用户名: 密码: 验证码:
矿井老空水形成机制与防水煤柱留设研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文运用地质、水文地质、采矿矿压和数值模拟等学科的理论和方法,以淮南潘一矿、谢桥矿、张集矿、孔集矿、新庄孜矿为实施矿井,系统研究了矿井老空水的基本特征。根据对老空水水害事故的调研,提出了采煤(掘进)工作面老空水水害的分类原则和分类方法。通过充水水源、充水通道、聚水空间的分析,系统研究了老空水的形成机制。运用数值模拟方法研究了采动影响下老空水防水煤柱的留设。研究了老空水的预测预报方法与防治技术。结果表明,淮南煤田老空水具有不均衡分布的特点,多数老空水以静态储存水量为主;老空水位于工作面煤层底板标高相对低处,主要位于冒落带内。根据淮南煤田老空水实际数据,采用非线性理论建立了采空区积水系数的预测模型,结合应用验证了模型的科学性和合理性。老空水的形成是一个复杂的渗流-应力-围岩三者藕合作用下的动态过程,老空水的形成机制具有多样性。煤柱的宽度对地层沉降影响显著,充水情况下采空区的孔隙水压力是随着煤柱宽度增加而逐渐减小的,孔隙水压力的显著改变对煤柱节点位移的影响却比较小,防水煤柱的合理留设宽度在本次模拟的三种工况下表现出较为一致的规律。在本次对淮南潘集一矿的模拟中,将煤柱宽度留设为8m左右较为合理。
Basic characteristics of mine goaf water were studied in detail by theories and means of geology, hydrogeology, mine pressure and numerical simulation in this dissertation. The research is carried on the basis of the field cases of Huainan Panyi Coal Mine, Xieqiao Coal Mine, Zhangji Coal Mine, Kongji Coal Mine and Xinzhuangzi Coal Mine. The classification principle and modes of goaf water accidents in working faces were put forward based on their accidents investigation. By the analysis of the supplied water-source, the supplied water-pathway, and the accumulated water-inter space, the mechanism of goaf water was studied systematically. The optimization analysis on the goaf waterproof coal pillar dimension under mining was studied with the numerical simulation modeling. The prediction means of goaf water and its prevention technique were studied. The results show that the features of goaf water in Huainan coal basin includes distributive-unbalanced, static state deposited principally, low position of the working place coal layer bottom bed and mostly at the inner collapsed zone. The forecasting model of value set for goaf water filled was presented according the field tested data in Huainan coal basin with the nonlinear theory analysis. The rationality of this model was validated by the application cases studies. Forming goaf water is a process of dynamic diversification under the coupling action among seepage, stress and surrounding rock. This is a multi-factors influenced goaf water formed mechanism. It is prominent influence factor that width of waterproof coal pillar for displacement of stratum. Under the condition of supplied with water the pressure of pore water decrease gradually along with increase of width of waterproof coal pillar. It is varies little that the influence of coal pillar node displacement on account of pore water pressure transformation remarkably. The consistent disciplinarian was represented for logical width of waterproof coal pillar under three case schemes in this numerical simulation. The width of pillar with 8 m can be regarded as the most ideality size for Panyi Coal Mine.
引文
[1]虎维岳.矿山水害防治理论与方法[M].北京:煤炭工业出版社,2005.1-196.
    [2]吴发红.老塘水的预测与防治[J].煤炭技术,2004,23(4):59.
    [3]王捷帆,李文俊.中国煤矿事故暨专家点评集[M].北京:煤炭工业出版社,2002.1635.
    [4]http://www.chinacoal-safety.gov.cn/2006-05/30/content_167949.htm.
    [5]淮南矿业集团防治水自编讲义.淮南矿区水文地质条件及水害防治技术.2005.1-114.
    [6]蔡振宇,杨本生,刘新河.水体下煤层开采的相似材料模拟研究[J].中国矿业,2003,12(3):62-63.
    [7]张杰,侯忠杰.浅埋煤层导水裂隙发展规律物理模拟分析[J].矿山压力与顶板管理,2004,4:32-34.
    [8]隋旺华,董青红,狄乾生.工程地质模型在防水煤岩柱研究中的应用[J].中国矿业大学学报,1999,28(5):417-420.
    [9]谢广祥.采高对工作面及围岩应力壳的力学特征影响[J].煤炭学报,2006,31(1):6-10.
    [10]贾剑青,王宏图,唐建新.采煤工作面采动裂隙带的确定方法[J].中国矿业,2004,13(11):45-47.
    [11]董青红,陈国平.三维工程地质模型在防水煤岩柱留设研究中的应用展望[J].水文地质工程地质,1999,3:13-15.
    [12]李静.用有限单元数值法计算采掘场地下水涌水量[J].露天采矿技术,2004,6:17-18.
    [13]Brown A, Schauer M I, Rowe J W, and Heley W. Water Management in Oil Shale Mining[M]. US Bureau of Mines, RI, contract J0265019,1977,436.
    [14]Liu J. Elsworth D. Three-dimensional effects of hydraulic conductivity enhancement and desaturation around mined panels[J]. Int. J. Rock Mech. Min Sci.1997,8:1139-1152.
    [15]Bredehoeft J D, Papadopulos S S. A Method for Determining the Hydraulic Properties of Tight Formation[J]. Water Resources Research.1980,16(1):233-238.
    [16]Zhang L., Franklin J.A. Prediction of water flow into rock tunnels:an analytical solution assuming an hydraulic conductivity gradient[J]. Int. Rock Min. Sci.& Geomech. Abstr.1993,1:37-46.
    [17]Bai M., Elsworth D. Modeling of subsidence and stress-dependent hydraulic conductivity for intact and fractured porous media[J]. Rock. Mech.& Rock Engng.1994,4:235-251.
    [18]Oda M. An equivalent model for coupled stress and fluid flow analysis in jointed rock masses[J]. Water Resour. Res.1986,22:1945-1956.
    [19]Scheidgger A. E The physics of flow through porous media[M]. Macmillan. New York.1957,236.
    [20]Gangi A.F. Variation of whole and fractured porous rock permeability with confining pressure[J]. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr.1978,3:249-257.
    [21]Walsh J.B. Effect of pore pressure and confining stress on fracture permeability[J]. Int. Rock Min. Sci.& Geomech. Abstr.1981,18:429-435.
    [22]Elsworth D., Xiang J. A reduced degree of freedom model for thermal permeability enhancement in blocky rock[J]. Geothermics.1989,18:691-709.
    [23]Noorishad J., Ayatollahi M.S., and Witherspoon P.A. Coupled stress and fluid flow analysis of fractured rocks[J]. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr.1982,19:185-193.
    [24]Kim, J.M. et al. Evaluation of fully-coupled strata deformation and ground water flow in response to longwall mining[J]. Int. J. Rock Mech. Min. Sci.1997,8:1187-1199.
    [25]M. C.Wang. Settlement Behavior of Footing Above a Void[M]. PCGGE, New Orleans.1982,168-183.
    [26]Yu Guangming, Xie Heping, Zhan Jianfeng. Eractal evolution of a crack network in overburden rock strata [J]. Discrete Dynamics in Nature and Society.1998,35(8):1107-1111.
    [27]Brown A. Simple Mine Inflow Evaluation for Underground Oil Shale Mines[M]. Miller Freeman Publication, San Francisco.1979,528-555.
    [28]Manula C B, Owili-Eger A S C. Master Environmental Control and Mine system design Simulator for Underground Coal Mining[M]. US Bureau of Mines, Grant No, G0111808.1975,299.
    [29]Neuman S P. A Statistical Approach to the Inverse Problem of Aquifer Hydrology[J]. Water Resources Research.1980,16(2):331-346.
    [30]Neuman S P, Witherspoon P A. Mixed Explicit-Impliait Iterative Finite Element Scheme for Diffusion Type Problems[J]. International Journal of Numerical methods Engineering.1977,11:309-324.
    [31]Sagar B. Galerkin Finite Element Procedure for Analyzing Flow through Porous Random Media[J]. Water Resources Research.1978,14(6):1035-1044.
    [32]煤炭工业部基本建设司组织编译.国际采矿和地下工程治水会议论文集[M].北京:煤炭工业出版社,1983.173-188.
    [33]煤炭工业部安全局.中国煤矿伤亡事故统计分析资料汇编(1949-1995年)[M].北京:煤炭工业出版社,1998,48-52.
    [34]R.N.古波达等.井下防水煤柱的设计.第21届国际采矿安全会议论文集[C].北京:煤炭工业出版社,1987.
    [35]燃料化学工业部.煤矿安全生产试行规程[M].北京:煤炭工业出版社,1972.
    [36]煤炭工业部.矿井水文地质规程(试行)[M].北京:煤炭工业出版社,1984.
    [37]刘斌.大倾角特厚煤层防水隔离煤柱留设探讨[J].煤炭工程师,1998,5:37-39.
    [38]刘长武,丁开旭.论井下隔水煤柱承压破坏的临界尺寸[J].煤炭学报,2001,26(6):632-636.
    [39]吴发红.老塘水的预测与防治[J].煤炭技术,2004,23(4):59-61.
    [40]魏可忠主编.矿井水文地质.北京:煤炭工业出版社.1991,111-118.
    [41]彭苏萍.煤矿安全高效开采地质保障体系[M].北京:煤炭工业出版社.2001,217-221.
    [42]肖黎明.水体下采煤[M].北京:煤炭工业出版社.1975,93-94.
    [43]程建远.基于微机的三维地震解释性处理技术[D].陕西:长安大学,2001.83-84.
    [44]Baker BJ, Banfield JF. Microbial communities in acid mine drainage[J]. FEMS Microbiol Ecol.2003,44: 139-152.
    [45]Bond PL, Druschel GK, Banfield JF. Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems[J]. Appl Environ Microbiol.2000,66:4962-4971.
    [46]Colmer AR, Temple KL, Hinkle ME. An iron-oxidizing bacterium from the acid drainage of some bituminous coal mines[J]. Bacteriol.1950,59:317-328.
    [47]ERMITE Consortium. Mining impacts on the fresh water environment:technical and managerial guidelines for catchment scale management[J]. Mine Water Environ.2004,23 (Supplement 1):S2-S80.
    [48]Hallett C. Lime dosing still the best option for minewater[J]. World Water and Environ Eng.1999,4:28.
    [49]Hedin RS, Watzlaf GR, Nairn RW. Passive Treatment of acid mine drainage with limestone[J]. Environ Qual. 1994,23:1338-1345.
    [50]Kepler DA, McCleary EC. Successive Alkalinity Producing Systems (SAPS) for the treatment of acidic mine drainage[R]. Proc Intern Land Reclamation and Mine Drainage Conf and 3rd Intern Conf on Abatement of Acidic Drainage, Pittsburgh, PA,1994, Vol 1:195-204.
    [51]Nordstrom DK. Advances in the hydrogeochemistry and microbiology of acid mine waters[J]. Int Geol Rev. 2000,42:499-515.
    [52]Pluta I. Acid mine process in Polish coal mines, the Niwka-Modrzejow coal mine example[R]. In:Proc 8th IMWA Cong, Johannesburg,2003,:37-41.
    [53]Banfield JF. Community structure and metabolism through reconstruction of microbial genomes from the environment[J]. Nature,2004,428:37-43.
    [54]Wood SC, Younger PL, Robins NS. Long-term changes in the quality of polluted mine water discharges from abandoned underground coal workings in Scotland[J]. Quart J of Eng Geology.1999,32:69-79.
    [55]Younger PL. Design, construction and initial operation of full-scale compost-based passive systems for treatment of coal mine drainage and spoil leachate in the UK[R]. Proc IMWA Symp, Johannesburg, South Africa,1998,Vol Ⅱ:413.
    [56]Bredehoeft, J.D., Papadopulos, S.S. A Method for Determining the Hydraulic of Properties of Tight Formation[J]. Water Resources Research,1980,16(1):233-238.
    [57]J. de Menezes Travassos, P. de Tarso Luiz Menezes. GPR exploration for groundwater in a crystalline rock terrain[J]. Applied Geophysics,2004,55:239-248.
    [58]Meju, M.A. Geoelectomaganetic exploration for natural resources:model, cases studies and challenges [J]. Surv. Geophys,2002,23:133-205.
    [59]Hubbard, S.S., Peterson, J.E., Majer, E. Estimation of permeable pathways and water content using tomographic radar data[J]. The Leading Edge,1997b,16(11):1623-1628.
    [60]Topp, G.C., Davis, J.L., Annan, A.P. Electromagnetic determination of soil water content:measurements in coaxial transmission lines[J]. Water Resource Research,1980,16(3):574-582.
    [61]Peterson, J.E. Pre-inversion correction and analysis of radar tomographic data[J]. Journal of Environmental and Engineering Geophysics,2001,6:1-18.
    [62]Ping-Yu Chang, David Alumbaugh, Jim Brainard, Laila Hall. The application of ground penetrating radar attenuation tomography in a vadose zone[J]. Journal of Contaminant Hydrology,2004,71:67-87.
    [63]Pyatt, D.G., John, A.L. Modeling volume changes in peat under conifer plantations[J]. J. Soil Sci, 1989,40:695-706.
    [64]Price, J.S., Schlotzhauer, S.M. Importance of shrinkage and compression in determining water storage changes in peat:the case of a mined peatland[J]. Hydrol. Proc,1999,13:2591-2601.
    [65]GW. Kennedy, J.S. Price. A conceptual model of volume-change controls on the hydrology of cutover peats[J]. Journal of Hydrology,2005,302:13-27.
    [66]D.S.Berry. An elastic treatment of ground movement due to mining-Ⅰ. Isotropic ground[J]. Journal of the Mechanical and Physics of Solids.1960,8(4):280-292.
    [67]Brown, A., Schauer, M.I., Rowe, J.W., and Heley, W. Water Management in Oil Shale Mining[M]. US Bureau of Mines, RI, contract J0265019,1977,436.
    [68]柴登榜等编.矿井地质工作手册[M].北京:煤炭工业出版社,1984.443.
    [69]韩必武,朱文,孙兴平.老空区充水定量评价[J].淮南职业技术学院学报,2002,2(4):78-82.
    [70]李思标,李迪昌,孔令珍.关于充水系数的取值问题[J].煤炭科学技术,2002,30(9):53-54.
    [71]李景恒、许延春、张波等.深部首采工作面顶底板涌水量预计[J].煤矿开采,2003,54(8):66-68.
    [72]徐衍合,李振华,陈绍军.试产工作面涌水量的预测[J].煤炭技术,2004,23(3):53-55.
    [73]李占文,张红果.煤矿古塘涌水量的简便估算[J].煤矿开采,2001,4:70-72.
    [74]李延辉.防治老空水技术途径[J].山东煤炭科技,2004,5:38-39.
    [75]张军工.采动影响区老空积水原因分析[J].煤炭工程,2005,10:35-37.
    [76]唐依民,肖江.矿区地下水系统演化过程中混沌性态形成的条件及机理[J].煤炭学报,2006,31(1):45-49,
    [77]王桂梁,曹代勇,姜波.华北南部逆冲推覆伸展滑覆和重力滑动构造[M].中国矿业大学出版社,1992.
    [78]张泓,王绳祖,彭格林.淮南煤田煤层气成藏动力学系统的机制与地质模型研究[J].煤田地质与勘探,2005,33(4):29-34.
    [79]武强,金玉洁.华北型煤田矿井防治水决策系统[M].北京:煤炭工业出版社,1995.1-218.
    [80]淮南矿业(集团)有限责任公司地质勘探工程处.淮南矿业(集团)有限责任公司潘一矿二水平生产地质补充勘探报告.2004.
    [81]安徽煤田地质局勘查研究院.淮南矿业集团张集煤矿电子版精查地质报告汇编.2002.
    [82]安徽煤田地质局勘查研究院.淮南矿业集团谢桥媒矿补充勘探地质报告.2000.
    [83]淮南新庄孜煤矿.淮南矿务局新庄孜煤矿矿井地质报告.1993.
    [84]淮南孔集煤矿.淮南孔集煤矿矿井地质报告(修编).1992
    [85]尹国勋.煤矿环境地质灾害与防治[M].北京:煤炭工业出版社,1997.31-38.
    [86]何洪生.小煤矿采空区积水透水事故原因及对策[J].中国煤田地质,2005,17(增刊):71-73.
    [87]徐星宽.矿井充水机理、水害成因与治理[J].山东科技大学学报(自然科学板),2003,22(4):21-23.
    [88]王永红,沈文.中国煤矿水害预防及治理[M].北京:煤炭工业出版社,1996.1-279.
    [89]邹友峰,胡友健.采动损害与防护[M].徐州:中国矿业大学出版社,1996.1-135.
    [90]李白英.预防采掘工作面底板突水的理论与实践,第22届国际采矿安全会议论文集[C].北京:煤炭工业出版社,1989.702-704.
    [91]罗立平.承压水体上对拉工作面开采煤层底板突水机理的研究[D].北京:中国矿业大学,2000.1-118.
    [92]高延法,施龙清,娄华君等.底板突水规律与突水优势面[M].徐州:中国矿业大学出版社,1999.1-156.
    [93]张金才,张玉卓,刘天泉著.岩体渗流与煤层底板突水.北京:地质出版社,1997,1-119.
    [94]黎良杰,采场底板突水机理的研究[D].徐州:中国矿业大学,1995.1-105.
    [95]李永军.淮南寒灰岩溶陷落柱水文地质特征研究[D].北京:中国矿业大学,2006.1-119.
    [96]王世彬,郭厚亮.在采空积水下采煤的理论与实践[J].煤炭技术,2005,24(6):35-37.
    [97]黄必荣.福建省煤矿水害事故综合分析与防治对策[J].专家园,1999,8:35-36.
    [98]魏家聚,孙长军,杨为振.大平矿14采区突水原因分析及防治[J].中州煤炭,2002,117(3):47-48.
    [99]张永波.老采空区建筑地基稳定性及其变形破坏规律的研究[D].山西:太原理工大学,2005.69-70.
    [100]陈葆仁,洪再吉等著.地下水动态及其预测[M].北京:科学出版社,1988.116-117.
    [101]吴立新,王金庄,郭增长.煤柱设计与监测基础[M].徐州:中国矿业大学出版社,2000.107.
    [102]叶铭银,陆鹏举,张五兵.薄煤柱留设的试验研究[J].煤炭开采,2001,46(4):34-35.
    [103]Itasca Consulting Group, Inc. FLAC (Fast Lagrangian Analysis of Continua) User's Manuals, Version5.0[M]. Minneapolis:Itasca Consulting Group, Inc.,2005.
    [104]刘波,韩彦辉(美国).FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.
    [105]彭文斌FLAC3D实用教程[M].机械工业出版社,2008.
    [106]张五兵.采空区水体探放的技术方法浅析[J].煤炭技术,2001,20(6):32-33.
    [107]毛胜超,肖坤.工作面上覆采空区积水的排放方法[J].工程技术,2004,2:27.
    [108]魏可忠主编.矿井水文地质[M].北京:煤炭工业出版社,1991.117-141.
    [109]简兴仁.积水区下煤层的安全回采[J].煤矿安全,2003,34(4):25-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700