用户名: 密码: 验证码:
利用分子生物学技术鉴定农作物品种真实性和纯度
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
品种真实性和纯度是种子质量的重要指标,对作物产量及品质具有直接的影响。因品种真实性和纯度问题造成大幅减产的事件时有发生,严重影响了农业生产。转基因作物是应用生物技术对农作物基因组进行改造获得的。虽然各国均对转基因农作物商业化种植持有相对谨慎的态度,但转基因作物的种植面积仍然快速增加和推广的转基因品系不断增多。随着对转基因产品进行风险评估及相关法规相继出台,转基因成分的检测和鉴定显得越来越重要。
     我国目前种子经营主体数量多,市场监管技术和手段落后,假冒伪劣种子禁而不绝,套牌侵权问题突出,种子市场秩序比较混乱。《国务院关于加快推进现代农作物种业发展的意见》明确提出,建立手段先进、监管有力的种子管理体系,严厉打击套牌侵权、生产经营假劣种子行为,切实维护公平竞争的市场秩序。分子检测技术为解决这一问题提供了有效的途径,可以破解管理技术瓶颈。因此,加快分子检测技术的研发和应用,是当前种子质量管理工作的一项重要而迫切的任务。
     许多研究表明,利用SSR分子标记技术鉴定品种真实性和纯度的方法是可行的,检测结果是准确的。但大多数都是从理论的角度进行研究,本实验结合种子监管工作实际,对实际应用中存在的问题进行研究和验证。主要结果如下:
     1.在品种纯度检测方面,对市场上主推的23个杂交水稻品种筛选出了特定的引物,并通过海南异地田间小区种植鉴定和当地当季田间小区种植鉴定对这些引物的SSR分子标记鉴定结果进行验证。用所筛选的引物对包含这23个品种的226份样品,代表种子数量近400万千克的“两系”杂交水稻种子进行SSR分子标记检测。检测结果显示:SSR分子标记鉴定与田间正季纯度鉴定结果基本一致,最大相差11.2%,其平均差距为0.9%;而海南异地小区种植纯度鉴定结果与田间正季纯度鉴定结果差异较大,最大相差44.0%,其平均差距为3.6%。另外,我们选取7个有代表性样品分单株同时进行SSR分子标记和田间正季鉴定,结果显示每个单株用这两种方法鉴定的结果吻合度达99%。实验结果表明,筛选的SSR分子标记引物能准确、快速地鉴定“两系”杂交水稻纯度,且用一对具有双亲互补带型的引物即可分辨出不育株。另外,第一次提出SSR分子标记鉴定“两系”杂交水稻品种纯度结果比海南异地田间小区种植鉴定结果准确可靠的观点。检测中,通过利用双亲作为对照,准确的将杂株分为母本型、父本型及其他杂株类型,利于分析杂株的来源,很好的解决了在分子检测中难以分辨杂株类型的问题。
     2.在品种真实性鉴定方面,检测的样品纯度可能较低,样品中的杂株可能对电泳分析结果产生影响。在对全国农作物种子检验机构能力验证4份样品的SSR品种真实性鉴定中,通过分单株进行DNA提取检测,发现有27%的单株与对照在24个位点中未检测出差异,有73%的单株与对照在24个位点中检测出差异。用混合样提取的DNA,其扩增谱带表现为深浅带,深带与对照样品一致,浅带与对照样品不一致,不易于准确读带。本研究通过提取单株DNA进行PCR扩增,有效避免了杂株对鉴定结果的影响。
     3.在品种真实性和纯度鉴定中,人们一直认为SSR分子标记鉴定结果比田间鉴定结果更严格,利用SSR分子标记鉴定品种真实性和纯度,其结果对企业有失公平。本研究通过大量的SSR分子标记检测结果与田间鉴定结果比较分析显示,6%的聚丙烯酰胺凝胶电泳结果更接近田间鉴定结果。这一研究结果为下一步SSR品种真实性和纯度检测标准制定中电泳方法选择提供了有力科学依据。本研究用中华人民共和国农业行业标准NY/T1433-2007上公布的24对引物,对代表种子批77680千克的11份杂交水稻种子送检样品进行田间小区种植鉴定和SSR分子标记鉴定,通过6%非变性聚丙烯酰胺凝胶电泳分析结果显示:SSR分子标记鉴定结果与田间小区种植鉴定结果一致,两种鉴定结果都低于国家质量标准值96.0%,判定为不合格。SSR分子鉴定结果略低于田间小区种植鉴定结果,前者鉴定结果平均值为86.6%,后者鉴定结果平均值为87.3%,两者相差0.7%。对226份材料的纯度检测中,3%的琼脂糖凝胶电泳结果与田间鉴定结果平均相差0.9%。由此可见,用6%非变性聚丙烯酰胺凝胶电泳分析的结果更接近田间鉴定结果。用中华人民共和国农业行业标准NY/T1433-2007上公布的24对引物,以农业部提供的标准样品作为对照,对448份样品进行品种真实性鉴定,通过6%非变性聚丙烯酰胺进行电泳,共检测出37份样品真实性不合格。将SSR分子标记鉴定结果与田间品种真实性鉴定结果进行比较,有13个没有标准样品,未进行SSR检测,有6个样品田间没有对照样品,无法进行田间鉴定,其余429个样品的SSR鉴定结果与田间鉴定结果一致。由此可见,利用SSR分子标记检测品种真实性和纯度,通过6%非变性聚丙烯酰胺电泳,其结果准确可靠。
     在转基因成分的检测中,国际上还没有统一的方法和标准。随着转基因农作物检测技术的不断发展,PCR技术已经成为最主要的检测方法之一。但是常规的PCR每次只能扩增一个基因,而单独的多重PCR和常规电泳相结合的技术由于受多重PCR技术自身限制,每次扩增的基因数目也很有限,因此不能满足当前转基因农作物检测的要求。基因芯片是一种点有若干寡核苷酸探针的基片,每个点都含有序列特异的探针和目标基因互补结合。因此,基因芯片可以和多重PCR技术相结合同时检测多个目标基因。本研究通过对现有玉米转基因商业化信息收集,利用已公布的基因序列信息设计11对引物和探针,以CryIAb, Nos-T, neo, Camv35S-P, EPSPS,18S的引物组合和bar,pat, CrylAc, hpt和IVR的引物组合分别进行多重PCR扩增,扩增产物与固定有相应目标外源基因特异性探针的基因芯片进行杂交,通过芯片扫描仪对杂交芯片进行扫描,最终达到在同一个芯片中同时检测9个外源目标基因的目的。在实验中,通过对多重PCR扩增和杂交条件的优化,最终达到利用生物芯片技术准确、快速检测出市场上主要的Bt176、Bt11、MON810、 GA21、NK603、MON863、1507、3272、MIR604及59122共10个玉米转基因品系的转基因成分。
The identity and purity of variety have an signicant effects on the yield and quality, which are important evaluation index for seed quality. And the problem of varietal identity and purity can lead to dramatical yield declining, such events often happened in the past years, and which seriously affected the increase of the agricultural production. Genetically modified crops are obtained via the genetic transformation of crop genome. Although all countries hold a relatively cautious attitude to commercialization of the transgenic crops, but the acreage and varieties of genetically modified crops still are rapid increased. With the enaction of the relevant laws and regulations for the risk assessment and detection of genetically modified products, the detection and identification of genetically modified component have become increasingly important.
     Now there are a great many seed business entities in China, and market supervision technology and means are lagged. Fake and shoddy seeds could not be forbidden with absolutely, and infringement problems of sets licensing outstand issues, so the order of the seed market is chaotic, Which seriously infringe the legitimate rights and interests of farmers and legitimate enterprises."The view of the State Council on accelerating the development of modern crop seed industry" clearly pointed out that establishing the seed management system with advanced means and effective supervision, to crack down the behavior of infringement of licensing and counterfeit seed production and management, and feasible safeguarding the market order of fair competition. Molecular detection techniques provide effective measures to solve these problems mentioned above. It can break the bottlenecks of management technology. Therefore, It is an important and urgent task for current seed quality management to accelerate the development and application of molecular detection technology.
     Many studies have shown that the method is feasible, and that the technique of SSR molecular markers can be used to accurately appraise the varietal identity and purity. But most of these reports focused on the theoretical point of research. So in present work, we combined the practical supervision of seedand theoretical research together, to try to solve the existing problems in the practical application. The main results were as follows:
     1. Variety purity testing:screened out specific primers for23rice hybrids which are good sold variety on the market, checked the result of SSR molecular identification through field planting in growing season and field planting in Hainan province. By SSR molecular marker, use the primers screened to check226samples, which can stand for nearly4million kilograms "two-line" rice hybrids and contained23rice hybrids sold well on the market. The results showed:the identification results of SSR marker and the field planting in growing season were basically the same, the biggest difference was11.2%, the average gap was0.9%; the identification results of field planting in growing season and field planting in Hainan province were quite different, the biggest difference was44.0%, the average gap was3.6%.In addition, we selected20representative samples and identified per plant of the samples by SSR marker and the field planting in growing season. The result showed the goodness of fit of each individual plant with these two identification methods was99%. In conclusion, the purity of the two-line rice hybrids could be accurate and rapid identification with the primers screened, and the sterile lines can be distinguished out only with a pair of primers according the parents' complementary types.In addition, through analyze the experimental data, at first to raise a viewpoint that the identification results of SSR marker were more accurate and reliable than field planting in Hainan province, when identify the purity of two-line rice hybrids. When purity testing, off-types could easy divided into female parent type and paternal type when parents as standard control, which conducive to analyze the sources of the off-types, being a good solution of the problem that difficult to distinguish off-types during the actual molecular detection.
     2. Varietal identity:when identify lower purity sample, electrophoretic analysis often appeared the bands that were not parents complementary bands, which brings difficulties to read tape, it often easy causes miscarriage of justice when identify the varietal identity. In this study, a good solution for the problems above was that use per plant to identify the varietal identity. Samples in the institutional capacity of national agricultural seed testing to verify the varietal identity of the SSR markers by DNA extraction of per plant, whose differences could not be detected about27%per plant checked in the24sites, whose differences were detected about73%per plant checked in the24sites. DNA extracted with a mixed sample, the amplification bands manifest as deep-undertone bands, deep band was the same with the check, shallow tape was inconsistent with the check, and this was not easy to accurately read the bands. By the method of extracting the DNA of per plant could be more accurately distinguish the differences of the electrophoretic bands, and could avoid the interference of the off-types.
     3.In making test of the varietal identity and purity, people always thought that the results of SSR Markers were more stringent than the results of field planting test, and the results were unfair to the enterprise when use SSR Marker to identify the varietal identity and purity. After making analysis on a large number of the results of SSR molecular marker test and the results of field planting test,this study showed that the results by6%polyacrylamide electrophoresis were closer to the results of field planting test,.
     The results in this study provided a strong scientific basis for chosen electrophoresis method, which was the setting standard use for varietal identity and purity. In this study,24pairs of primers which announced in agricultural industry standard NY/T1433-2007of China were used to identify11rice hybrid samples on behalf of the seed lots of77,680kg by SSR molecular marker test and the field planting inspection. The analysis by electrophoresing by6%non-denaturing polyacrylamide showed that:The result of SSR molecular marker test was86.6%,87.3%by field planting test, and the slightly difference of two methods was0.7%. The results of two identifications were all below the grade of96.0%that was the national quality standard, so the samples were unqualified. In addition, the average difference was0.9%between the results of3%agarose gel electrophoresis and the results of field planting test. The average difference was0.7%between the results of6%non-denaturing polyacrylamide gel electrophoresis and field planting test. It clearly showed that the results of6%non-denaturing polyacrylamide gel electrophoresis much more close to the results of field planting test. Use24pairs of primers which published on agricultural industry standard NY/T1433-2007of the People's Republic of China to identify the varietal identity of448samples with standard samples which provided by the Ministry of Agriculture, and37samples was unqualified tested with6%non-denaturing polyacrylamide electrophoresis. Comparing the results of SSR molecular marker test and the results of field planting test show that13samples with no standard sample were not made SSR detection,6samples with no field control samples could not be carried out field test, and the remaining429samples SSR identification results consistentted with the field test results. This shows that the results of the SSR molecular marker identification of varietal identity and purity by6%non-denaturing polyacrylamide gel electrophoresis were accurate and reliable.
     The international community still was no uniform methods and standards to identify genetically modified component. With the development of identification technology for genetically modified crops, the technology of PCR has become one of the most important identification methods. But regular PCR only can amplify a gene one time, due to the limitations of multiplex PCR technology, therefore, the technology combined the individual multiplex PCR and regular electrophoresis could not meet the current requirement of transgenic crops test. And the number of gene amplification was very limited at one time. Gene chip was a basic chip which had a number of oligonucleotide probes, each point containing complementary linked with the sequence-specific probe and the target gene. Therefore, the gene chips could be combined with multiplex PCR technology, this could be use to detect many target genes simultaneously. This study applied the hybridization between the amplified product of multiple asymmetric PCR and the gene chip which fixed target exogenous gene-specific probes, in order to achieve the purpose to detect more target genes at one time. In this work, by collecting the commercial information on existing transgenic corn, designed11pairs of primers and probes by using the gene sequence information that had published, and optimized the conditions of asymmetric PCR amplification and hybridization, Finally the technology of bio-chip was used to accurate and rapid detect10genetically modified corn varieties sold well in the market.
引文
1. Friedrich Nobbe, Seed Testing International (ISTA),2006, No.132,19-21
    2.农作物种子质量国家监督抽查20年资料汇编,国家农作物种子质量检验中心,2011,Ⅲ
    3. Buchner, Eduard. Alcoholic Fermentation Without Yeast Cells[J]. Ber. Dt. Chem. Ges, 1897,30:117-124
    4. EmilFisher, The Nobel Prize in Chemistry 1902 Emil Fischer Emil Fischer-Biography. Nobelprize.org.18 Sep 2012
    5. Sanger and Thompson.The amino-acid sequence in the glycyl chain of insulin.2. The investigation of peptides from enzymic hydrolysates [J]. Biochem J.1953,53(3):366-374
    6.王镜岩,朱圣庚,徐长法.生物化学,高等教育出版社,2005,470
    7. Hershey, Chase. Independent functions of viral protein and nucleic acid in growth of bacteriophage [J]. Gen Physiol,1952,36 (1):39-56
    8. Watson and Crick. A Structure for Deoxyribose Nucleic Acid [J], Nature,1953, 171:737-738
    9. Smith, Nucleotide sequence specificity of restriction endonucleases, Nobel Lecture,1978,8
    10. Jackson, Symons and Berg. Biochemical method for inserting new genetic information into DNA of Simian Virus 40:circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli [J]. Proc Natl Acad Sci U S A.1972,69(10): 2904-9
    11. Palmiter, Brinster, Hammer et.al. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion gene [J]. Nature,1982,300: 611-615
    12. Powell A P. Delay of disease development in transgenic plant that express the tobacco mosaic virus coat protein genes [J]. Science,1986,232:738-743
    13. Rhim S-L, Cho H J. Development of insecresistance in tomato plants expression the S-endotoxin gene of Bacillus thuringiensis Subsptenebrionis [J]. Mol Breed,1995,1(3): 229-236
    14. De Block M, Botterman J, Vandewiele M et.al. Engineering herbicide resistance in plants by expression of a detoxifying enzyme [J]. EMOBO J,1987,6(9):2513-2518
    15.王淑芳,王峻岭,赵彦修等.胆碱脱氢酶基因的转化及转基因番茄耐盐性的鉴定[J].植物生理学报,2001,27(3):246-252
    16. Klann EM, Hall B, Bennett A B, Antisense acid invertase(TIVI)gene alters soluable sugar composition and size in tomato fruit[J].Plant Physiol,1996,112(3):1321-1330
    17. Penarrubia L, Kim R, James G. Production of the sweet protein monellin in transgenic plants[J]. Bio-Technolgy,1992,10:561-564
    18. Mariani C, De Beuckeleer M, Truettner J, et.al. Induction of male sterility in plants by a chimaeric ribonuclease gene [J]. Nature,1990,347(25):737-741
    19. Sanger F., Coulson A.R., A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase[J]. Journal of Molecular Biology,1975,94 (3):441-448
    20. Sanger F., Nicklen S., Coulson A.R., DNA sequencing with chain-terminating inhibitors, Proceedings of the National Academy of Sciences USA,1977,74 (12):5463-5467
    21. Maxam AM, Gilbert W. A new method for sequencing DNA[J]. Biotechnology,1977, 24:99-103
    22. John M. S., Bartlett and David Stirling, A Short History of the Polymerase Chain Reaction[J]. Methods in Molecular Biology,2003, Volume 226,1,3-6
    23. David J Munroe,Timothy J R Harris.Third-generation sequencing fireworks at Marco Island[J]. Nature Biotechnology,2010,28(5):426-428
    24. Sanger F., Air G.M., Barrell, B.G.,et.al. Nucleotide sequence of bacteriophage φX174 DNA[J]. Nature,1977,265 (5596):687-695
    25. Jun Yu, Songnian Hu, Jun Wang, et al. A Draft Sequence of the Rice Genome (Oryza sativaL.SSP.indica)[J]. Science,2002,296,79
    26. Haberer G, Young SK, Bharti AK, et al. Structure and architecture of the maize genome[J]. Plant Physiol,2005,139:1612-24
    27. Nelson WM, Bharti AK, Butler E, et al. Whole-genome validation of high-information-content fingerprinting[J]. Plant Physiol,2005,139:27-38
    28. Patrick S. Schnable, Doreen Ware, et al.Supporting Online Material for the B73 Maize Genome:Complexity, Diversity and Dynamics[J]. Science,2009,326:1112
    29. Matsumoto T, Huisun Zhong, Masahiro Yano, et.al. The map-based sequence of the rice genome [J]. Nature,2005,436:800
    30. Kellogg EA. Evolutionary history of the grasses [J]. Plant Physiol,2001,125(3): 1198-1205
    31. Kehoe DM, Villand P, Somerville S. DNA microarrays for studies of higher plants and other photosynthetic organisms[J]. Trends Plant Sci,1999,4:38-41
    32.潘显政,支巨振,梁志杰等.农作物种子检验员考核学习读本,中国工商出版社,2006,239-245
    33.Tamilkumar P., Terlin R., N.Senthil N., et.al. Fingerprinting of rice hybrids and their parental lines using microsatellite markers and their utilization in genetic puriry assessment of hybrid rice[J]. Research Joural of seed science,2009,2(3):40-47
    34. Organisation for economic co-operation and development, Guidelines for control plot tests and field inspection of seed crops, paris,2001,7
    35.赵久然,王凤格.玉米品种DNA指纹鉴定技术研究与应用.中国农业科学技术出版社,2009,6
    36.傅荣昭.DNA分子标记技术及其在药用植物研究上的应用前景[J].生物工程进展,1998,18(40):14-16
    37.方宣钧,刘思衡,江树业.品种纯度和真伪的DNA分子标记鉴定和应用[J].农业生物技术学报,2000,02,106-110
    38. Grodzicker T., Williams J., Sharp P., et.al. Physical mapping of temperature sensitive mutations of adenoviruses[J]. Cold Spring Harbor Symp. Quant. Biol.1974,39:439-446
    39.陈德全,水稻品种遗传多样性分析及四川主要杂交稻组合农艺性状改良研究[J].四川农业大学,2004,14
    40.史全良,吴均章.植物系统学研究中常用基因分子标记特点分析[J].生物学通报,2000,12,8-10
    41. Wu K S, Tanksley S D. Abundance polymorphism and genetic mapping of microsatellites in rice[J]. Mol General Genet,1993,241:225-235
    42.周延清.DNA分子标记技术在植物研究中的应用[M].北京,化学工业出版社,2005:131-133
    43.李汝玉.简单序列重复(SSR)及其在品种鉴定及种子检测中的应用[J].种子,1999,(4):45-47
    44.朴红梅,王玉民.简单重复序列的研究与应用[J].吉林农业科学,2004,29(6):11-15
    45.罗玉娣,李建国.SSR标记及其在蔬菜育种中的应用[J].热带农业大学,2005,25(6):68-71
    46. Akagi H., Yokozeki Y., Inagaki A.,et.al. Microsatellite DNAmarkers for rice chromosomes[J]. Theor. Applied Genet.,1996,93:1071-1077
    47. McCouch, O. Panaud and S. Temnykh. et al., Microsatellite marker development mapping and aplications in rice genetics and breeding[J]. Plant Mol. Biol.,1997,35:89-99
    48. Akagi H., Yokozeki Y., Inagaki A., et.al., Highly polymorphic microsatellites of rice consist of AT repeats, and a classification of closely related cultivars with these microsatellite loci[J]. Theoretical and Applied Genetics,2002,94:61-67
    49.李云海,肖晗,张春庆等.用微卫星DNA标记技术检测中国主要杂交水稻亲本的遗传差异[J].植物学报,1999,41(1):1061-1066
    50.苏顺宗,黄玉碧,杨俊品等.利用SSR鉴定水稻杂交种子纯度的研究[J].种子,2003,127(1):23-25
    51.张雪原,赵攀峰,王凤格等.玉米品种SSR分子标记与田间小区种植一致性鉴定结果的比较[J].玉米科学,2009,17(1):40-45,50
    52. Powell W. The comparison of RFLP, RAPD, AFLP and SSR(microsatellite) markers for germplasm analysis. Molecular Breeding,1996,2:225-238
    53. Antonio A. F., Luciana L., Antonia M. M., et.al. Comparison of RAPD, RFLP, AFLP and SSR markers for diversity studies in tropical maize inbred lines. Genet. Mol. Biol.2004, 27(4)
    54. Temnykh, S., W.D. Park, N. Ayres, S. Cartinhour and N. Hauck et al., Mapping and genome organization of microsatellite sequences in rice(Oryza sativa L.). Theor. Applied Genet.,2000,100:697-712
    55. McCouch, L. Teytelman and Y. Xu, et al., Development and mapping of 2240 new SSR markers for rice(Oryza sativa L.). DNA Res.,2002,9:257-279
    56. Powell, W., M. Morgante and C. Andre, et al.The comparison of RFLP, RAPD, AFLP and SSR (Microsatellite) markers for germplasm analysis. Mol. Breed.,1996,2:225-238
    57.梅德圣,李云昌,胡琼等.甘蓝型油菜中油杂8号种子纯度SSR鉴定.中国农学通报,2006,22(5):49-52
    58. Yashitola, J., T. Thirumurugan and R.M. Sundaram, et al. Assessment of purity of rice hybrids using microsatellite and STS markers. Crop Sci.,2002,42:1369-1373
    59. Nandakumar N., Singh A.K.,and Sharma R.K.et.al., Molecular fingerprinting of hybrids and assessment of genetic purity of hybrid seeds in rice using microsatellite markers[J]. Euphytica,2004,136:257-264
    60. Yun, X.Y., Z. Zhan and Y.L. Ping, Identification and purity test of super hybrid rice with SSR molecular markers[J]. Rice Sci.,2005,12:7-12
    61. Sundaram, B. Naveenkumar and S.K. Biradar et al., Identification of informative SSR markers capable of distinguishing hybrid rice parental lines and their utilization in seed purity assessment[J]. Euphytica,2007,163:215-224
    62.黄成志,黄文章,严明建等.利用SSR分子标记鉴定杂交水稻真伪与纯度[J].安徽农业科,2009,37(8):3437-3438
    63.李稳香,詹良才.杂交水稻种子纯度SSR指纹图谱标记鉴定技术研究[J].中国种业,2006,(3):21-22
    64.薛灿辉,朱克永,陈祖武等.利用微卫星标记鉴定金优207杂种纯度技术研究[J].湖南农业科学,2005,(5):6-8
    65.谭智丹,余显权,高健强等.利用SSR鉴定杂交水稻种子纯度的研究[J].种子,2006,25(4):27-30
    66.李进波,牟同敏,夏建武等.利用微卫星标记鉴定两系杂交稻两优培胜的种子纯度[J]. Chinese Agricultural Science Bulletin,2002,118 (16):10-13
    67.彭锁堂,庄杰云,颜启传等.我国主要杂交水稻组合及其亲本SSR标记和纯度鉴定[J].中国水稻科学,2003,17(01):1-5
    68.李进波,牟同敏,夏建武等利用微卫星标记鉴定两系杂交稻两优培胜得种子纯度[J].中国农学通报,2002,18(6):10-13
    69.林梅,张凯,张宇飞等.两系杂交水稻SSR分子检测及田间鉴定植株定位试验[J].中国种业,2012,8:54-56
    70.李晓辉,李新海,高文伟等.玉米杂交种DNA指纹图谱及其在亲子鉴定中的应用[J].作物学报,2005,31(3):386-391
    71.薛艳颖,陈兴奎,樊严等.SSR分子标记技术在杂交玉米种子纯度鉴定中的应用[J].杂粮作物,2007,01:10-11
    72. Smith J S C, Chin E C L and Shu H,er.al. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.):Comparisons with data from RFLPs and pedigree[J]. Theor. Appl. Genet.1997,95:163-173
    73.王帮太,秦贵文,郭华等.SSR标记简便快速鉴定玉米品种纯度[J].分子植物育种,2011,9:1446-1449
    74.肖木辑,李明顺,李新海等.东北地区主要玉米自交系的SSR遗传多样性分析[J].华北农学报,2006,S1:27-32
    75.李汝玉,李群,张文兰等.利用SSR标记进行中国小麦品种鉴定的研究[J].种子,2008,2(6):91-95
    76.黄歆贤.ISSR和SSR标记在大豆、油菜、西瓜种子真实性和纯度鉴定中的比较[J],浙江大学,2011,1
    77.关荣霞,刘燕,刘章雄等.利用SSR方法鉴定大豆品种纯度[J].分子植物育种,2003,(3):75-78
    78.刘勤红,王芙蓉,张军等.利用SSR标记鉴定鲁棉研15号杂交种纯度的研究[J].山东农业科学,2003,(2):7-9
    79.艾呈祥,余贤美,刘庆忠等.利用SSR标记鉴定西瓜杂交种纯度的研究[J].西北植物学报,2006,(10):40-44
    80.沈金雄,陆光远,傅廷栋等.甘蓝型油菜自交不亲和系杂种纯度鉴定[J].中国油料作物学报,2004,(4):14-17
    81.刘冠明,郑奕雄,黎国良.20个花生品种的SSR标记指纹图谱构建[J].中国农学通报,2006,(6):59-61
    82.霍飞,江国虹,常改.转基因食品的发展现状及安全性评价,中国公共卫生,2003,19(9):1132-1134
    83.农业部农业转基因生物安全管理办公室,农业转基因技术与生物安全问答,www. news.cn
    84.金芜军,贾士荣,彭于发.不同国家和地区转基因产品标识管理政策的比较[J].农 业生物技术学报,2004,12(1):1-7
    85.郭斌,祁洋,尉亚辉,转基因植物检测技术的研究进展[J].中国生物工程杂志,2010,30(2):120-126
    86. Holst Jensen A, Ronning S.B. and Lovseth A, et al.. PCR technology for screening and quantification of genetically modified organisms(GMOs)[J]. Anal Bioanal Chem.,2003,375: 985-993
    87. Chaouachi M., Fortabat M.N.and Geldreich A., et al.. An accurate realtime PCR test for the detection and quantification of cauliflower mosaic virus (CaMV):applicable in GMO screening[J]. Eur. Food Res.Technol,2007, doi 10.1007/s00217-007-0787-5
    88. BrollR R., Waiblinger H.U. and Grohmann L., et.al..Collaborative study of a T-nos realtime PCR method for screening of genetically modified organisms in food products [J]. Verbr. Lebensm.,2007,2:116-121
    89. Abdullaha T., Radu S. and Hassan Z.,et.al.. Detection of genetically modified soy in processed foods sold commercially in Malaysia by PCR based method [J]. Food Chemistry, 2006,98(3):575-579
    90. Cardarelli P., Branquinho M. R.and Ferreira R.T.B., et. al.. Detection of GMO in food products in Brazil the INCQS experience[J]. Food Control 2005,16:859-866
    91. Schmidt M.A., Parrott W.A. Quantitative detection of transgenes in soybean (Glycine max L. Merrill) and peanut (Arachishypogaea L.) by realtime polymerase chain reaction [J]. Plant Cell Rep.,2001,20:422-428
    92. Made D., Degner C.,Grohmann L. Detection of genetically modified rice:a construct specific realtime PCR method based on DNA sequences from transgenic Bt rice[J]. Eur.Food Res.Technol,2006,224:271-278
    93. Windels P., Bertrand S. and Depicker A.,et.al..Qualitative and event specific PCR realtime detection methods for Star Link maize[J]. Eur Food Res Technol,2003,216: 259-263
    94. Holck A.,Va M. and Didierjean L., et.al.5'-nuclease PCR for quantitative event specific detection of the genetically modified Mon810 MaisGard maize[J]. Eur. Food Res. Technol, 2002,214:449-453
    95. Nielsen C.R., BerdalK.G. and Holst Jensen A. Characterisation of the 5 integration site and development of an event specific real time PCR assay for NK603 maize from a low starting copy number[J]. Eur Food Res Technol,2004,219:421-427
    96. Taverniers I., Windels P. and Vaitilingom M., et al.. Event specific plasmid standards and realtime PCR methods for transgenic Btl1, Bt176, and GA21 maize and transgenic GT73 canola [J]. Agric Food Chem.,2005,53:3041-3052
    97. Matsuoka, T. GMO labeling and detection methods in Japan. APEC-JIRCAS Joint Symposium and Workshop on Agricultural Biotechnology,2001
    98.张洪瑞,朱其松,宋克勤等.转基因食品的安全性评价与检测技术.河北农业科学,2008,12(9):101-105
    99.金芜军,郝肠,程红梅等,用复合PCR方法检测6种转基因玉米中外源DNA的特异性,农业生物技术学报,2005,13(5):562-567
    100. Litao Yang, Aihu Pan, Kewei Zhang, Qualitative and Quantitative PCR Methods for Event-specific Detection of Genetically Modified Cotton Mon1445 and Mon531[J]. Transgenic Research,2005,14(6),817-831
    101. Hubner Philipp. Quantitation of genetically modified organisms in food[J], Nat Biotechnol,1999,17(11):1137-1138
    102.曹际娟.建立转基因作物及产品外源抗性基因检测技术体系的研究[D].沈阳农业大学.2004
    103. Higuchi R. Kinetic PCR analysis:Real-time monitoring of DNA amplification reactions [J]. Biotechnology,1993,11:1026-1030
    104.曹际娟,覃文,曹远银等.商业化种植的六种基因改良玉米品系的鉴定检测方法[J].生物技术通报,2003,(01):87-91
    105.陶震,杨胜利,龚毅等.利用MPCR方法快速检测植物转基因背景[J].生物技术通报,2000(6):37-41
    106.杨冬燕,杨永存,邓平建.转基因番木瓜55-1的多重PCR鉴定方法研究[J].中国卫生检验杂志,2006,10:7-10
    107. Lipp, Anklam,E. and Stave, J.W., Validation of an immunoassay for detection and quantification of a genetically modified soybean in food and food fractions using reference materials[J]. Journal of AOAC International,2002,83:919-927
    108.黄司思,程在全.转基因植物及产品检测技术研究综述[J].西南农业学报,2011,24(3):1203-1208
    109.阚贵珍,喻德跃.试纸条法和PCR法检测抗草甘膦转基因大豆的外源基因[J].中国油料作物学报,2005,27(4):18-21
    110.黄莉.基因芯片及其在疾病检测中的作用[J].现代诊断与治疗,2011,02,30-32
    111.黄迎春,孙春昀,冯红等,利用基因芯片检测转基因作物[J].遗传,2003,25(3):307-310
    112.缪海珍,朱水芳,张谦等,采用基因芯片技术筛查农作物转基因背景[J].复旦学报(自然科学版),2003,42(4):634-642
    113.刘烜,郑文杰,刘伟等,转基因番茄DNA检测芯片的研究[J].食品研究与开发,2005,6(4):109-112
    114.刘烜,郑文杰,唐丹舟等,转基因玉米DNA检测芯片的研究[J].食品研究与开发,2009,30(6):149-153
    115. Mao, C. X., Virmani and Kumar, Technological Innovations to Lower the Costs of Hybrid Rice Seed Production[J]. Advances in Hybrid Rice Technology,1996, PP:111-128
    116. Organization for economic co-operation and development OECD Safety evaluation of foods derived by modem biotechnology:Concepts and Principles. Pairs, OECD,1993
    117.支巨振,毕辛华,杜克敏等,农作物种子检验规程,GB/T3543.4-1995,34-53
    118.刘之熙,陈祖武,詹庆才等.利用SSR分子标记快速鉴定杂交水稻种子纯度技术体系的优化[J].杂交水稻,2008,23(1):60-63
    119.支巨振,毕辛华,杜克敏等,农作物种子检验规程,GB/T3543.5-1995,54-61
    120.颜启传.水稻杂交种及其三系种子鉴定的研究简报[J].浙江农大学报,1982,8(2):220
    121.董凤高,朱旭东,熊振民等.以淡绿叶为标记的籼型光-温敏核不育系M2S的选育[J].中国水稻科学,1995,9(2):65-70
    122.曹立勇,钱前,朱旭东等.紫叶标记籼型光温敏不育系中紫S的选育及其配组的杂交优势[J].作物学报,1999,25(1):39-43
    123. Nakamura Y. Variable number of tandem repeat (VNTP) markers for human gene mapping[J]. Science,1987,235:1616-1622
    124.詹庆才,利用微卫星DNA标记进行杂交水稻种子纯度鉴定的研究[J].杂交水稻,2002,17(5):46-50
    125.薛灿辉,朱克永,陈祖武,詹庆才,2005,利用微卫星标记鉴定金优207杂种纯度技术研究[J].湖南农业科学,(5):6-8
    126.朱玉君,毛一剑,李春生等.利用SSR标记鉴定杂交水稻种子纯度[J].中国稻米,2009,(6):24-26
    127.J.萨姆布鲁克,D.W.拉塞尔分子克隆实验指南(第三版)科学出版社,2002,418-419
    128. Gall M,Labadie J, Brock P, et.al. Light-directed synthesis of high-density oligonucleotide arrays using semiconductor photoresis[J]. Proc Natl Acad Sci USA,1996, 93(24):13555-13560
    129.李健,文思远,乔平等.基因芯片分型中荧光标记(Cy3)引物的多重PCR及其优化,2006,第三届华北三省两市检验医学学术会议论文集
    130.许嘉,利用生物芯片技术检测转基因农作物,天津,复旦大学,2007,22
    131.池晓菲,舒庆尧.生物芯片技术的原理与应用[J].遗传,2001,23(4):370-374

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700