters, regional air quantity, on-offstate and opening range of air doors. We designed air doors with anti-trap,non-deformability from roadways and the adjustable opening. Gas compressionunderground and alternate gas cylinders with high pressure provided a sort of doublesecure affirmance for air doors opening and closing. External power and spare batteryalso provided a sort of double secure affirmance for remote rescue system. Softwareof ground supervising center and the host computer were developed to realize a sort ofthree secure affirmance of remotely manual control, intelligent control and automaticcontrol, control remotely and intelligently air quantity of air network in rescue and diplay dynamically air quantity of airflow branches. The remote rescue system wasdesigned and installed at the Longdong Coal Mine and achieved the good effects ofremotely intelligent control for air quantity in relief process by exercise in the pit.According to actual situations on-site of the remote rescue system in three coal minesof Longdong, Changcun and Anjialing No.2Coal Mine, we analyzed theirconfiguration scheme, working principle and application effects of remote rescuesystem.
     The research results provided theoretical foundation and a technology for remoterescue system for coal thermodynamic disaster, and a guarantee for life safety of theunderground staff. It has important theory meaning and practice value for the futureconfiguration of the underground ventilation facilities and underground emergencyrescue for disasters. In addition, there were10papers (3EI articles and3EI articlesincluded in EI source journals soon) dealing with the subject.
引文
[1]姜伟,周心权,刘亚楠.矿井火灾应急救援能力评价[J].矿业安全与环保,2009,36(5):25-29.
    [2] Edwards J C, Hwang C C. CFD Analysis of mine fire smoke spread and reverse flowconditions [A]. Tien J C. Proceedings of the8thUS Mine Ventilation Symposium. Rola:University of Missouri-Rolla Press,1999:417-422.
    [3]戚宜欣.矿井火灾专家系统[D].徐州:中国矿业大学,1992.
    [4]蒋军成.矿井火灾烟气流动分析及防救灾决策系统研究[D].徐州:中国矿业大学,1995.
    [5]杨本洛.理论流体力学的自洽化分析—源于“湍流”的哲学和数学的思考[D].上海:上海交通大学,1998.
    [6]张兴凯.矿井火灾时期风流动态过程的计算[J].煤矿安全,1990(6):55-60.
    [7]叶汝陵.巷道灾变时期通风技术和MTU通风程序移植的研究技术鉴定资料.1989.
    [8]煤炭工业部煤矿安全科技情报中心站救护分站编.矿井灾害处理事故汇编(第一集),1985.
    [9]煤炭工业部煤矿安全科技情报中心站救护分站编.矿井灾害处理事故汇编(第二集),1985.
    [10]王省身,张国枢.矿井火灾防治[M].徐州:中国矿业大学出版社,1990.
    [11] Kenneth K. Kuo. Principles of Combustion[M]. Pennsylvania,1987.
    [12] H. W. Liepmann, A. Roshko. Elements of Gas Dynamics[M]. California Institute ofTechnology Copyright,1957.
    [13] Donghoon Shin, Sangmin Choi. The combustion of simulated waste particles in a fixedbed[J]. Combustion and Flame,2000,121(1/2):167.
    [14] A. Kronenburg, R. W. Bilger, and J. H. Kent. Modeling soot formation in turbulentmethane-air jet diffusion flames[J]. Combustion and Flame,2000,121(1/2):24.
    [15][波].齐乌尔津斯基本,J.特拉兹,w.特鲁吐温.矿井火灾的模拟[C].第四届国际矿井通风会议论文集.中国统配煤矿总公司,1989.
    [16][日]羽田,博宪等.井下燃烧物的燃烧气体研究[J].资源,1990(6):1-9.
    [17][日]山尾信一郎.防止井下火灾[J].日本矿业会志,1983(8):117-120.
    [18]傅培舫,周怀春,俞启香.火灾节流过程参数变化时序及其影响因素的研究[J].中国安全科学学报,2005,15(7):108-112.
    [19] Christopher B. Jones,Alia1.Abdelmoty, Gaihua Fu. Maintaining Ontologies for GeographicalInformation Retrieval on the Web. Lecture Notes in Computer Science Volume,2003,2888:934-939.
    [20] Margaret R. Egan. Impact of air velocity on the development and detection of small coalfires[J]. INT. BU.OF MINES, PGH, U. S. G. P. O:1993-709-008/80044.
    [21]王德明.矿井火灾火源燃烧特性的实验研究[J].中国矿业大学学报,2002,31(1):30-33.
    [22]王志刚.设计火灾时火灾热释放速率曲线的确定[J].矿业安全与环保,2004(6):46-49.
    [23]戚颖敏.矿井火灾灾变通风理论及应用[M].北京:煤炭工业出版社,1978.
    [24] Rudolf E.Greuer.Influence of Mine Fires on the Ventilation of Underground[R].USBMContract No.S0122095,1973.
    [25] Litton C D, De Rosa M, Li J S.Calculating fire-throttling of mine ventilation airflow[R].RI9076.Bureau of Mines Report of Investigation, USA,1987.
    [26] Chang, X.The Transient State Simulation of Mine Ventilation System[D].MichiganTech.University,1987.
    [27] Yang, H.Computer-aided system for rapid and automatic determination of a mine firelocation[D].Michigan Tech. University,1992.
    [28]张国枢,王省身.火风压的计算及其影响因素分析[J].中国矿业学院学报,1983,12(3):81-87.
    [29]李传统.火风压机理及烟流参数变化规律的研究[D].徐州:中国矿业大学,1995.
    [30]周延.矿井火灾时期风流及烟流运动规律的研究[D].徐州:中国矿业大学,1997.
    [31]周延,王德明.水平巷道火灾中烟流逆流层长度的试验研究[J].中国矿业大学学报,2001,30(5):446-448.
    [32]王德明,周福宝,周延.矿井火灾中的火区阻力及节流作用[J].中国矿业大学学报,2001,30(4):328-331.
    [33]中川佑一,山尾信一郎.井下火灾时期的风阻变化、通风预测及其计算与Greuer方法相比较[J].煤矿安全,1990(12):34-38.
    [34][日]驹井武.关于实际规模巷道火灾的蔓延特征研究[J].资源·素材学会志,1990(12):49-57.
    [35] L.W.Laage, H.Yang.Mine Fire Experiments at the WALDO Mine[C].Proceedings of the5thUS Mine Ventilation Symposium,1991:46-52.
    [36]叶汝陵.巷道火灾时期的通风状态[J].煤炭工程师,1992(4):36-41.
    [37]张兴凯.矿井火灾燃烧过程及其风流流动状态的研究[D].沈阳:东北大学,1993.
    [38]吴兵.火风压的实验研究[D].徐州:中国矿业大学,1991.
    [39]朱传杰.爆炸冲击波前流场扬尘特征及其多相破坏效应[D].徐州:中国矿业大学,2011.
    [40] Y WU,M Z ABU BAKAR,S JAGGER,et al. Control of smoke flow in tunnel fires usinglongitudinal ventilation systems-a study of the critical velocity[J]. Fire Safety Journal,2000,34(5):363-390.
    [41] J.P.Kunsch.Simple model for control of fire gases in a ventilated tunnel[J].Fire SafetyJournal,2002,37(1):67-81.
    [42] J.P.VANTELON,A.GUELZIM and D.QUACH,et al.Investigation of Fire-Induced SmokeMovement in Tunnels and Stations: An Application to the Paris Metro[J].Fire Safety Science–Proceedings of the Third International Symposium,1986:907-918.
    [43] H.XUE,T.C.CHEW,K.L.TAY,and Y.M.CHENG. Control of Ventilation Airflow forTunnel Fire Safety[J]. Combustion Science and Technology,2000,152(1):179-196.
    [44] H.Nakamura, T.Yamana, T.Matsushita, et al..Research on Smoke Control in UndergroundStructures[J].Tunnelling and Underground Space Technology,1992,7(4):325-333.
    [45] R.O.Carvel, A.N.Beard, P.W.Jowitt. The Effect of Forced Longitudinal Ventilation ona Pool Fire in a Tunnel[J]. INTERFLAM,1999
    [46] C. J. Lea.Computational modeling of mine fires. Min. Eng. B Sc,1994.7
    [47] Fu Pei Fang, Yu Qi Xiang, Ye Ru Ling, Jiang Shi Cai. Computer simulation of combudtion ofmine fire. Coal Mine Safety and Health[C]. Proceedings of the International Mining Tech.98Symposium,1998.
    [48]徐景德,周心权,吴兵.瓦斯浓度和火源对瓦斯爆炸传播影响的实验分析[J],煤炭科学技术,2001,29(11):15-17.
    [49]徐景德,周心权,吴兵.矿井瓦斯爆炸传播的尺寸效应研究[J].中国安全科学学报,2001,11(6):37-40.
    [50]王从银,何学秋.瓦斯爆炸传播火焰高内聚力特性的试验研究[J].中国矿业大学学报,2001,30(3):217-220.
    [51]林柏泉,张仁贵,吕恒宏.瓦斯爆炸过程中火焰传播规律及其加速机理的研究[J].煤炭学报,1999,24(1):56-59.
    [52]王从银,何学秋.瓦斯爆炸火焰厚度的实验研究[J].爆破器材,2003,30(2):28-32.
    [53]林柏泉.瓦斯爆炸动力学特征参数的测定及其分析[J].煤炭学报,2002,27(2):164-167.
    [54]翟成,林柏泉,营从光.瓦斯爆炸火焰波在分叉管路中的传播规律[J1.中国安全科学学报2005,15(6):69-72.
    [55]冯长根,陈林顺,钱新明.点火位置对独头巷道中瓦斯爆炸超压的影响[J].安全与环境学报,2001,l(5):56-59.
    [56] Ulrieh Bielert, Martin Siehel. Numerical simulation of Premixed combustionProcessionclosed tubes[J]. Combustion and Flame,1998,114(3):397-419.
    [57] M. Fairweather,G K. Hargrave,S.S.Ibrahim,D.G Walker. Studies of Premixed flamePropagation in explosion tubes [J].Combustion and Flame,1999,116(4):504-518.
    [58] A.V Trotsyuk. Numerical simulation of the structure of two-dimensional detonationsin“H2-O2-Ar”in: G. Roy,S. Frolov et al.(eds),Gaseous and heterogeneous detonations,ENAS Publ., Moscow,1999:163-178.
    [59]陈志华,范宝春,刘庆明,等.大型管中两相爆炸现象的实验研究[J].流体力学实验与测量,1998,2(1):44-49.
    [60]林柏泉,周世宁,张仁贵.障碍物对瓦斯爆炸过程中火焰和爆炸波的影响[J].中国矿业大学学报,1999,28(2):104-106.
    [61]毕明树,尹旺华,丁信伟.圆筒形容器内可燃气体爆燃过程的数值模拟[Jl.天然气工业,2004,24(4):94-96.
    [62]郭文军,崔京浩,雷全立.密闭空间燃气爆炸升压计算[J].煤气与热力,1993,19(2):42-44.
    [63]沈玉玲,宁建国,卢捷一些典型管道煤气爆炸的数值模拟研究[J].安全与环境学报,2001,1(3):11-16.
    [64]魏引尚,常心坦.沼气爆燃向爆轰转变的化学动力学研究[J1.西安科技学院学报,2002,20(1):21-24.
    [65]杨国刚,丁信伟,王淑兰等.管内可燃气云爆炸的实验研究与数值模拟[J].煤炭学报,2004,29(5):572-575.
    [66]张艳,任兵,常熹任,等.激波诱导可燃气体爆燃的数值模拟[J].国防科技大学学报,2001,23(2):33-37
    [67]胡湘渝,张德良.易燃混合气体爆炸完全基元反应模型数值模拟[J].安全与环境学报,2001,l(5):22-27
    [68] Sun Peide. Study on the mechanism of interaction for coal and methane gas [J].Journal ofCoal Science&Engineering (China),2001,7(l):58-63.
    [69] Michele M,Gennaro R,Ernestro S,et al. Numerical Simulation of Gas Explosions in LinkedVessels[J]. J Loss Prevention in Process Industries,1999,12:189-194.
    [70] Mercx W.P.M,Van deberg A.C.,Developments in vapor cloud explosion blast modeling,Journal of Hazardous Materials2000,71(2):301-319.
    [71]周利华.矿井火区可燃性混合气体爆炸三角形判断法及其爆炸危险性分析[J].中国安全科学学报,2001,11(2):47-51.
    [72] Lin BQ, Jian CG, Zhou SN. Inducement of turbulence and its effect on fire transmission ingas explosion[J]. Journal of China University of Mining﹠Technology,2003,32(2):107-110.
    [73]桂晓宏,林伯泉.瓦斯爆炸过程中激波产生的影响因素及其热力动力分析[J].煤矿安全,2000,31(9):19-22.
    [74]徐景德.煤矿瓦斯爆炸冲击波传播规律及影响因素的研究[D].北京:中国矿业大学(北京),2003.
    [75]叶青.管内瓦斯爆炸传播特性及多孔材料抑制技术研究[D].徐州:中国矿业大学,2007.
    [76]翟成,林柏泉,叶青等.结构异常管路对瓦斯爆炸传播特性的影响[J].西安科技大学学报,2008,28(2):274-277.
    [77] JIANG Shu guang, WU Zheng yan, LI Qing hua, et al. Vacuum chamber suppression ofgas-explosion propagation in a tunnel [J].Journal of China University of Mining﹠Technology,2008,18(3):337-341.
    [78]吴征艳.真空腔抑制瓦斯爆炸作用研究[D].徐州:中国矿业大学,2007.
    [79] Wu, Z., et al. Experimental study on the feasibility of explosion suppression by vacuumchambers[J]. Safety Sci.(2011), doi:10.1016/j.ssci.2011.08.055..
    [80] ZHU Chuanjie, LIN Baiquan. Experiments on the effect of variation in gas distribution onexplosion propagation characteristics in coal mines[J]. Mine Science and Technology,2010,20(4):516-519.
    [81] Zhu CJ, Lin BQ, Ye Q, Zhai C. Effect of roadway turning on gas explosion propagationcharacteristics in coal mines[J]. Mine Science and Technology,2011:21(3):365-69.
    [82]杨书绍,景国勋,贾志伟.矿井瓦斯爆炸高速气流的破坏和伤害特性研究[J].中国安全科学学报,2009,19(5):86-90.
    [83]王海燕,曹涛,周心权等.煤矿瓦斯爆炸冲击波衰减规律研究与应用[J].煤炭学报,2009,34(6):778-782.
    [84]郭德勇,刘金城,姜光杰.煤矿瓦斯爆炸事故应急救援相应机制[J].煤炭学报,2006,31(6):697-700.
    [85] Baker W E, Cox P A, Westine P S, et al. Expiosion Hazard sand Evaluation[M]. Elsevier,1983.
    [86] Davies P A. A Guide to the Evaluation of Condensed Phase Explosions[J]. Journal ofHazardous Materials.1993,33(1):1-33.
    [87]李翼祺,马素贞.爆炸力学[M].北京:科学出版社,1992.
    [88] Tang M J, Baker Q A. A new set of blast curves from vapor cloud explosion[J]. ProcessSafety Progress,1999,18(14):235-240.
    [89] Cleaver R P, Humphreys C E, Morgan J D and Robinson C G. Development of a model topredict the effects of explosions in compact congested regions[J]. Journal of HazardousMaterials,1997,53(1-3):35-55
    [90] Bray K N C, Libby P A, Moss J B. Unified modeling approach for premixed turbulentcombustion—Part I: General formulation[J]. Combustion and Flame,1985,61(1):87-102.
    [91] Nehzat N. Gas explosion modelling for the complex geometries[D]. University of New SouthWales, Sydney, Australia (1998).
    [92] Lea C J and Ledin H S. A Review of the State-of-the-Art in Gas Explosion Modelling[R].HSL Report, Health and Safety Laboratory, Buxton, UK,2002:180.
    [93] Hjertager B H. Computer modeling of turbulent gas explosions in complex2D and3Dgeometries[J]. Journal of Hazardous Materials,1993,34:173-197.
    [94] Hjertager B H, Saeter O and Solberg T. A review of computational fluid dynamics (CFD) ofgas explosion[C].2nd International Specialist Meeting on Fuel-Air Explosions, ChristianMichelsen Research a.s., Bergen, Norway,June26(1996)
    [95] Hjertager B H. Computer simulation of turbulent reactive gas dynamics[J]. Journal ofModelling Identification and Control,1985,5:211-236.
    [96] Gardner D J, Hulme J. Offshore Technology Report[R]. Health and Safety Executive,UK,1994.
    [97] Naamansen P. Modelling of Gas Explosions using Adaptive Mesh Refinement[D]. AallborgUniversity, Denmark,2002.
    [98] Naamansen P, Baraldi D, Hjertager B H, et al. Solution adaptive CFD simulation of premixedflame propagation over various solid obstructions[J]. Journal of Loss Prevention in theProcess Industries,2002,15(3):189-197.
    [99] Arntzen B J. Modelling of turbulence and combustion for simulation of gas explosions incomplex geometries[D]. Norwegian University of Science and Technology,1998.
    [100] Bakke J R, Hjertager B H. The effect of explosion venting in empty vessels[J]. InternationalJournal for Numerical Methods in Engineering,1987,24:129-140.
    [101] Van den Berg A C, The H G, Mercx W P M, Mouillea Y u, Hayhurst C J. Evaluation ofConsequence Models for Gas Explosions and Blast Propagation[C].8th Int. Symposium,Loss Prevention and Safety Promotion in the Process Industries,1995.
    [102] Tam V, Moros T, Webb S, Allinson J, Lee R and Bilimoria E. Application of ALARP to thedesign of the BP Andrew platform against smoke and gas ingress and gas explosion[J].Journal of Loss Prevention in the Process Industries,1996,9(5):317-322.
    [103] Van Wingerden K, Hansen O R and Foisselon P. Predicting blast overpressures caued byvapor cloud explosions in the vicinity of control rooms[J]. Process Safety Progress,1999,18(1):17-24.
    [104]刘永立,陈海波.矿井瓦斯爆炸毒害气体传播规律[J].煤炭学报,2009,34(6):788-791.
    [105]焦宇,周心权,段玉龙等.瓦斯爆炸烟流浓度和温度的扩散规律[J].煤炭学报,2011,36(2):293-297.
    [106]王德明,李永生.矿井火灾救灾决策支持系统[M].北京:煤炭工业出版社,1996.
    [107]胡敬东,李学来,刘凤茹.煤矿应急救援技术研究若干新进展[J].煤矿安全,2005(5):33-35.
    [108]李学来,胡敬东.煤矿应急救援技术的研究及应用现状[J].煤炭工程,2005(4):62-64.
    [109]柴建设.事故应急救援预案[J].辽宁工程技术大学学报,2003,22(4):559-560.
    [110] Chang, X. T., The Transient-State Simulation of Mine Ventilation System[D]. MichiganTech.USA,1988.
    [111] I.S. Lowndes, S.A. Silvester, D. Giddings. The computational model of flame spread along aconveyor belt[J]. Fire Safety Journal,2007,42,51-67.
    [112]李希建,林柏泉.基于GIS的煤矿灾害应急救援系统的应用[J].采矿与安全工程学报,2008,25(3):327-331.
    [113]金永飞,邓军,文虎.基于SDSL传输技术的煤矿多媒体救灾系统研究[J].中国安全科学学报,2007,17(6):125-128.
    [114]王德明,张广文,鲍庆国.矿井火灾时期的风流远程控制系统[J].中国安全科学学报,2002,12(1):60-63.
    [115]刘维庸,戚宜欣.专家系统技术在矿井火灾救灾中的应用[J].煤炭学报,1994,19(3):243-249.
    [116]陈福,傅贵,李东玉.虚拟现实技术在矿井瓦斯爆炸模拟中的应用[J].煤炭科学技术,2003(3):33-35.
    [117]陈学习,韩玉春,邹恒义等.基于虚拟现实的矿井瓦斯爆炸模拟关键技术研究[J].华北科技学院学报,2004(2):l-6.
    [118]耿继原,矿井火灾时期烟流动态过程的数值模拟[D].阜新:辽宁工程技术大学,2007.
    [119]陈鹏·典型木材表面火蔓延行为及传热机理研究[D].合肥:中国科学技术大学,2006.
    [120] Hirano, T., Noreikis, S.E., Waterman, T.E. Postulations of Flame Spread Mechanisms.Combustion and Flame,1974,22:353-363.
    [121] Rybanin, S. S., Twenty-Sixth Symposium (International) on Combustion. The CombustionInstitute, Pittsburgh,1996:1487-1493.
    [122] Williams FA. Mechanisms of fire spread[C]. Sixteenth Symposium(International)onCombustion. The Combustion Institute, Pittsburgh,1976:1281-1294.
    [123] Saito, K., Quintiere, J.G, Williams, F.A. Upward turbulent flame spread[C]. Fire safetyscience, Proceedings of1stInternational Symposium. New York,1986:75-86
    [124] Quintiere, J. G. The effects of angular orientation on flame spread over thin materials[J]. FireSafety Journal,2001,36:291-312.
    [125] Rybaninthe, S., Dependence of the flame spread rate over solid fuel on Damkohler numberand heat loss[C]. Twenty-Sixth Symposium (International) on Combustion, The CombustionInstitute,1996:1487-1493.
    [126] Sergrey, R. Structure and spread limits of a diffusion flame over thin solid fuel[C].27thSymposiums (International) on Combustion. The Combustion Institute1998:2791-2796.
    [127] Sibulkin, M., Kim. J. The dependence of flame propagation on surface heat transfer. IIUpward burning[J]. Combust Science and Technology,1977,17:39-49.
    [128] Delichatsios, M.A., Delichatsios, M,Chen, Y., Hasemi, Y. Similarity solutions applicationsto turbulent upward flame spread on non-charring materials. Combust Flame,1992,223:21-28.
    [129] Brehob, E.G., Kulicarni, A.K. Experimental measurements of upward flame spread on avertical wall with external radiation[J]. Fire Safety Journal,1998,31:181-200.
    [130]王海晖,王清安,黄强.木材燃烧火焰传播的实验研究[J].中国科学技术大学学报,1991,21:254-259.
    [131] Fredlund, B. Modeling of heat and mass transfer in wood during Fire[J]. Fire Safety Journal,1993,20:39-69.
    [132] Babrauskas, V., Wetterlund, I. The role of flame flux in opposed-flow flame spread[J]. Fireand Material,1995,19:275-281.
    [133] Moghtaderi, B., Novozhilov, V., Fletcher, D., Kent, J.H. An transient pyrolysis of solidmaterials[J]. Fire and Material,1997,21:7-16.
    [134]周福宝,王德明.巷(遂)道火灾烟流滚退距离的无因次关系式[J].中国矿业大学学报,2003,32(4):407-410.
    [135]周延,王德明,周福宝.水平隧道火灾中烟流逆流层长度的实验研究[J].中国矿业大学学报,2001,30(5):446-448.
    [136] VANTELON J P,GUELZIM A,QUACH D,et al. Investigation of fire induced smokemovement in tunnels and stations:an application to the Paris metro[C]//COX G,LANGFORD B. Proceedings of the3rd International Symposium on Fire Safety Science.London: IAFSS,1991:901-918.
    [137]周延.一个新的水平巷道火灾烟气逆流层长度模型研究[J].中国矿业大学学报,2007,36(5):569-572.
    [138]谢之康,王省身.矿井外因火灾计算机控制及有待解决的若干问题[J].中国安全科学学报,1998,8(1):64-68.
    [139]刘雨忠,吴吉南,冯学武等.煤矿胶带火灾救灾决策的研究与实施[J].北京科技大学学报,2000,22(6):501-504.
    [140]何新建,蒋曙光,吴征艳等.龙东煤矿西翼运输巷远控气动火灾应急救援系统[J].煤炭科学技术,2008,36(8):53-54.
    [141]王海燕,周心权.平巷烟流滚退火烟羽流模型及其特征参数的研究[J].煤炭学报,2004,29(2):190-194.
    [142] Dong-Ho Rie ete. A study of optimal vent mode for the smoke control of subway stationfire[J]. Tunnelling and Underground Space Technology,2006,21(3-4).
    [143] J.Y.Kim,K.Y.Kim. Experimental and numerical analyses of train-induced unsteady tunnelflow in subway[J]. Tunnelling and Underground Space Technology Research,2007,22(2):166-172.
    [144] Kevin B.McGrattan. Large Eddy Simulations of smoke Movement. Fire safety journal,1998,30:161-178,.
    [145] Ronald G.Rehm, William M.Pitts, Howard R.Buam. Initial Model for Fires in the WorldTrade Center Towers[C]. Fire Safety Science-Proceeding of the7th internationalSymposium,2003,25-40.
    [146] J.Y.Kim,K.Y.Kim. Experimental and numerical analyses of train-induced unsteady tunnelflow in subway[J]. Tunnelling and Underground Space Technology Research,2007,22(2):166-172.
    [147] WU Y,BAKAR M. Control of smoke flow in tunnel fires using longitudinal ventilationsystems A study of the critical velocity [J].Fire safety journal.2000,35(4):363-390.
    [148] VANQUELINO,WU Y. Influence of tunnel width on longitudinal smoke control[J].Firesafety journal.2006,41(6):420-426.
    [149]杨晓菡.基于CONE数据的材料热释放速率随辐射通量变化的研究[D].上海,中国科学院上海冶金研究所,2000.
    [150]周福宝.井巷网络火灾特性及其应用研究[D].徐州:中国矿业大学,2003.
    [151]夏云春,吴静.可燃性PVC电缆燃烧时的火蔓延速度[J].青岛科技大学学报,2008,29(4):340-344.
    [152]周延.纵向通风水平隧道火区阻力特征[J].中国矿业大学学报,2006,35(6):703-707.
    [153]周心权,陈国新.矿井重大瓦斯爆炸事故致因的概率分析及启示[J].煤炭学报,2008,33(1):43-46.
    [154]杨书绍,景国勋,贾志伟.矿井瓦斯爆炸高速气流的破坏和伤害特性研究[J].中国安全科学学报,2009,19(5):86-90.
    [155]郭德勇,刘金城,姜光杰.煤矿瓦斯爆炸事故应急救援相应机制[J].煤炭学报,2006,31(6):697-700.
    [156] Fried L, Gleasemann K, Souers P C, Howard W M, Vitello P[M]. A thermochemicalkineticscode. Cheetah3.0. Livermore,CA: Lawrence Livermore National Laboratory,2002.
    [157] McBride B J, Gordon S. Computer program for calculation of complex chemicalequilibrium compositions and applications. II. Users manual and programdescription[M].Cleveland, OH: National Aeronautics and Space Administration, LewisResearch Center, NASA Reference Publication1311,1996.
    [158] Razus D, Movileanu C, Brinzea V, Oancea D. Explosion pressures of hydrocarbon-airmixtures in closed vessels[J]. Journal of Hazardous Materials,2006,135(1-3):58-65.
    [159] Glasstone S, Dolan P J. The effects of nuclear weapons.3rd ed[M]. U.S. Department ofDefense and the Energy Research and Development Administration,1997.
    [160] Kinney G F. Explosive shocks in air[M]. New York: Macmillan,1962.
    [161] Landau L D, Lifshitz E M. Fluid mechanics,2nd ed[M]. Oxford, U.K.:Butterwork-Heinemann,1987.
    [162] Zucrow M J, Hoffman J D.Gas dynamics, Vol.1[M]. New York: John Wileyand Sons, Inc.,1976.
    [163] Schultze-Rhonhof H. Major experimental firedamp explosions at an abandoned mine[C]. In:Proceedings of the Seventh International Conference of Directors of Safety in MinesResearch (Buxton, U.K., July7-12,1952).Vol.3, paper No.25.
    [164] Cybulski W B. Coal dust explosions and their suppression[M]. Translated from Polish,1975.
    [165] Genth M. Untersuchungen und Versuche zur Frage der Explosionssicherheit vonVordammen bei der Grubenbrandbekampfung (Research on explosion-proof bulkheads formine fire control)(in German)[D]. Essen, Germany: Verlag Gluckauf GmbH,1968.
    [166] KEE R J, MILLERJA, EVANSGH, et al. A computational model of the structure andextinction of strained, opposed flow, premixed methane-air flame[C]. Symposium(International) on Combustion,1989,22(1):1479-1494
    [167]刘贞堂.瓦斯(煤尘)爆炸物证特性参数实验研究[D].徐州:中国矿业大学,2010.
    [168]一氧化碳对人体的危害. http://www.ybzhan.cn/st1430/Article_15184.html.
    [169]王德明主编.矿井通风与安全[M].徐州:中国矿业大学出版社,2007.
    [170]杨源林.瓦斯煤尘爆炸的超压计算与预防[J].煤炭工程师,1996,48(2)33-37.
    [171]邢雨忠.矿井重大灾害动态机理与救援技术信息支持系统研究[D].太原:太原理工大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700