用户名: 密码: 验证码:
水稻黄单胞菌致病相关基因hpa2的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物病原细菌水稻黄单胞引起水稻病害,包括水稻白叶枯病和水稻细条斑病。水稻白叶枯病由水稻黄单胞白叶枯致病变种引起,是水稻上最严重的病害之一;水稻细条斑病由水稻黄单胞细条斑致病变种引起,是在水稻主产区逐渐流行的一个重要病害。作为重要的植物病原,水稻黄单胞菌的侵入机制还没有被很好地阐明。病菌与寄主互作的过程与经过分泌系统泌出的效应蛋白相联系。在植物病原细菌中,Ⅲ型泌出通道是一个重要的分泌系统。这个系统涉及病原致病性,过敏性反应,以及效应蛋白的分泌。
     在植物病原黄单胞菌中,引起过敏反应和致病性的蛋白由其hrp基因簇上的基因编码,这些蛋白包括Hrc蛋白、Hrp蛋白和Hpa蛋白等。hrc基因共有11个,即hrcC、T、N、L、J、U、V、Q、R、S和D,这些基因对应的Hrc蛋白是Ⅲ型泌出系统的组成成分。hrp基因共有9个,即hrpB7、B5、B4、B2、B1、D5、D6、E和F。hpa基因共有8个,即hpa2、1、P、A、B、4、3和F。已经确定,在hrp基因簇一些操纵子的启动子区域含有植物诱导的PIP盒,即一个保守的序列TTCGC-N_(15)-TTCGC。这个PIP包括完整的PIP盒和不完整的PIP盒。
     为了研究hpa2基因的功能,我们选定了5个水稻黄单胞菌菌株,即Xanthomonasoryzae pv.oryzae PXO99(Xoo PXO99)、Xanthomonas oryzae pv.oryzae ZHE173(XooZHE173)、Xanthomonas oryzae pv.oryzae JXOⅢ(Xoo JXOⅢ)、Xanthomonas oryzaepv.oryzicola HAN1(Xooc HAN1)和Xanthomonas oryzae pv.oryzicola RS105(XoocRS105),克隆得到相应的hpa2基因。对这些基因及其推测的氨基酸序列进行分析,结果表明:具有712 bp的hpa2基因由564 bp的ORF区域和148 bp的启动子区域构成,在水稻黄单胞菌中高度保守。在启动子区域的上游都存在一个相同的不完整的植物诱导的PIP盒,即TTCGC-N_(15)-TTCGT。在核苷酸序列中,只有个别碱基发生变化。在启动子区域,菌株Xooc HAN1只有一个碱基被替换,即G_(80)→A_(80)。在ORF区域,菌株Xooc RS105有三个碱基被替换,即C_(430)→T_(430),T_(592)→C_(592),T_(673)→C_(673)。菌株XooPXO99有两个碱基被替换,即A_(601)→T_(601),A_(618)→G_(618)。由于密码子的简并性,这五个hpa2基因编码一致的氨基酸序列。
     蛋白质数据库搜索结果显示,Hpa2蛋白的氨基酸序列中含有可溶性的裂解转糖基酶(Soluble Lytic Transglycosylase,SLT)的功能域。在酶分子中,具有总酸碱催化能力的氨基酸残基有七个,即谷氨酸、天冬氨酸、赖氨酸、精氨酸、酪氨酸、半胱氨酸和组氨酸等。它们在Hpa2蛋白中的含量为30.5%,接近于在SLT70中28.6%的含量和在T4噬菌体溶菌酶(Enterobacteria phage T4 Lysozyme,T4L)中32.3%的含量。
     使用pET-30a(+)载体,我们成功地表达了来自Xoo PXO99菌株hpa2基因564 bp的ORF,得到了一个Hpa2蛋白。该蛋白含有187个氨基酸,分子量为20.8 kDa,等电点为9.62。与推算的结果相一致,Hpa2蛋白呈现强碱性,在pH10.1的TE缓冲液中,能够提取到足量的Hpa2蛋白。为了研究Hpa2蛋白的分泌特性,我们将Hpa2蛋白的过量表达菌株564-6与菌株Micrococcus luteus进行了共培养,观察OD_(600)值的变化情况。与菌株M.luteus的单独培养相比较,共培养菌液的OD_(600)值没有发生明显的变化;而与含有Hpa2蛋白的两个正对照相比却发生了明显的变化。这表明,Hpa2蛋白没有从它的过量表达菌株E.coli的细胞内分泌至细胞外。
     我们对M.luteus、Clavibacter michiganense subsp.sepedonicum、Bacillus subtilis、Escherichia coli、Xoo PXO99和Xooc RS105等六个菌株分别进行了含有Hpa2蛋白上清液、含有pET-30a(+)载体的上清液(阴性对照)、溶菌酶(阳性对照)和pH值为6.8的TE缓冲溶液(阴性对照)的处理。对所有处理液的6个时间段,即2、4、6、8、10和12小时,分别进行了OD_(600)值的测定。结果显示,随着处理时间的延长,所有处理液的OD_(600)值都有下降的趋势。与两个阴性对照相比,经溶菌酶和Hpa2上清液处理的都发生了明显的变化。但是,两种处理变化的情况不同。除M.luteus外,溶菌酶与Hpa2上清液处理的OD_(600)变化趋势存在差异。在2小时后,对于C.m.subsp.sepedonicum、E.coli和Xoo PXO99菌株,Hpa2上清液低于溶菌酶的OD_(600)值。在8小时以后,而对于C.m.subsp.sepedonicum和E.coli菌株,Hpa2上清液却高于溶菌酶的OD_(600)值。这一结果表明的Hpa2的酶动力性高于溶菌酶,但酶活性要低于溶菌酶。与另外五个菌株的变化趋势相比,M.luteus菌株4个处理溶液的OD_(600)值一直呈稳定变化的趋势。在所有时间段里,溶菌酶处理的OD_(600)值都明显低于Hpa2上清液。在8小时之前,溶菌酶和Hpa2上清液与两个阴性对照[TE缓冲溶液和pET-30a(+)上清液]相比,都明显降低。但在10小时之后,Hpa2上清液与两个阴性对照相比,却无差异。
     综合上述OD_(600)值测定结果,我们得出结论:Hpa2蛋白对供试的6个细菌菌株都具有溶菌作用,但对不同菌株的溶菌活性有差异。M.luteus、C.m.subsp.sepedonicum和B.subtilis为革兰氏阳性菌;E.coli、Xoo PXO99和Xooc RS105为革兰氏阴性菌。这说明,Hpa2蛋白对不同类型的细菌都具有溶解活性。
     为了进一步确定Hpa2蛋白溶解细菌细胞的位点,根据上述实验结果,我们选定了M.luteus作为供试菌株。经过Hpa2蛋白处理后,在透射电子显微镜下观察,细菌的细胞壁明显地被裂解。细胞壁由光滑变为凹凸形状,部分被毁坏,甚至呈现崩溃的、细胞内物质溢出的状态。这说明,Hpa2蛋白能够裂解细菌的细胞壁。
     为了更好地探明Ⅲ型泌出系统与hpa2基因的关系,我们利用自杀性的敲除载体pKNOCK-Cm和具有功能互补作用的粘粒载体pUFR034,构建了hpa2基因的突变载体pKNO464-16和互补载体pUFRcom712-22,并筛选得到hpa2基因的突变体464-16及其功能互补子712-22。对突变体和互补转化子进行水稻接种,观察植株反应情况。接种水稻的观察结果:突变菌株接种叶片的病斑明显小于野生菌株Xoo PXO99的病斑,互补菌株的病斑虽然比野生菌株的小,但比突变菌株的大。细菌繁殖的增长量测定结果:在水稻叶片中,接种两天后的野生菌株细胞的增长量大约为1000倍,突变体的大约为10倍,互补的大约为100倍。接种非寄主的结果:突变体不能诱导烟草、番茄和辣椒产生HR,但可以诱导大白菜产生HR。上述结果表明,hpa2基因能够在水稻上引起致病性,可以在某些非寄主植物上引产生敏性反应,也有个别非寄主植物不能产生过敏性反应。
     综合全部实验结果,我们得出结论:Hpa2蛋白在水稻黄单胞菌中是保守的,对细菌细胞壁具有裂解活性。我们推测Hpa2蛋白通过拉大细菌细胞壁肽聚糖网络孔洞的方式辅助Ⅲ型泌出系统的装配。这表明hpa2基因可以通过TTSS起作用,进而影响病菌的致病性。Hpa2是Hrp蛋白家族中第一个被鉴定的具有裂解活性的蛋白,所以,我们的实验结果有助于更好地理解细菌与寄主的互作关系。
The phytopathogenic bacteria Xanthomonas oryzae(X.oryzae) causes wide-spread diseases in rice including leaf blight and streak.The leaf blight caused by X.o.pathovar oryzae(Xoo) is one of the most serious diseases.The leaf streak caused by X.o.pathovar oryzicola(Xooc) is emerging as an important disease.As an important pathogenic bacterium,the mechanism of the bacterial invasion in host is poorly understood.Interaction between the pathogen and host associates with effector proteins through secretion systems. Existed in many species of phytopathogenic bacteria,typeⅢsecretion system(TTSS) is one of such pivotal systems,which involves pathogenicity,hypersensitive response(HR) and the secretion of effector protein.
     Hrp proteins encoded by HR and pathogenicity(hrp) genes in a cluster consist of Hrc, Hrp and Hpa proteins in phytopathogenic Xanthomonas.The hrp-conserved(hrc) consists of eleven genes hrcC、T、N、L、J、U、V、Q、R、S and D.Corresponding Hrc proteins are required by the components of the TTSS.The hrp consists of nine genes hrpB7,B5,B4, B2,B1,D5,D6,E,and F.The hrp-associated(hpa) consists of eight genes hpa2,1,P,A,B, 4,3,and F.The plant-inducible promoter(PIP,conserved sequence TTCGC-N_(15)-TTCGC), including perfect and imperfect PIP boxes,has been identified in some operons of the hrp cluster.
     To clarify the function of hpa2 gene,we cloned five hpa2 genes from five bacterial strains Xoo PXO99、Xoo ZHE173、Xoo JXOⅢ、Xooc HAN1 and Xooc RS105,and analyzed the gene and amino acid sequences.The result suggests that the conserved hpa2 gene contained 712 bp of genomic sequence including a promoter of 148 bp and an ORF of 564 bp.An imperfect PIP box(TTCGC-N_(15)-TTCGT) was identified in upstream of the promoter region.Several bases change in the nucleotide sequences.In promoter region,the base A_(80) substitutes for G_(80) in strain Xooc HAN1.In ORF region,the base T_(430) substitutes for C_(430),C_(592) for T_(592) and C_(673) for T_(673) in strain Xooc RS105;the base T_(601) substitutes for A_(601) and the G_(618) for A_(618) in strain Xoo PXO99.Because of degeneracy,all the five hpa2 ORF encodes a consensus amino acid sequence.
     The result of protein database research indicates that the Hpa2 may contain a Soluble Lytic Transglycosylase(SLT) domain.In enzyme,there are seven residues(Glu、Asp、Lys、Arg、Tyr、Cys and His)of general acid-base catalysis potential.The residue content(30.5%) of the Hpa2 was close to that(28.6%) of the soluble 70 kDa lytic transglycosylase (SLT70)or that(32.3%) of Enterobacteria phage T4 lysozyme(T4L),respectively.
     An Hpa2 protein from the strain Xoo PXO99 was successfully expressed in vector pET-30a(+).The protein consisted of a putative 187 amino acids,with a molecular weight of 20.8 kDa.Its isoelectric point(pI) was calculated to be 9.62.Consistent with this,we found that in vitro-expressed Hpa2 was a strongly basic protein,and a higher concentration of protein could be obtained in pH 10.1 TE buffer.To observe the secretion activity of the Hpa2,we co-cultured the over-expressed strains 564-6 and Micrococcus luteus(negative control),and investigate the changed OD_(600) value.Compared with M.luteus alone,the OD_(600) value of the co-cultured solution could not change significantly,but done when compared with the two positive controls including Hpa2 protein.This suggests that the Hpa2 cannot be secreted from the over-expressed strain E.coli cells.
     Six strains M.luteus、Clavibacter michiganense subsp.sepedonicum、Bacillus subtilis、Escherichia coli、Xoo PXO99 and Xooc RS105 were treated with different solutions,such as Hpa2 and pET-30a(+) supematants,lysozyme and TE buffer.All OD_(600) values of treatments were measured in 2,4,6,8,10 and 12 hours.The result indicates that the OD_(600) of all treatment solutions changed with the time.Compared with two negative controls [pET-30a(+) and TE buffer],treatments of the lysozyme and Hpa2 changed obviously.But, the change trend was different between the two treatments except the strain M.luteus.For the strains C.m.subsp.sepedonicum、E.coli and Xoo PXO99,the OD_(600) value of the Hpa2 was lower than that of lysozyme in 2 hours while,for the former two strains,that of the Hpa2 was higher than the lysozyme in 8 hours.This suggests that the Hpa2 lytic activity may have faster kinetics and lower activity than lysozyme.Compared with the five others, the OD_(600) value change of the strain M.luteus did not fluctuate.The OD_(600) value of lysozyme was obviously lower than that of the Hpa2 in all treatments.Before 8 hours,the OD_(600) values of lysozyme and Hpa2 were lower than the pET-30a(+) and TE buffer. However,after 10 hours the OD_(600) value of the Hpa2 was not different from the two negatives.
     Together with above data,we conclude that the Hpa2 has lytic effect on the six resulting strains,but the activity was different among different bacteria,the strains M.luteus、C.m.subsp.sepedonicum and B.Subtilis are gram-positive,while the strains E. coli、Xoo PXO99 and Xooc RS105 are gram-negative.This suggests that the Hpa2 has lytic activity to diverse bacteria.
     To furtherly determine the site of the cell lysed by the Hpa2,based on the OD_(600) measurement we selected the strain M.luteus for transmission electron microscope(TEM) observation.Treated with the Hpa2,cell wall was obviously waved,even disrupted and damaged.This indicates that the Hpa2 can possess a lytic activity against bacterial cell wall.
     For the elucidation of the interaction between hpa2 gene and TTSS,with the suicide vector pKNOCK-Cm and cosmid pUFR034 we furtherly made vector constrctions,and screened a loss-of-function mutant and a complemental transformant.After rice inoculumn, the leaf blight of the complement was smaller than that of the wild-type strain,but larger than that of the mutant.In 2 days,the wild-type cell growth was about 1000 fold,the mutant 10,and the complement 100,in rice leaves.After nonhost plant injection,the mutant could not induce HR on tobacco,tomto and peper,but done in Chinese cabbage. These indicate that the hpa2 gene possesses a pathogenicity in rice,and may induce HR in some nonhosts plants,but not in the others.
     Our result suggests that Hpa2 protein is conserved in X.oryzae,and has a lytic activity against the bacterial cell wall.We speculate that the Hpa2 contributes to the assembly of the TTSS by enlarging gaps in the peptidoglycan meshwork of bacterial cell wall,furtherly affect the pathogenicity of the pathogen.As this is the first of such enzyme activity identified in the Hrp protein family,our result offers a new clue to better understand the interaction between bacteria and their hosts.
引文
1. Abramovitch RB, Martin GB (2004) Strategies used by bacterial pathogens to suppress plant defenses. Opinion in Plant Biology 7:356-364
    2. Alexeyev MF (1999) The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of Gram-negative bacteria. BioTechniques 26:824-826
    3. Alfano JR., collmer A (1997) The Type III (Hrp ) secretion pathway of plant pathogenic bacteria: trafficking harpins, avr proteins, and death (minireview) . J Bacteriol 179:5655-5662
    4. Alfano JR., Collmer A (2004) Type III secretion system effctor proteins: double agents in Bacterial disease and plant defense.Annu Rev Phytopathol 42:385-414
    5. Arnold DL, Jackson RW, Waterfield NR, Mansfied JW (2007 ) Evolution of microbial virulence: the benefits of stress (review) . TRENDS in Genetics 23:293-300
    6. Biemelt S, Sonnewald U (2006) Plant-microbe interactions to probe regulation of plant carbon metabolism. Journal of Plant Physiology 163:307-318
    7. Blocker A, Komoriya K, Aizawa SI (2003) Type III secretion systems and bacterial flagella: insights into their function from structural similarities. PANS 6:3027-3030
    8. Bogdanove AJ, Wei ZM, Zhao L, Beer SV (1996) Erwinia amylovora secretes Harpin via a type III pathway and gontains a homolog of yopN of Yersinia spp. J Bacteriol 178:1720-1730
    9. Brock TD (1979)Cell wall. In: Brock TD (ed)Biology of microorganisms. 3rd edn. Prentice-Hall, Englewood Cliffs, NJ, pp. 25-33
    10. Buttner D, Bonas U (2002a) Getting across-bacterial type effector proteins on their way to the plant cell. The EMBO Journal 21:5313-5322
    11. Buttner D, Bonas U (2002b) Port of entry-the type III secretion translocon. TRENDS in Microbiology 10:186-192
    12. Buttner D, Gurlebeck D, Noel LD, Bonas U (2004) HpaB from Xanthomonas campestris pv, vesicatoria acts as an exit control protein in type III-dependent protein secretion. Molecular Microbiology 54:755-768
    13. Buttner D, Noel L, Stuttmann J, Bonas U (2007) Characterization of the non-conserved hpaB-hrpF region in the hrp pathogenicity island from Xanthomonas campestris pv. vesicatoria. MPMI 20:1063-1074
    14. Chang JH, Goel AK, Grant SR, Dangl JL (2004) Wake of the flood: ascribing functions to the wave of type Ⅲ effector proteins of phytopathogenic bacteria.Current Opinion in Microbiology 7:11-18
    15.Chen G-Y,Wang J-SH(2003) Exchangeability of two hrp gene fragments from Xanthomonas oryzae pv.oryzae and pv.oryzicola for hypersensitive response on tobacco and pathogenicity on rice.Agricultural Sciences in China 2:975-981
    16.Chen LL(2006) Identification ofgenomic islands in six plant pathogens.Gene 374:134-141
    17.Collmer A,Lindeberg M,Petnicki-Ocwieja T,Schneider DJ,Alfano JR(2002) Genomic mining type Ⅲ secretion system effectors in Pseudomonas syringae yields new pick for all TTSS prospectors.TRENDS in Microbiology 10:462-469
    18.Cordes FS,Daniell S,Kenjale R,Saurya S,Picking WL,Picking WD,Booy F,Lea SM,Blocker A (2005) Helical packing of needles from functionally altered Shigella type Ⅲ secretion systems.J Mol Biol 354:206-211
    19.Crepin VF,Shaw R,Knutton S,Frankel G(2005) Molecular basis of antigenic polymorphism of EspA filaments:development ofa peptide display technology.J Mol Biol 350:42-52
    20.Cunnac S,Boucher C,Genin S(2004) Characterization of the cis-acting regulatory element controlling HrpB-mediated activation of the type Ⅲ secretion system and effector genes in Ralstonia solanacearum.Journal of bacteriology 186:2309-2318
    21.da Cunha L,Sreerekha M-V,Mackey D(2007) Defense suppression by virulence effcetors of bacterial phytopathogens.Current Opinion in Plant Biology 10:349-357
    22.Dijkstra BW,Thunnissen AMWH(1994) "Holy" proteins Ⅱ:the soluble lyric transglycosylase.Current Opinion in Structural Biology 4:810-813
    23.Ehrbar K,Hardt WD(2005) Bacteriophage-encoded type Ⅲ effectors in Salmonella enterica subspecies 1 serovar Typhimurium(review).Infection Genetics and Evolution 5:1-9
    24.Erskine PT,Knight MJ,Ruaux A,Mikolajek H,Sang NWF,Withers J,Gill R,Wood SP,Wood M,Fox G C,Cooper JB(2006) High resolution structure of BipD:an invasion protein associated with the type Ⅲ secretion system of Burkholderia pseudomallei.J Mol Biol 363:125-136
    25.Fadouloglou VE,Tampakaki AP,Glykos NM,Bastaki MN,Hadden JM,Phillips E,Panopoulos NJ,Kokkinidis M(2004) Structure of HrcQ_B-C,a conserved component of the bacterial type Ⅲsecretion systems.PNAS 101:70-75
    26.Fenselau S,Bonas U(1995) Sequence and expression analysis of the hrpB pathogenicty operon of Xanthomonas campestris pv.vesicatoria which encodes eight proteins with similarity to components of the Hrp,Yse,Spa,and Fli secretion systems.MPMI 8:845-854
    27.Ferreira AO,Myers CR,GordonJS,Martin GB,Vencato M,Collmer A,Wehling MD,Alfano JR, Moreno-Hagelsieb G, Lamboy W F, DeClerck G, Schneider DJ, Cartinhour SW (2006) Whole-genome expression profiling defines the HrpL regulon of Pseudomonas syringae pv. tomato DC3000, allows de novo reconstruction of the Hrp cis clement, and identifies novel coregulated genes. MPMI 19:1167-1179
    28. Folders J, Algra J, Roelofs MS, van Loon Leendert, Tommassen J, Bitter W (2001 ) Characterization of Pseudomonas aeruginosa chitinase. J Bacteriol 183:7044-7052
    29. Fouts DE, Abramovitch RB, Alfano JR, Baldo AM, Buell CR, Cartinhour S, Chatterjee AK, Ascenzo MD, Gwinn ML, Lazarowitz SG, Lin NC, Martin GB, Rehm AH, Schneider DJ, van Djik K, Tang X, Collmer A (2002) Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoter controlled by the HrpL alternative sigma factor. PNAS 99: 2275-2280
    30. Francis MS, Wolf-Watz H, Forsberg A (2002) Regulation of type III secretion systems. Current opinion in microbiology 5:166-172
    31. Fujitani Y, Yamamoto K, Kobayashi I (1995) Dependence of frequency of homologous recombination on the homology length. Genetics 140:797
    32. Furutani A, Nakayama T, Ochiai H, Kaku H, Kubo Y, Tsuge S (2006) Identification of novel HrpXo regulons preceded by two cis-acting elements, a plant-inducible promoter box and a -10 box-like sequence, from the genome database of Xanthomonas oryzae pv. oryzae. FEMS Microbiol Lett 259:133-141
    33. Furutani A, Tsuge S, Oku T, Tsuno K, Inoue Y, Ochiai H, Kaku H, Kubo Y, (2003) Hpal secretion via type III secretion system in Xanthomonas oryzae pv. oryzae. J Gen Plant Pathol 69:271-275
    34. Galan JE, Collmer A (1999) Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284:1322-1328
    35. Goodman AL, Lory S (2004) Analysis of regulatory networks in Pseudomonas aeruginosa by genomewide transcriptional profiling. Current Opinion in Microbiology 7:39-44
    36. Gophna U, Ron EZ, Graur D (2003) Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events. Gene 312:151-163
    37. Greenberg JT, Vinatzer BA (2003) Identifying type III effectors of plant pathogens and analyzing their interaction with plant cells. Current Opinion in Microbiology 6:20-28
    38. Gurlebeck D, Thieme F, Bonas U (2006) Type III effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant. Journal of Plant Physiology 163:233-255
    39. Hacker J, Blum-Oehler G, Muhldorfer I, TschSpe H (1997) Pathogenicity islands of virulent bacterial: structure, function and impact on microbial evolution (microreview) . Molecular Microbiology 23:2089-1097
    40. He SY (1998) Type III protein secretion systems in plant and pathogenic bacteria. Annual Review of Phytopathology 36:363-392
    41. He SY, Jin Q (2003) The Hrp pilus: learning from flagella. Current Opinion in Microbiology 6:15-19
    42. He SY, Nomura K, Whittam TS (2004 ) Type III protein secretion mechanism in mammalian and plant pathogens. Biochimica et Biophysica Acta 1694:181-206
    43. Horino O (2002) Studies on resistance mechanisms of rice against bacterial blight caused by Xanthomonas oryzae pv. oryzae. J Gen Plant Pathol 68:253-256
    44. Hotson A, Mudgett MB (2004) Cysteine proteases in phytopathogenic bacteria: identification of plant targets and activation of innate immunity. Current Opinon in Plant Biology 7:384-390
    45. Hueck CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiology and Molecular Biology Reviews 62:379-433
    46. Huguet E, Hahn K, Wengelnik K, Bonas U (1998) HpaA mutants of Xanthomonas campestris pv. vesicatoria are affected in pathogenicity but retain the ability to induce host-specific hypersensitive reaction. Molecular Microbiology 29:1379-1390
    47. Kay S, Boch J, Bonas U (2005) Characterization of AvrBs3-Like effectors from a Brassicaceae pathogen reveals virulence and avirulence activities and a protein with a novel repeat architecture. MPMI 18:828-848
    48. Kim JG, Park BK, Yoo CH, Jeon E, Oh J, Hwang I (2003) Characterization of the Xanthomonas axonopodis pv. glycines Hrp pathogenicity island. J Bacteriol 185:3155-3166
    49. Koebnik R, Kruger A, Thieme F, Urban A, Bonas U (2006) Specific binding of the Xanthomonas campestris pv. vesicatoria AraC-type transcriptional activator HrpX to plant-inducible promoter boxes. J Bacteriol 188:7652-7660
    50. Koraimann G ( 2003 ) Lytic transglycosylases in macromolecular transport systems of gram-negative bacteria. Cell Mol Life Sci 60:2371-2388
    51. Kumar RS, Sakthivel N (2001) Exopolysaccharides of Xanthomonas pathovar strains that infect rice and wheat crops. Appl Microbiol Biotechnol 55:782-786
    52. Kvitko BH, Ramos AR, Morello JE, Hye-Sook OHS, Collmer A (2007) Idetification of harpins in Pseudomonas syringae pv. tomato DC3000, which are functionally similar to HrpK1 in promoting translocation of type secretion system effectors. J Bacteriol 189: 8059-8072
    53. Lee BM, Park YJ, Park DS, Kang HW, Kim JG, Song ES, Park IC, Yoon UH, Hahn JH, Koo BS, Lee GB, Kin H, Park HS, Yoon KO, Kim JH, Jung CH, Koh NH, Seo JS, Go SJ (2005) The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Research 33:577-586
    54. Li CM, Haapalainen M, Lee J, Nurnberger T, Romantschuk M, Taira S (2005) Harpin of Pseudomonas syringae pv. phaseolicola harbors a protein binding site. MPMI 18:60-66
    55. Lindeberg M, Cartinhour S, Myers CR, Schechter LM, Schneider DJ, Collmer A (2006) Closing the circle on the discovery of genes encoding hrp regulon members and type III secretion system effectors in the genomes of three model Pseudomonas syringae strains. MPMI 19:1151-1158
    56. Lindeberg M, Stavrinides J, Chang JH, Alfano JR, Collmer A, Dangl JL, Greenberg JT, Mansfield JW, Guttman DS (2005) Proposed guidelines for a unified nomenclature and phylogenetic analysis of type III Hop effector proteins in the plant pathogen Pseudomonas syringae (review) . MPMI 18:275-282
    57. Lindgren PB (1997) The role of hrp genes during plant-bacterial interactions. Annu Rev Phytopahol 35:129-152
    58. Lindgren PB, Peet RC, Panopoulos NJ (1986) Gene cluster of Pseudomonas syringae pv. "phseolicola" controls pathogenicity of bean plants and hypersensitivity on nonhost plants. Journal of Bacteriology 168:512-522
    59. Li P, Lu X, Shao M, Long J, Wang J (2004) Genetic diversity of Harpins from Xanthomonas oryzae and their activity to induce hypersensitive response and disease resistance in tobacco. Science in China Ser. C Life Sciences 47:461-469
    60. Liskay RM, Letsou A, Stachelek JL (1987) Homology requirement for efficient gene conversion between duplicated chromosomal sequences in mammalian cell. Genetics 115:161-167
    61. Lloyd SA, Forsberg A, Wolf-Watz H, Francis MS (2001) Targeting exported substrates to the Yersinia TTSS: different functions for different signals? TRENDS in Microbiology 9:367-371
    62. Lober S, Jackel D, Kaiser N, Hensel M (2006) Regulation of Salmonella pathogenicity island 2 genes by independent environmental signals. International Journal of microbiology 296:435-447
    63. Macnab RM (1999) The bacterial flagellum: reversible rotary propeller and type III export apparatus (guest commentary) . Journal of Bacteriology 181:7149-7153
    64. Michiels T, Wattiau P, Brasseur R, Ruysschaert JM, Cornelis G (1990) Secretion of Yop proteins by Yersiniae. Infection and Immunity 58:2840-2849
    65. Miroshnikov KA, Faizullina NM, Sykilinda NN, Mesyanzhinov W (2006) Properties of the endolytic transglycosylase encoded by gene 144 of Pseudomonas aeruginosa bacteriophage phiKZ. Biochemistry (Mosc) 71:300-305
    66. Moss WP, Byrne JM, Campbell HL, Ji P, Bonas U, Jones JB, Wilson M (2007) Biological control of bacterial spot of tomato using hrp mutants of Xanthomonas campestris pv. vesicatoria. Biological Control 41:199-206
    67. Mudgett MB (2005) New insights to the function of phytopathogenic bacterial type III effectors in plants. Annual Review of Plant Biology 56:509-531
    68. Mudgett MB, Chesnokova O, Dahlbeck D, Clark ET, Rossier O, Bonas U, Staskawicz BJ (2000 ) Molecular signals required for type III secretion and translocation of the Xanthomonas campestris AvrBs2 protein to pepper plants. PNAS 97:13324-13329
    69. Mushegian AR, Fullner KJ, Koonin EV, Nester EW (1996) A family of lysozyme-like virulence factors in bacterial pathogens of plants and animals. Pro Natl Acad Sci 93:7321-7326
    70. Nakimbugwe D, Masschalck B, Atanassova M, Abebetch ZB, Michiels CW (2006) Comparison of bactericidal activity of six lysozymes at atmospheric pressure and under high hydrostatic pressure. International Journal of Food Microbiology 108:355-363
    71. Nasr NM, Fllon AM (2003) Detection of lysozyme-like enzymatic activity secreted by an immune-responsive mosquito cell line. Journal of Invertebrate Pathology 82:162-166
    72. Nino-Liu DO, Ronald PC, Bogdanove AJ (2006)Xanthomonas oryzae pathovars: model pathogens of a model crop. Molecular Plant Pathology 7:303-324
    73. Ochiai H, Inoue Y, Takeya M, Sasaki A, Kaku H (2005) Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large number of effector genes and insertion sequences to its race diversity. JARQ 39:275-287
    74. Oh CS, Beer SV (2005 ) Molecular genetics of Erwinia amylovora involved in the development of fire blight ( minireview ) . FEMS Microbiology Letters 253:185-192
    75. Oku T, Tanaka K, Iwamoto M, Inoue Y, Ochiai H, Kaku H, Tsuge S, Tsuno K (2004 ) Structural conservation of the hrp gene cluster in Xanthomonas oryzae pv. oryzae. J Gen Plant Pathol 70:159-167
    76. Pallen MJ, Chaudhuri RR, Henderson IR (2003) Genomic analysis of secretion systems. Current Opinion in Microbiology 6:519-527
    77. Penaloza-Vazauez A, Preston GM, Collmer A, Bender CL (2000) Regulatory interactions between the Hrp type III protein secretion system and coronatine biosynthesis in Pseudomonas syringae pv. tomato DC3000. Microbiology 146:2447-2456
    78. Pitman AR, Jackson RW, Mansfied JW, Kaitell V, Thwaites R, Arnold DL (2005) Exposure to host resistance mechanisms drives evolution of bacterial virulence in plants. Current Biology 15:2230-2235
    79. Piano GV, Day JB, Ferracci F (2001 ) Type III export: new uses for an old pathway (microreview) . Molecular Microbiology 40:284-293
    80. Puhler A, Arlat M, Becker A, Gottfert M, Morrissey JP, Gara FO (2004) What can bacterial genome research teach us about bacteria-plant interactions? Current Opinion in Plant Biology 7:137-147
    81. Rathjen JP, Moffett P, (2003) Early signal transduction event in specific plant disease resistance. Current Opinion in Plant Biology 6:300-306
    82. Reid CW, Legaree BA, Clarke AJ (2007) Role of Ser216 in the mechanism of action of membrane-bound lytic transglycosylase B: Further evidence for substrate-assisted catalysis. FEBS Letters 581:4988-4992
    83. Sambrook J, Russell DW (2001) Molecular cloning: A laboratory manual. 3rd edn. Cold Spring Harbor Laboratory Press, New York
    84. Schechter LM, Vencato M, Jordan KL, Schneider SE, Schneider DJ, Collmer A (2006) Multiple approaches to a complete inventory of Pseudomonas syringae pv. tomato DC3000 type III secretion system effector proteins. MPMI 19:1180-1192
    85. Schubert S, Rakin A, Heesemann J (2004) The Yersinia high-pahtogenicity island (HPI) : evolutionary and functional aspects (review) . Inernational Journal of Medical Microbiology 294:83-94
    86. Shrestha R, Tsuchiya K, Baek SJ, Bae HN, Hwang I, Hur JH, Lim CK (2005) Identification of dspEF, HrpW, and hrpN loci and characterization of the hrpN_(Ep) gene in Erwinia pyrifoliae. J Gen Plant Pathol 71:211-220
    87. Sugio A, Yang B, White FF (2005) Characterization of the hrpF pathogenicity peninsula of Xanihomonas oryzae pv oryzae. MPMI 18:546-554
    88. Tampakaki AP, Fadouloglou VE, Gazi AD, Panopoulos NJ, Kokkinidis M (2004) Conserved features of type III secretion. Cellular Microbiology 6:805-816
    89. Tang X, Xiao Y, Zhou JM (2006) Review Regulation of the type III secretion system in phytopathogenic bacteria. MPMI 19:1159-1166
    90. Tasic L, Borin PFL, Khater L, Ramos CHI (2007) Cloning and characterization of three hypothetical secretion chaperone protein from Xanthomonas axonopodis pv. citri. Protein Expression and Purification 53:363-369
    91. Thomas NA, Finlay BB (2003) Establishing order for type III secretion substrates-a hierarchical process. TRENDS in Microbiology 11:398-403
    92. Tsuge S, Terashima S, Furutani A, Ochiai H, Oku T, Tsuno K, Kaku H, Kubo Y (2005) Effects on promoter activity of base substitutions in the cis-acting regulatory element of HrpXo regulons in Xanthomonas oryzae pv. oryzae. J Bacteriol 187:2308-2314
    93. van Asselt EJ, Thunnissen A-MWH, Dijkstra BW (1999) High resolution crystal structures of the Escherichia coli lytic transglycosylase SLT70 and its complex with a peptidoglycan fragment. J Mol Biol 291:877-898
    94. van Straaten KE, Dijkstra BW, Vollmer W, Thunnissen AMWH (2005 ) Crystal structure of MltA from Escherichia coli reveals a unique lytic transglycosylase fold. J Mol Biol 352:1068-1080
    95. Vencato M, Tian F, Alfano JR., Buell CR, Cartinhour S, Declerck GA, Guttman DS, Stavrinides J, Joardar V, Lindeberg M, Bronstein PA, Mansfield JW, Myers CR, Collmer A, Schneider DJ (2006) Bioinformatics-enabled identification of the HrpL regulon and type III secretion system effector proteins of Pseudomonas syringae pv. phaseolicola 1448A. MPMI 19:1193-1206.
    96. Walderich B, Holtje JV (1991) Subcellular distribution of the soluble lytic transglycosylase in Escherichia coli. J Bacteriol 173:5668-5676
    97. Wang X, Li M, Zhang J, Zhang Y, Zhang G, Wang J (2006) Identification of a key functional region in harpins from Xanthomonas that suppresses protein aggregation and mediates harpin expression in E. coli. Mol Biol Rep 34:189-198
    98. Wang Y, Ouellette AN, Egan CW, Rathinavelan T, Im W, Guzman RND (2007 )Differences in the electrostatic surfaces of the type III secretion needle proteins PrgI, BsaL, and MxiH. J Mol Biol 371:1304-1314
    99. Wareham DW, Curtis MA (2007) A genotypic and phenotypic comparison of type III secretion profiles of Pseudomonas aeruginosa cystic fibrosis and bacteremia isolates. International Journal of Microbiology 297:227-234
    100. Wei ZM, Laby RJ, Zumoff CH, Bauer DW, He SY, Collmer A, Beer SV (1992) Harpin, elicitow of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257:85-87
    101. Wengelnik K, Ackerveken GV, Bonas U (1996a) HrpG, a key hrp regulatory protein of Xanthomonas campestris pv. vesicatoria is homologous to two component response regulators. MPMI 9:704-712
    102. Wengelnik K, Bonas U (1996b) HrpXv, an AraC-type regulator, activates expression of five of the six loci in the hrp cluster of Xanthmonas campestris pv. vesicatoria. J Bacteriol 178:3462-3469
    103. Wilson JW, Nickerson CA (2006) Cloning of a functional Salmonella SPI-1 type III secretion system and development of a method to create mutations and epitope fusions in the cloned genes. Journal of Biotechnology 122:147-160
    104.Wulf J,Pascuzzi PE,Fahmy A,Martin GB,Nicholson LK(2004)The solution structure of type Ⅲeffector protein AvrPto reveals conformational and dynamic features important for plant pathogenesis.Structure 12:1257-1268
    105.Wu XM,Li YR,Zou LF,Chen GY,(2007) Gene-for-gene relationships between rice and diverse avrBs3/pthA avirulence genes in Xathomonas oryzae pv.oryzae.Plant Pathology 56:26-34.
    106.Yang B,White FF(2004) Diverse members of the AvrBs3/PthA family of type Ⅲ effectors are major virulence determinants in bacterial blight disease office.MPMI 17:1192-1200
    107.Zhang L,Wang Y,Picking WL,Picking WD,Guzman RND(2005) Solution structure of monomeric BsaL,the type Ⅲ secretion needle protein of Burkholderia pseudomallei.J Mol Biol 359:322-330
    108.Zhao B,Ardales EY,Raymundo A,Bai J,Trick HN,Leach JE(2004) The avrRxo1 gene from the rice pathogen Xanthomonas oryzae pv.oryzicola confers a non-host defense reaction on maize with resistance gene Rxo1.MPMI 17:771-779
    109.Zhou D,Yang R(2006) Global analysis of gene transcription regulation in prokaryotes.Cell Mol Life Sci 63:2260-2290
    110.Zhou X(2001) Supermolecular structure of the EPEC TTSS.TRENDS in Microbiology 9:581
    111.Zhu W,Magbanua MM,White FF(2000) Identification of two novel hrp-associated genes in the hrp gene cluster of Xanthomonas oryzae pv.oryzae.J Bacteriol 182:1844-1853
    112.Zou L,Wang X,Xiang Y,Zhang B,Li Y,Xiao Y,Wang J,Walmsley AR,Chen G(2006)Elucidation of the hrp clusters of Xanthomonas oryzae pv.oryzicola that control the hypersensitive response in non-host tobacco and pathogenicity in susceptible host rice.Applied and Environmental Microbiology 72:6212-6224
    113.陈功友,王金生等(2003).水稻条斑病细菌hrp调节基因hrpG_(Xooc)和hrp_(Xooc)的克隆和序列分析[J].植物病理学报,33(3):213-219
    114.陈永辉,史贤明等(2005).利用转座子Tn917构建单核细胞增生李斯特菌菌膜形成突变株[J].微生物学报,45(6):952-954
    115.丛延广,徐启旺等(2004).利用Mini-Tn5转座子诱导弗氏枸橼酸杆菌入突变的研究[J].第三军医大学学报,26(13):1156-1147郭晓静(2003).水稻细条斑病菌Harpin_(Xooc)蛋白功能域研究.硕士学位论文[M].南京农业大学
    116.杜智勇,粟永萍,杨天德,陶军,唐棠,李军,王峰超等(2007).类固醇受体辅活化子-1基因敲除小鼠的繁殖与筛选[J].重庆医学,36(16):1592-1594
    117.关铮,李亚里等(2007).基因敲除技术在妇科领域的应用[J].国外医学妇产科学分册,34(6):388-391
    118.郭红,边国慧,周钦等(2008).小鼠Pkd2基因条件性敲除打靶载体的构建[J].现代预防医学,35(5):921-923
    119.何晶,李强,金晓东等(2008).~(12)C~(6+)离子辐照诱发人类肝L02细胞hprt基因突变的研究[J].核技术,31(3):188-192
    120.金涛(2005).远源链球菌细胞分裂蛋白功能的初步研究.博士学位论文[M].第四军医大学
    121.李惠,赵明磊,尹隽,钟江等(2005).利用Tn5转座子构建杆状病毒AcM NPV随机突变体的初步研究[J].复旦学报(自然科学版),44(4):498-502
    122.李明(2005).Harpin_X蛋白的纯化、抗体制备及转hrf_X基因棉花的研究.博士学位论文[M].南京农业大学
    123.李培睿,闫世梁,张东辉,李宗义,秦广雍,霍裕平等(2008).氮离子注入生物絮凝剂产生菌的诱变效应研究[J].核技术,31(3):193-196
    124.李平(2002).水稻黄单胞菌(Xanthomas myzae)无毒基因avrXa3的克隆与鉴定以及过敏性反应激发子Hrf蛋白遗传多样性和功能域的研究.博士学位论文[M].南京农业大学
    125.李平,龙菊英,黄迎春,张燕,王金生等(2004a).从水稻白叶枯病菌分离的avrBs3家族新成员avrXa3是具双重功能的无毒基因[J].自然科学进展,14(7):767-773
    126.李平,陆徐忠,邵敏,龙菊英,王金生等(2004b).水稻黄单胞细菌Harpin蛋白的遗传多样性及其诱导烟草过敏反应和抗病性功能[J].中国科学C辑 生命科学,34:136-143
    127.李先平,何云昆,陈善娜,赵志坚,李树莲,李汝刚等(2002).表达HarpinEa基因的转基因马铃薯的晚疫病抗性分析[J].云南农业大学学报,17(3):252-257
    128.林巧玲,曾会才等(2005).植物病原物无毒基因研究进展[J].陕西农业科学,3:106-110
    129.刘爱新(2003).Harpin_(Xoo)诱发植物过敏反应和抗病性信号传导解析.博士学位论文[M].山东农业大学
    130.刘爱新,李多川,王金生,董汉松等(2005).Harpin_(Xoo)诱导烟草过敏性死亡的细胞及分子特征[J].中国农业科学,38(12):2446-2450
    131.龙菊英(2005).水稻黄单胞Xanthomonas oryzae pv.oryzicola LPS RS105合成基因簇的功能分析.博士学位论文[M].南京农业大学
    132.邵敏,李林,穆东升,肖姗姗,杨秀玲,王宏乐,刘新民,王金生等(2006).Harpin_(Xoo)在水稻中表达提高对白叶枯病不同小种抗性[J].中国生物防治,22(2):133-136
    133.生秀杰(2001).基因打靶的策略及其发展.国外医学(遗传分册),24(1):8
    134.舒小琼,周博,栾新红,刘虹,邹美,刘倩,谭正英,罗伟等(2007).基因敲除和RNAi在畜牧兽医领域的研究及展望[J].畜牧兽医杂志,26(5):42-44
    135.谭放军,徐泽安,尹文雅,丁杏芝等(2003).Harpin蛋白研究及其应用[J].湖南农业科学, 6:38-40
    136.汤承,李士丹等(2006).Harpin蛋白的研究进展[J].草业与畜牧,131(10):1-4
    137.王金生(2001).分子植物病理学[M].北京:中国农业出版社
    138.王金生(2000).植物病原细菌学[M].北京:中国农业出版社
    139.王镜岩,朱圣庚,徐长法等(2002).生物化学[M].北京:高等教育出版社,上册.pp.390-392
    140.王维兰,孙立军,陈喜文,刘健,只达石,陈德富等(2007).MIBP1基因敲除载体的构建[J].天津医药,35(10):755-757
    141.王晓宇(2007).Harpin_X蛋白定点突变和密码子优化研究.博士学位论文[M].南京农业大学
    142.谢承佳,何冰芳,李霜等(2007).基因敲除技术及其在微生物代谢过程方面的应用[J].生物加工过程,5(3):10-14
    143.徐伟,王鹏,张兴等(2007).微波辐射对干酪乳杆菌高产L-乳酸的诱变效应[J].辐射研究与辐射工艺学报,25(5):316-320
    144.叶静晓,张佳环,李连德,王金生等(2005).水稻白叶枯病菌hrp调节基因hrpG的鉴定及其变异分析[J].自然科学进展,15(2):160-166
    145.张维铭(2003).现代分子生物学手册[M].北京:科学出版社.
    146.赵梅勤,王磊,张兵,王金生,陈功友等(2006).植物抗病激活蛋白Harpin_(Xooc)防治水稻病害的研究[J].中国生物防治,22(4):283-289
    147.郑国香,任南琪,林海龙,李永峰等(2007).诱变育种选育高效产氢细菌[J].太阳能学报,28(6):632-637
    148.邹华松(2002).水稻黄单胞(Xanthomonas oryzae)pig和hrp基因的克隆与鉴定.博士学位论文[M].南京农业大学。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700