用户名: 密码: 验证码:
油箱惰化空间浓度场模拟和气流优化的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油箱燃爆是飞机事故的主要原因之一,现有研究表明,利用机载制氮系统产生的富氮气体对油箱进行惰化是保证飞机油箱安全、抑制油箱燃爆最经济、最有效的方式之一。该惰化方式可通过对燃油洗涤和油箱上部气相空间冲洗惰化技术来实现,其中,燃油洗涤主要应用于军用飞机,而冲洗惰化则广泛适用于民用飞机。
     所谓冲洗惰化就是将富氮气体冲入到油箱气相空间,并使得气相空间氧气浓度维持在燃油燃烧极限以下。
     本文结合国产大飞机燃油箱惰化技术研究任务需要,对民用飞机惰化流场及惰化效果影响因素开展了较为深入的研究。其具体内容包括:
     (1)在对燃油中氧氮溶解特性研究的基础上,建立了适用范围更广的燃油冲洗惰化模型,通过与实验对比验证了所建模型的正确性;并应用数值积分的方法研究了冲洗过程中的氧浓度变化规律。
     (2)采用数值模拟方法分别对单舱和多舱油箱惰化空间的氧浓度变化规律进行了研究,并探讨了如流量、氮气浓度、流速等因素对油箱惰化效果的影响;在此基础上,提出了舱内氧浓度“最大值”、“惰化完成百分比”等评估指标,完善了惰化效果评价体系;建立三维数学模型,结合国产大飞机油箱结构,就多隔舱油箱冲洗过程进行了仿真研究,获得了各油箱隔舱在不同时刻时的氧浓度分布情况等详细信息。
     (3)首先以单舱油箱的冲洗惰化过程为例,将单舱油箱的进出口之间的通道命名为“主流道”,并认为最佳的冲洗效果是主流道应占据尽可能多的舱内面积(体积),对冲洗过程中流场变化机理进行了研究;然后,对具有代表意义的多隔舱油箱进行了多算例计算;在此基础上,提出了具有普适意义的多隔舱油箱气流优化的设计原则,并将该原则应用于大飞机油箱惰化气体流动路线的设计之中,获得了较好的效果。
     (4)建立了实验装置,开展了一系列实验研究工作。其中:气体流动的可视化实验验证了文中对于流体流动计算方法的有效性;液体冲洗示踪实验建立了流体冲洗过程的定性认识;液体冲洗时浓度的定量测量实验为流体的示踪以及浓度测量,特别是瞬态的浓度测量提供了一个良好的思路,实验结果进一步证实了文中提出的惰化气体流动方式优化设计原则。
     本文研究结果可为大型民用飞机燃油箱惰化系统设计提供有益的参考。
Fuel tank blasting is one of the main reasons of aircraft accident. The existing studies haveshown that using Nitrogen Enriched Air (NEA) generated by On-Board Inert Gas Generation system(OBIGGS)to inert fuel tank is one of the most economical and effective ways of safety protection forfuel tank.
     This contains two ways: fuel scrubbing and ullage washing, while fuel scrubbing is mainly usedin military aircraft, ullage washing is widely used in civil aircraft.
     The so-called ullage washing refers to displace NEA on the fuel tank ullage to make andmaintain the oxygen concentration lower than the fuel burning limit.
     Taking the needs of domestic aircraft fuel tank inerting technology research into account, thispaper carry out a more in-depth study on the inerting flow field and influencing factors of the civilaircraft. The specific contents include:
     (1)Characteristics of oxygen and nitrogen dissolved in fuel are systematically summarized andtheoretical models of fuel washing applicable to a wider range are established. By comparing with theexiting experiment, the validity of the model has been verified. Numerical integration methods areused to study the variation of the oxygen concentration during the washing process.
     (2)By means of numerical simulation, the oxygen concentration variation of the single-bay andmulti-bay fuel tank inerting space is studied. The impact of factors such as flow rate, concentration ofNEA, velocity of NEA on fuel tank inerting is discussed. On this basis, new indices,“maximumoxygen concentration” and “percentage of inerting completion” are proposed to improve theevaluation system of inerting. Three-dimensional mathematical models, which combined withdomestic aircraft fuel tank structure, are built to carry out a study of washing process of the multi-bayfuel tank. Detailed information of oxygen concentration distribution in each bay at different times isobtained.
     (3) Taking a single-bay fuel tank ullage washing for example, a new concept------“mainstream”isdefined as the channel between inlet and outlet. Meanwhile, the optimal “mainstream” should occupythe area (volume) of the bay as much as possible. The Mechanism of flow changing during ullagewashing has been studied. Several numerical examples of a typical multi-bay tank inerting arecalculated. An airflow optimized design principles, which is of universal applicability, is put forwardand used in the airflow design of the aircraft fuel tank inerting and good results are achieved.
     (4) A series of experiment are carried: The gas flow visualization experiments verify the validityof the fluid flow calculation method; Liquid washing tracer experiments establish the qualitative understanding of the fluid washing process; The quantitative measurement of liquid concentrationprovide a good idea for tracer experiments of fluid and liquid concentration measurement, inparticular for transient concentration measurement. The experimental results further validate theproposed optimization principle.
     The results of this study provide a useful reference for large civil aircraft fuel tank inertingsystem design.
引文
[1]江飞.浅谈飞机燃油箱安全防爆技术.企业技术开发,2011,30(8):126~127.
    [2] Abramowitz A, Boris P. Characterization of Oxygen/Nitrogen Permeable MembraneSystem.Federal Aviation Administration, DOT/FAA/AR-95/91,April1996.
    [3]吴玉军,隆小庆.飞机油箱维护与安全.中国民用航空,2007,77(5):62.
    [4] GCSRT.CSRTG Aircraft Accident Database[M].http://wwwrgwcherry-adbcouk/adb/ADBlistasp?start=1.R G W Cherry&Associates Limited2010.
    [5]闫红敏,江平,高永庭.军用飞机机载制氮系统研究.沈阳航空学院学报,2005,22(5):12~14.
    [6] Desmarais L A, Yagle W J, Grenic A F. Vulnerablity Methodology and Protective Measures forAircraft Fire and Explosion Hazards, Volume III On-Board Inert Gas Generator System(OBIGGS)Studies Part3Aircraft OBIGGS Designs[R].ADA185282,1986.
    [7]刘小芳,刘卫华.飞机供氧和油箱惰化技术状况.北华航天工业学院学报,2008,18(3):4~7.
    [8] McConnell P M, Dalan G A, Anderson C L. Vulnerablity Methodology and Protective Measuresfor Aircraft Fire and Explosion Hazards,Volume III On-Board Inert Gas Generator System(OBIGGS)Studies Part2Fuel Scrubbing and Oxygen Evolution Tests[R].ADA167445, January,1986.
    [9] Robert E B著.飞机作战生存力分析与设计基础.林光宇,宋笔锋主译.北京:航空工业出版社,1998,133~139.
    [10]王小平,肖再华.飞机油箱氮气惰化的机理分析及应用.航空科学技术,2008,(6):24~26.
    [11]汪明明.飞机油箱气相空间氧浓度控制技术的理论研究[硕士学位论文].南京:南京航空航天大学,2006.
    [12] William M C. The Effect of Fuel on an Inert Ullage in a Commercial Transport Airplane FuelTank[R]. DOT/FAA/AR-05/25,July,2005.
    [13] William M C. Modeling Inert Gas Distribution in Commercial Transport Aircraft Fuel Tanks.22nd AIAA Advanced Measurement Technology/Ground Testing Conference, AIAA2002-3032,June2002.
    [14] William M C. Modeling In-Flight Inert Gas Distribution in a747Center Wing Fuel Tank.NJ08405, Federal aviation administration.December,2004.
    [15]温文才.飞机燃油箱可燃性评估方法研究.民用飞机设计与研究,2009,2:31~34.
    [16]雷延生,王澍.基于FAA适航要求的飞机燃油箱防爆技术研究.民用飞机设计与研究,2011,(3):23~27.
    [17]王震.飞机燃油箱防爆及抑爆材料应用技术.航空科学技术,2002.(3):33~35.
    [18]张亮.苏-27充填网状聚氨酯泡沫材料的油箱的安全性分析[硕士学位论文].沈阳:中国航空工业总公司第六0一研究所,1999.
    [19]江平.应用于飞机油箱填充的网状聚氨酯泡沫防护特性研究[硕士学位论文].沈阳:沈阳航空工业学院,2002.
    [20]田宏,吴弯,江平,等.网状聚氨酯泡沫材料的发展.航空材料学报,2001,(6):59~63.
    [21]田宏,王旭,高永庭.油箱填充用防火抑爆网状泡沫材料.火灾科学,2000,9(2):37~41.
    [22]钟若瑛.铝合金抑爆材料在飞机燃油箱上的应用研究[硕士学位论文].西安:西北工业大学,2002.
    [23] Robert Zalosh. Deflagration suppression using expanded metal mesh and polymer foams. Journalof Loss Prevention in the Process Industries,2007,20:659~663.
    [24]田原,顾伟,芳田宏.新型网状铝合金防火抑爆材料的性能及其应用.工业安全与环保,2007,33(3):38~40.
    [25] MIL-PRF-87260A(USAF). Performance specification, foam material, explosion suppression,inherently electrostatically conductive, for aircraft fuel tanks. February1998.
    [26] MIL-DTL-83054C. Detailed specification, baffle and inerting material, aircraft fuel tank.October2003.
    [27]韩志伟,解立峰,宋晓斌,等.球形抑爆材料与网状抑爆材料抑爆性能对比研究.爆破器材,2011,40(6):15~18.
    [28]南子江,宋爱荚,曹法和.铝合金抑爆材料抑爆性能研究.兵器材料科学与工程,2011,24(4):19~22.
    [29] JosePh Haddad. Service experience with liquid nitrogen fuel tank inerting system in FAA DC-9aircraft[R].ADA000013.Fedaral aviation administration WshingtonD C,June,1972.
    [30] Richard L J, JosePh B G. Aircraft fuel tank inerting system[R].ADA141863.Airesearchmanufacturing company.July,1983.
    [31] University of Washington, seattle, WA. Thermal model of fire suppression by nitrogenpressurization[R].ADA146073.Nov.1983.
    [32] Klein J. The F-16Halon Tank Inerting Systems[M].1981:12~15.
    [33] Vinegar A, Jepson G W. Cardiac sensitization thresholds of halon replacement chemicalspredicted in humans by physiologicallybased pharmacokinetic modeling. Risk Anal1996;16571-9.
    [34]肖再华.飞机燃油箱惰化.航空科学技术,2005,(1):31~33.
    [35] Smith D G, Harris D J. Human exposure to Halon1301(CBrF,) during simulated aircraft cabinfires. Aerosp Med1973; M198-201.
    [36] SNAP Technical Background Document. Risk Screen on the Use of Substitutes for class IOzone-Depleting substances, Fire Suppression and Explosion Protection (Halon Substitutes),Federal Register1994;59:13044.
    [37]陈亚红,张树海,奥成钢.哈龙替代灭火剂的现状和发展趋势.中北大学学报(自然科学版),2007,28(4):341~345.
    [38] Halon Fire Extinguishing Agents Technical Options Committee. Montreal protocol on substancesthat deplete the ozone layer[R]. Nairobi: United Nations Environment Programme(UNEP),1994.
    [39]刘夙春,邱献双.一种新型的飞机油箱催化惰化系统.航空科学技术,2011,4:27~29.
    [40] Cramer R L. OBOGS and OBIGGS: the application of molecular sieves to aircrew breathing andaircraft survivability. Proceedings-Annual SAFE Symposium (Survival and Flight EquipmentAssociation),1989:19~24.
    [41] Grenich A F, Tolle F F, Glenn G S et al. Design of On-Board Inert Gas generation Systems forMilitary Aircraft, AIAA-84-2518.
    [42] Anderson C L, Grenich A F, Tolle F F, et al. Performance tests of two inert gas generatorconcepts for airplane fuel tank inerting.19th Joint Propulsion Conference, SeattleAIAA-83-1140,June,1983:27~29.
    [43] Manatt S A, Buss L B, Funk, A F et al. Design criteria for application of membrane nitrogeninerting systems to army aircraft fuel tanks[R].ADA052869.Dec.1977.
    [44] Dale Hankins. Molecular sieve inerting system for aircraft fuel tank[R]. ADA136480.Oct.1982.
    [45]肖华军,袁修干.机载分子筛制氧技术发展的现在与动向.航空科学技术,1997,(1):26~28.
    [46]韩光瑶.中空纤维膜分离制氮系统简介.橡塑技术与装备,2001,27:32~34.
    [47]杜雄伟,刘应书.变压膜渗透空气分离制氮.北京科技大学学报,2007,29(6):617~621.
    [48] Reynolds T L, Eklund T I, Haack G A. Onboard inert gas generation system/onboard oxygen gasgeneration system(OBIGGS/OBOGGS)study part2: Gas separation technology-State of theart[R].NASA/CR-2001-210950-PT2, August,2001.
    [49] Reynolds T, Bailey D, Lewinski D, et al. Onboard inert gas generation system/onboar-d oxygengas generation system(OBIGGS/OBOGGS)study part1:Aircraft system requirement[R].NASA/CR-2001-210903PT1,May,2001.
    [50] Manatt S A. Design、fabrication and testing of a full-scale breadboard nitrogen generator for fueltank inerting application[R].FAA-RD-77-147.U S department of transportation federal aviationadministration.September,1977.
    [51] George H M, Rousseau J. Catalytic reactor for Inerting of aircraft fuel tanks[R]. ADA000939.Airesearch manufacturing company.June,1974.
    [52] MacDonald J A, Wyeth H W G. Fire and Explosion Protection of Fuel Tank Ullage[R].Ministryof Aviation Supply,Engineering Physics Department, Royal Aircraft Establishment, England.
    [53] Kuchta J M. Oxygen Dilution Requirements for Inerting Aircraft Fuel Tanks. Second Conferenceon Fuel System Fire Safety, Federal Aviation Administration,May1970.
    [54] Browall W, Harrison J W, Salemme R M. Feasibility of adapting a thin film permeable membraneto jet transport fuel tank inerting system[R].ADA003799.Federal aviationadministration,January,1975.
    [55] Klueg E P, McAdoo W C, Neese W E. Performance of a DC-9Aircraft Liquid Nitrogen FuelTank Inerting System.FAA Report FAA-RD-72-53,August1972.
    [56] Knight T C, Ritter J E. The AH-64A Nitrogen Inerting system. AIAA-84-2480,Oct.1984.
    [57] Anderson C L. Vulnerability Methodology and Protective Measures for Aircraft Fire andExplosion Hazards. Volume3. On-Board Inert Gas Generator System (OBIGGS)studies. Part1. OBIGGS Ground Performance Tests[R].ADA167357,January,1986.
    [58] Vannice W L, Grenich A F. Fighter Aircraft OBIGGS (On-Board Inert Gas Generation System)Study, Volume1[R].ADA183690,June,1987.
    [59] Howell T. Fighter Aircraft OBIGGS (On-Board Inert Gas Generation System) Study.Volume2[R].ADA183781,June,1987
    [60]张辉,刘应书,李永玲.机载制氮系统在油箱防火中的应用和研究进展.低温与特气,2009,27(4):1~5.
    [61] Donald Bein. Ullage Protection Ownership Cost For KC-130J: Explosion Suppressant Foam(ESF) VS. On-Board Inert Gas Generation System (OBIGGS) NIST SP984.;12th HalonOptions Technical Working Conference, HOTWC, June2002:1~11.
    [62] Boeing Military Airplane Co Seattle WA. Integrated Aircraft Fuel Tank Inerting andCompartment Fire Suppression System. Volume2. Evaluation of Nitrogen-Enriched Air as a FireSuppressant, FWAL-TR-83-2021,V11
    [63] Samuel V, inn, J. Inerted Fuel Tank Oxygen Concentration Requirment.FAA-RD-71-42
    [64] Michael B, William M C. Inerting of a Vented Aircraft Fuel Tank Test Article WithNitrogen-Enriched Air[R].DOT/FAA/AR-01/6,April,2001.
    [65] Cavage W M. Ground-Based Inerting of a Boeing737Center Wing Fuel Tank. SAE ConferencePaper2001-01-2656, September2001.
    [66] Burns M, Cavage W M. Ground and Flight Testing of a Boeing737Center Wing Fuel TankInerted with Nitrogen-Enriched Air[R].FAA William J.Hughes Technical Center, Atlantic CityInternational Airport,NJ,DOT/FAA/AR-01/63,August2001.
    [67] Cavage W M, Kils O. Inerting a B-747SP Center Wing Tank Scale Model with NitrogenEnriched Air[R].FAA Report DOT/FAA/AR-02/51,May,2002.
    [68] Cavage W M. Ground-Based Inerting of Commercial Transport Aircraft Fuel Tanks.Paperpresented at the RTOAVT Specialist’ Meeting on “Fire Safty andSurvivability”.September,2002.
    [69] Michael B, William M C, Richard H, et al. Flight-testing of the FAA Onboard Inert GasGeneration System on an Airbus A320. DOT/FAA/AR-03/58,June,2004.
    [70] Michael B. Evaluation of Fuel Tank Flammability and the FAA Inerting System on the NASA747SCA[R].FAA Report DOT/FAA/AR-04/41,December,2004.
    [71] Cavage W M. Modeling of In-Flight Fuel Tank Inerting for FAA OBIGGS Research. The4thTriannual Fire and Cabin Safety Research Conference, November2004.
    [72] Cavage W M. Measuring Oxygen Concentration in a Fuel Tank Ullage. AIAA2009-1743.
    [73] Desmarais L A, Tolle F F. Evaluation of Advanced Airplane Fire Extinguishants. AIAA-83-1141.
    [74] Kisholoy G, Arun K M, Alex A K. Oxygen Sensor for Detecting OBIGGS Performance RelatedSafety Significant Malfunctions. AIAA2005-1211, January,2005.
    [75] Michael B, William M C. Richard H, et al. Flight-Testing of the FAA Onboard inert gasgeneration system on Airbus A320. DOT/FAA/AR-03/58.
    [76] Steven M. Summer Mass Loading Effects on Fuel Vapor Concentration in Aircraft Fuel TankUllige September1999DOT/FAA/AR-TN99/65.
    [77] William M C. The cost of implementing ground based fuel tank inerting in the commercial fleet.FAA ReportDOT/FAA/AR-00/19,May,2000
    [78]薛勇,刘卫华,高秀峰,等.机载惰化系统中空纤维膜分离性能的实验研究.西安交通大学学报,2011,45(3):107~111.
    [79]汪明明,冯诗愚,蒋军昌,等.飞机燃油箱冲洗与洗涤惰化技术比较分析.南京航空航天大学学报,2010,42(5):614~619.
    [80]冯诗愚,鹿世化,刘卫华,等.洗涤效率对飞机燃油箱惰化过程的影响分析.航空动力学报,2010,25(11):2457~2463.
    [81]冯诗愚,刘卫华,黄龙等.飞机燃油箱气相空间平衡氧浓度理论研究.南京航空航天大学学报,2011,43(4):556-560.
    [82] H..杜博夫金,..马苏尔,B..马拉尼切娃等.喷气燃料性能手册.常汝揖译.北京:航空工业出版社,1990,1~276.
    [83]冯霄.化工原理(下).北京:科学出版社,2007.
    [84] Coordinating Research Council, Inc. Handbook of Aviation Fuel Properties-2004ThirdEdition[R].AFRL-PR-WP-TR-2004-2127,December,2004.
    [85] Guy Lonsdale, Anton Schbller. Multigrid efficiency for complex flow simulations on distributedmemory machines. Parallel Computing,1993,19(1):23~32.
    [86]邵波,毛国勇,张武.基于Fluent的全机数值模拟及并行计算.计算机工程与设计,2006,27(17):3178~3180.
    [87]郭崇志,肖乐.管壳式换热器数值模拟的并行计算技术研究.化工机械,2011,38(5):604~606.
    [88] Gao Shuang wu, Qiang Hongfu. Parallel computing for SRM numerical simulation using apartitioned method,2011IEEE International Conference on Computer Science and AutomationEngineering,2011:198~201.
    [89]辛晓华,张武,周华.基于Fluent的绕流问题的数值模拟与并行计算.计算机工程与设计,2005,26(8):2153~2154,2200.
    [90]谢江,毛国勇,张武.FLUENT及其在飞机绕流流场并行计算中的应用.计算机工程与应用,2007,43(28):246~248.
    [91] Gicquel L Y M, Gourdain N, Boussuge J F. High performance parallel computing of flows incomplex geometries,COMPTES RENDUS MECANIQUE2011,339(2-3):104~124.
    [92] Shi Jin,Minev Peter,Nandakumar Krishnaswamy. A scalable parallel algorithm for the directnumerical simulation of three-dimensional incompressible particulate flow.International Journalof Computational Fluid Dynamics,2009,23(5):427~437.
    [93]庞文强,伍建林.CFD并行计算平台的搭建与性能分析.重庆科技学院学报(自然科学版),2009,11(6):158~161.
    [94]李静梅,张岐,王军锋.多核处理器并行计算模型研究.智能计算机与应用,2011,1(3):9~13.
    [95]鹿世化,刘卫华,余跃进,等.翅片管换热器内部空气流场的数值模拟与实验研究.化工学报,2010,61(6):1367~1372.
    [96]肖鹏,徐永东,张立同,等.CVI反应器气体流动可视化发烟系统.航空材料学报,2000,20(2):46~48.
    [97]黄有群,邱雪梅,张富勇.用碰撞检测实现三维烟雾蔓延的可视化仿真.沈阳工业大学学报,2006,28(4):418~421.
    [98]郅刚,锁朱均.油膜流场可视化的实时性研究.计算机辅助设计与图形学学报,2004,16(1):116~120.
    [99]金援越,陈钟顾,王启杰.测量太阳池盐浓度的激光光纤技术.太阳能学报,1994,15(2):198~200.
    [100]孙文策,王华,黄丽萍.苦卤太阳池池水的太阳辐射透射率与浊度的实验研究.太阳能学报,2007,28(5):490~492.
    [101]张志伟,尹卫峰,温廷敦,等.溶液浓度与其折射率关系的理论和实验研究.中北大学学报(自然科学版),2009,30(3):281~285.
    [102]叶晓明,宋爱国,李申生.太阳池盐水溶液的折射率.太阳能学报,1987,8(1):95~97.
    [103]黄志贝,傅方聪,芦立娟,等.用光速测量仪探究蔗糖溶液折射率与浓度的关系.大学物理实验,2011,24(5):1~3.
    [104]陈余行,马振斌.最小偏向角法测量NaCl溶液浓度与折射率.实验科学与技术,2010,8(6):16~17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700