用户名: 密码: 验证码:
糙皮侧耳和肺形侧耳热胁迫响应的海藻糖代谢调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海藻糖在微生物中不仅是一种储存性物质,也是应激保护性物质。海藻糖可以稳定细胞膜和蛋白质天然结构,提高抗逆性。海藻糖在非生物胁迫抗逆响应中作用,正受到越来越广泛的重视。
     我国食用菌仍以农业设施生产为主,常受到气候变化的温度波动影响。突发的高温气候常导致菌丝生长缓慢,子实体产量和品质下降。因此,深入研究食用菌的高温胁迫响应机制,将为食用菌丰产优质技术研发奠定理论基础。
     本研究以侧耳属主要栽培种糙皮侧耳(Pleurotus ostreatus)和肺形侧耳(Pleurotuspulmonarius)的不同热敏感型菌株为材料,研究了外源海藻糖对高温胁迫下菌丝体内活性氧产生和抗氧化酶类活性变化的影响,以及不同热敏感型肺形侧耳高温胁迫及恢复培养条件下胞内海藻糖代谢途径在酶活性和基因水平的响应。主要研究结果如下:
     高温胁迫(最适生长温度+12℃)下,外源海藻糖处理对糙皮侧耳和肺形侧耳菌丝体内与抗氧化损伤有关生理指标的影响趋势相同。外源海藻糖处理可以降低高温下TBARS的显著积累,缓解膜的氧化伤害,表现为O-2和H2O2的积累减少,诱导脂氧合酶(LOX)活性降低。外源海藻糖对抗氧化酶活性产生不同的影响:保护超氧化物歧化酶(SOD),抑制过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR),不影响过氧化物酶(POD)。外源海藻糖提高抗热性与其保护抗氧化酶SOD活性和直接清除O-2和H2O2的作用有关。海藻糖提高生物的抗热性与浓度有关,对热敏感型菌株的保护效应高于其对耐热型强菌株的保护效应。
     正常生理条件下,肺形侧耳不同热敏感型菌株的胞内海藻糖本底值无显著差异。高温胁迫前期海藻糖大量积累,热敏感型菌株显著高于耐热型菌株,海藻糖-6-磷酸合成酶(TPS)和合成海藻糖反应方向海藻糖磷酸化酶(TP)活性较耐热型菌株的增幅更显著。TreP途径和OtsA-OtsB途径都是高温胁迫初期海藻糖合成的主要途径。胁迫中后期,不同热敏感型菌株的中性海藻糖酶(NTH)和降解海藻糖反应方向TP都参与海藻糖的降解。热敏感型菌株TPS活性保持持续升高,而耐热型菌株TPS活性呈下降趋势。
     高温胁迫后恢复培养,肺形侧耳不同热敏感型菌株的海藻糖含量迅速降至对照水平。热敏感型菌株的下降速率高于耐热型菌株。但是,TPS活性仍持续稳定升高,海藻糖-6-磷酸酯酶(TPP)是热敏感型菌株OtsA-OtsB途径合成海藻糖的限制酶。恢复期NTH和降解海藻糖反应方向TP活性增加。
     对高温胁迫及恢复培养期间海藻糖代谢相关基因表达量分析表明,TPS、TPP、TP活性变化与其相应基因的表达量变化一致,而NTH的活性变化与nth基因表达量的持续增加变化不一致。推测海藻糖对高温胁迫的应激响应是通过转录和翻译共同调控。高温胁迫及其后的恢复条件下,不同热敏感型菌株的海藻糖应激响应不完全相同,这主要来自tps基因表达的差异。
In microorganisms, trehalose functions both as a reserve carbohydrate and as a stress metabolite.Trehalose accumulation is a crucial defense mechanism that stabilizes proteins and biologicalmembranes during periods of stress. The research focus on the role of trehalose in the abiotic stressresistance responses has attracted more and more attentions.
     The productions of mushrooms in China are always conducted in the traditional mushroom tents,which makes the mushroom vulnerable to climate fluctuations. Sudden change of high temperatureclimate would inhibit the mycelium growth, impair fruiting, and finally affect the quality of mushroom.Oxidative stress triggered by heat stress is the main reason that leads to the damage. Therefore, in-depthstudy of the thermal response mechanisms would provide a theoretical basis for high yield and highquality of mushroom.
     We investigated the alleviative effects of exogenous trehalose on heat-induced oxidative stress invarious sensitive strains of Pleurotus ostreatus and Pleurotus pulmonarius, which are the maincultivated species of Pleurotus. The responses of trehalose metabolism at the level of enzyme activityand gene expression during heat stress and the recovery period in the two different sensitive type strainsof P. pulmonarius were also studied. Our conclusions were as follows:
     Under heat stress (at12℃above optimum growth temperature), exogenous trehalose effectedsimilarly on physiological indexes of resistance to oxidative damage between P. ostreatus and P.pulmonarius. Exogenous trehalose could alleviate the oxidative damage induced by heat stress byreducing the generation rate of O-2and H2O2, the activity of LOX and the content of TBARS.Additionally, exogenous trehalose had much different effects on the activities of enzymetic antioxidants,including the positive effect on the activity of antioxidants SOD, the negative effect on enzymeticantioxidants including CAT, APX and GR, and no effect on enzymetic antioxidants POD under the heatstress. The reason for improved heat resistance was that the exogenous trehalose protected SOD activityand scavenged H2O2and O-2. The protective effect was related to trehalose concentration, and the effecton the heat sensitive strains was higher than that on heat resistant strains.
     Under normal physiological conditions, the in vivo trehalose content in the heat sensitive strain andthe heat tolerant strain did not show a significant difference. An interesting phenomenon is that thetrehalose content increased first and then decreased finally. The increased extent of activities oftrehalose-6-phosphate synthase (TPS) and trehalose phosphorylase (TP) in the direction of trehalosesynthesis in heat sensitive strain was higher than that in heat tolerant strain during the early stress period.TreP pathway and OtsA-OtsB pathway was the main pathway at the early heat stress. In later stressperiod, neutral trehalase and TP were involved in trehalose degradation in two strains. Meanwhile, theTPS activity increased continuously in heat sensitive strain, while reduced in heat tolerant strain.
     The trehalose content of P. pulmonarius strains rapidly decreased to the control level under heatstress recovery conditions and the decreasing rate in heat sensitive strain were faster than that in heat tolerant strain. But, the TPS activity increased continuously in heat sensitive strain, and TPP was arestriction enzyme in the OtsA-OtsB pathway. Neutral trehalase and TP were involved in trehalosedegradation in two P. pulmonarius strains under heat stress recovery conditions.
     Analysis of trehalose metabolism-related gene expression during the heat stress and recoverycondition suggests that, in contrast with the case of TPS, TPP and TP, NTH activity was depressedduring heat stress, even though the mRNA of the nth gene increased. The trehalose stress response toheat was presumed to be regulated at the transcription and the translation levels. The response ofmetabolic pathway of trehalose in different sensitive P. pulmonarius strains to heat stress and recoverywere not exactly the same, and that was mainly caused by the mRNA expression of the tps gene.
引文
1.池振明,梁丽琨,朱开玲,等.酵母海藻糖的代谢与调控研究进展[J].中国海洋大学学报,2006,36(2):209~214.
    2.戴秀玉,王忆琴,杨波,等.大肠杆菌海藻糖合成酶基因对提高烟草抗逆性能的研究[J].微生物学报,2001a,41(4):427~431.
    3.戴秀玉,沈义国,周坚.海藻糖对乳酸菌的抗逆保护研究[J].微生物学通报,2001b,28(2):46~50.
    4.李敏,王维华,王然,等.高温胁迫对菠菜叶片保护酶活性和膜透性的影响[J].园艺学报,2004,34(1):99~100.
    5.刘强,倪福太,王占武.外源海藻糖对NaHCO3胁迫下野鸢尾叶片抗氧化系统的影响[J].扬州大学学报,2009,30(2):81~86.
    6.万继峰,李娟,陈杰忠.柑橘日灼病果皮抗氧化代谢的变化[J].园艺学报,2012,39(10):2009~2014.
    7.尹慧,陈秋明,何秀丽,等.短暂高温对百合植株抗氧化酶系统的影响[J].园艺学报,2007,2(34):509~512.
    8.王自章,张树珍,杨本鹏,等.甘蔗根癌农杆菌介导转化海藻糖合酶基因获得抗渗透胁迫能力增强植株[J].中国农业科学,2003,36(2):140~146.
    9.叶燕锐,朱怡,李莉莉,等.耐热酿酒酵母海藻糖代谢途径对热胁迫的响应[J].华南理工大学学报(自然科学版),2010,38(5):139~143.
    10.赵恢武,陈杨坚,胡鸢雷,等.干旱诱导性启动子驱动的海藻糖-6-磷酸合酶基因载体的构建及转基因烟草的耐旱性[J].植物学报,2000,42(6):616~619.
    11.张桂莲,陈立云,张顺堂,等.高温胁迫对水稻剑叶保护酶活性和膜透性的影响[J].作物学报,2006,32(9):1306~1310.
    12. Acevedo-Hernández G. J., León P., Herrera-Estrella L. R., Sugar and ABA responsiveness of aminimal RBCS light-responsive unit is mediated by direct binding of ABI4. Plant J,2005,43:506~519.
    13. Aghdasi M., Smeekens S., Schluepman H., Microarray analysis of gene expression patterns inArabidopsis seedlings under trehalose, sucrose and sorbitol treatment. Int J Plant Prod,2008,2:309~320.
    14. Argüelles J. C., Thermotolerance and trehalose accumulation induced by heat shock in yeast cellsof Candida albicans. FEMS Microbiol Lett,1997,146:65~71.
    15. Argüelles J. C., Physiological roles of trehalose in bacteria and yeasts: a comparative analysis.Arch Microbiol,2000,174:217~224.
    16. Alexandre H., Plourde L., Charpentier C., et al., Lack of correlation between trehaloseaccumulation, cell viability and intracellular acidification as induced by various stresses inSaccharomyces cerevisiae. Microbiology,1997,144:1103~1111.
    17. Al-Naama M., Ewaze J. O., Green B. J., et al., Trehalose accumulation in Baudoiniacompniacensis following abiotic stress. Int Biodeterior Biodegradation,2009,63:765~768.
    18. Ali Q., Ashraf M., Induction of drought tolerance in Maize (Zea mays L.) due to exogenousapplication of trehalose: growth, photosynthesis, water relations and oxidative defence mechanism.J Agron Crop Sci,2011,197:258~271.
    19. Allen R., Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol,1995,107:1049~1054.
    20. Alscher R. G., Donahue J. L., Cramer C. L., Reactive oxygen species and antioxidant relationshipsin green cells. Physiol Plant,1997,100:224~233.
    21. Asada K., The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation ofexcess photons. Annu Rev Plant Physiol Plant Mol Biol,1999,50:601~639.
    22. Asada K., The water-water cycle as alternative photon and electron sinks. Phil Trans R Soc Lond BBiol Sci,2000,355:1419~1431.
    23. Asano N., Yamaguchi T., Kameda Y., et al., Effect of validamycins on glycohydrolases ofRhizoctonia solani. J Antibiot,1987,40:526~532.
    24. Attfield P. V., Raman A., Northcott C. J., Construction of Saccharomyces cerevisiae strains thataccumulate relatively low concentrations of trehalose, and their application in testing thecontribution of the disaccharide to stress tolerance. FEMS Microbiol Lett,1992,94:271~276.
    25. Avonce N., Leyman B., Mascorro-Gallardo J. O., et al., The Arabidopsis trehalose-6-P synthaseAtTPS1gene is a regulator of glucose, abscisic acid, and stress signaling. Plant Physiol,2004,136:3649~3659.
    26. Avonce N., Leyman B., Thevelein J., et al., Trehalose metabolism and glucose sensing in plants.Biochem Soc Trans,2005,33:276~279.
    27. Avonce N., Mendoza-Vargas A., Morett E., et al., Insights on the evolution of trehalosebiosynthesis. BMC Evol Biol,2006,6:109~124.
    28. Bae H., Herman E., Bailey B., et al., Exogenous trehalose alters Arabidopsis transcripts involved incell wall modification, abiotic stress, nitrogen metabolism, and plant defense. Physiol Plant,2005,125:114~126.
    29. Beauchamp C., Fridovich I., Superoxide dismutase: improved assays and an assay applicable toacrylamide gels. Anal Biochem,1971,44:276~287.
    30. Bell W., Klaassen P., Ohnacker M., et al., Characterization of the56-kDa subunit of yeasttrehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1,a regulator of carbon catabolite inactivation. Eur J Biochem,1992,209:849~861.
    31. Bell W., Sun W., Hohmann S., et al., Composition and functional analysis of the Saccharomycescerevisiae trehalose synthase complex. J Biol Chem,1998,273:33311~33319.
    32. Blázquez M. A., Lagunas R., Gancedo C., et al., Trehalose-6-phosphate, a new regulator of yeastglycolysis that inhibits hexokinases. FEBS Lett,1993,329:51~54.
    33. Bonini B. M., Neves M. J., Jorge J. A., et al., Effects of temperature shifts on the metabolism oftrehalose in Neurospora crassa wild type and a trehalase-deficient (tre) mutant. Evidence againstthe participation of periplasmic trehalase in the catabolism of intracellular trehalose. BiochimBiophys Acta,1995,1245:339~347.
    34. Bonini B. M., van Vaeck C., Larsson C., et al., Expression of Escherichia coli otsA in aSaccharomyces cerevisiae tps1mutant restores trehalose6-phosphate levels and partly restoresgrowth and fermentation with glucose and control of glucose influx into glycolysis. Biochem J,2000,350:261~268.
    35. Borsani O., Valpuesta V., Botella M. A., Evidence for a role of salicylic acid in the oxidativedamage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol,2001,126:1024~1030.
    36. Borthakur A. B., Bhat B., Ramasoss C. S., The positional specifications of the oxygenation oflinoleic acid catalysed by two forms of lipoxygenase isolated from Bengal gram (Cicer arietinum).J Biosci,1987,11:257~263.
    37. Brüggemann W., Beyel V., Brodka M., et al., Antioxidants and antioxidative enzymes in wild-typeand transgenic Lycopersicon genotypes of different chilling tolerance. Plant Sci,1999,140:145~154.
    38. Cabib E., Leloir L. F., The biosynthesis of trehalose phosphate. J Biochem,1958,231:259~275.
    39. Candy D. J., Kilby B. A., Site and mode of trehalose biosynthesis in the locust. Nature,1959,183:1584~1595.
    40. Cardoso F. S., Castro R. F., Borges N., et al., Biochemical and genetic characterization of thepathways for trehalose metabolism in Propionibacterium freudenreichii, and their role in stressresponse. Microbiology,2007,153:270~280.
    41. Chance B., Maehly A. C., Assay of catalases and peroxidases. Methods Enzymol,1955,2:764~817.
    42. Chang S. T., Miles P. G., Mushrooms: cultivation, nutritional value, medicinal effect, andenvironmental impact (2nd eds.). Boca Raton: CRC Press,2004.
    43. Clegg J. S., Filosa M. F., Trehalose in the cellular slime mould Dictyostelium mucoroides. Nature,1961,192:1077~1078.
    44. Cortina C., Culiá ez-Macià F. A., Tomato abiotic stress enhanced tolerance by trehalosebiosynthesis. Plant Sci,2005,169:75~82.
    45. da Costa Morato Nery D., da Silva C., Mariani D., et al., The role of trehalose and its transporter inprotection against reactive oxygen species. Biochim Biophys Acta,2008,1780:1408~1411.
    46. Crowe J. H., Crowe L. M., Carprnter J. F., et al., Interactions of sugars with membranes. BiochimBiophys Acta,1988,947:367~384.
    47. Crowe J. H., Panek A. D., Crowe L. M., et al., Trehalose transport in yeast cells. Biochem lnt,1991,24:721~730.
    48. Crowe J. H., Carpenter J. F., Crowe L. M., The role of vitrification in anhydrobiosis. Annu RevPhysiol,1998,60:73~103.
    49. D'Enfert C., Bonini B. M., Zapella P. D. A., et al., Neutral trehalases catalyse intracellulartrehalose breakdown in the filamentous fungi Aspergillus nidulans and Neurospora crassa. MolMicrobiol,1999,32:471~484.
    50. Destruelle M., Holzer H., Klionsky D. J., Isolation and characterization of a novel yeast gene,ATH1, that is required for vacuolar acid trehalase activity. Yeast,1995,11:1015~1025.
    51. van Dijken A. J. H., Schluepmann H., Smeekens S. C. M., Arabidopsis trehalose-6-phosphatesynthase1is essential for normal vegetative growth and transition to flowering. Plant Physiol,2004,135:969~977.
    52. Downton W. J. S., Loveys B. R., Grant W. J. R., Non-uniform stomatal closure induced by waterstress causes putative non-stomatal inhibition of photosynthesis. New Phytol,1988,110:503~509.
    53. Dunford H. B., Stillman J. S., On the function and mechanism of action of peroxidases. CoordChem Rev,1976,19:187~251.
    54. Eastmond P. J., van Dijken A. J. H., Spielman M., et al., Trehalose-6-phosphate synthase1, whichcatalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation. PlantJ,2002,29:225~235.
    55. Eastmond P. J., Graham I. A., Trehalose metabolism: a regulatory role for trehalose-6-phosphate?Curr Opin Plant Biol,2003,6:231~235.
    56. Eis C., Watkins M., Prohaska T., et al., Fungal trehalose phosphorylase: kinetic mechanism,pH-dependence of the reaction and some structural properties of the enzyme from Schizophyllumcommune. Biochem J,2001,356:757~767.
    57. El-Bashiti T., Hamamci H., ktem H. A., et al., Biochemical analysis of trehalose and itsmetabolizing enzymes in wheat under abiotic stress conditions. Plant Sci,2005,169:47~54.
    58. Elbein A. D., The metabolism of α, α-trehalose. Adv Carbohydr Chem Biochem,1974,30:227~256.
    59. Elbein A. D., Pan Y. T., Pastuszak I., et al., New insights on trehalose: a multifunctional molecule.Glycobiology,2003,13:17~27.
    60. Empadinhas N., da Costa M. S., Diversity and biosynthesis of compatible solutes inhyper/thermophiles. Int Microbiol,2006,9:199~206.
    61. Feinberg B., McLaughlin C. S., Moldave K., Analysis of temperature-sensitive mutant ts187ofSaccharomyces cerevisiae altered in a component required for the initiation of protein synthesis. JBiol Chem,1982,257:10846~10851.
    62. Fernández J., Soto T., Vicente-Soler J., et al., Heat-shock response in Schizosaccharomyces pombecells lacking cyclic AMP-dependent phosphorylation. Current Genetics,1997,31:112~118.
    63. Fernandez O., Bethencourt L., Quero A., et al., Trehalose and plant stress responses: friend or foe?Trends Plant Sci,2010,15:409~417.
    64. Ferreira A. S., Tótola M. R., Borges A. C., Physiological implications of trehalose in theectomycorrhizal fungus Pisolithus sp. under thermal stress. J Therm Biol,2007,32:34~41.
    65. Fillinger S., Chaveroche M. K., van Dijck P., et al., Trehalose is required for the acquisition oftolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology,2001,147:1851~1862.
    66. Foster A. J., Jenkinson J. M., Talbot N. J., Trehalose synthesis and metabolism are required atdifferent stages of plant infection by Magnaporthe grisea. EMBO J,2003,22:225~235.
    67. Foyer C. H., Shigeoka S., Understanding oxidative stress and antioxidant functions to enhancephotosynthesis. Plant Physiol,2011,155:93~100.
    68. Fragoso S., Espíndola L., Páez-Valencia J., et al., SnRK1isoforms AKIN10and AKIN11aredifferentially regulated in Arabidopsis plants under phosphate starvation. Plant Physiol,2009,149:1906~1916.
    69. Fran ois J., Parrou J., Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae.FEMS Microbiol Rev,2001,25:125~145.
    70. Frison M., Parrou J. L., Guillaumot D., et al., The Arabidopsis thaliana trehalase is a plasmamembrane-bound enzyme with extracellular activity. FEBS Lett,2007,581:4010~4016.
    71. Galani S., Wahid A., Arshad M., Tissue-specific expression and functional role of dehydrins in heattolerance of sugarcane (Saccharum officinarum). Protoplasma,2013,250:577~583.
    72. Gancedo C., Flores C. L., The importance of a functional trehalose biosynthetic pathway for thelife of yeasts and fungi. FEMS Yeast Res,2004,4:351~359.
    73. Garcia A. B., Engler J. A., Lyer S., et al., Effects of osmoprotectants upon NaCl stress in rice.Plant Physiol,1997,115:159~169.
    74. Garg A. K., Kim J. K., Owens T. G., et al., Trehalose accumulation in rice plants confers hightolerance levels to different abiotic stresses. Proc. Natl. Acad. Sci. USA,2002,99:15898~15903.
    75. Giannopolitis C. N., Ries S. K., Superoxide dismutase. I. Occurrence in higher plants. PlantPhysiol,1977,59:309~314.
    76. Giaever H. M., Styrvold O. B., Kassen I., et al., Biochemical and genetic characterization ofosmoregulatory trehalose synthesis in Escherichia coli. J Bacteriol,1988,170:2841~2849.
    77. Goddijn O. J. M., Verwoerd T. C., Voogd E., et al., Inhibition of trehalase activity enhancestrehalose accumulation in transgenic plants. Plant Physiol,1997,113:181~190.
    78. Gong M., Chen B. O., Li Z. G., et al., Heat-shock-induced cross adaptation to heat, chilling,drought and salt stress in maize seedlings and involvement of H2O2. J Plant Physiol,2001,158:1125~1130.
    79. Gusev N. B., Bogatcheva N. V., Marston S. B., Structure and properties of small heat shockproteins (sHsp) and their interaction with cytoskeleton proteins. Biochem (Mosc),2002,67:511~519.
    80. Han S. E., Kwon H. B., Lee S. B., et al., Cloning and characterization of a gene encoding trehalosephosphorylase (TP) from Pleurotus sajor-caju. Protein Expr Purif,2003,30:194~202.
    81. Harthill J. E., Meek S. E. M., Morrice N., et al., Phosphorylation and14-3-3binding ofArabidopsis trehalose-phosphate synthase5in response to2-deoxyglucose. Plant J,2006,47:211~223.
    82. Higo A., Katoh H., Ohmori K., et al., The role of a gene cluster for trehalose metabolism indehyration tolerance of the filamentous cyanobacterium Anabaena sp. PCC7120. Microbiology,2006,152:979~987.
    83. Hino A., Mihara K., Nakashima K., et al., Trehalose levels and survival ratio of freeze-tolerantversus freeze-sensitive yeasts. Appl Environ Microbiol,1990,56:1386~1391.
    84. Holmstr m K. O., M ntyl E., Welin B., et al., Drought tolerance in tobacco. Nature,1996,379:683~684.
    85. Hottiger T., Boiler T., Wiemken A., Rapid changes of heat and desiccation tolerance correlatedwith changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts.FEBS Lett,1987a,220:113~115.
    86. Hottiger T., Schmutz P., Wiemken A., Heat-induced accumulation and futile cycling of trehalosein Saccharomyces cerevisiae. J Bacteriol,1987b,169:5518~5522.
    87. Hottiger T., Boller T., Wiemken A., Correlation of trenalose content and heat resistance in yeastmutants altered in the RAS/adenylate cyclase pathway: is trehalose a thermoprotectant? FEBSLett,1989,255:431~434.
    88. Hottiger T., de Virgilio C., Hall M. N., et al., The role of trehalose synthesis for the acquisition ofthermotolerance in yeast II. Physiological concentrations of trehalose increase the thermal stabilityof proteins. Eur J Biochem,1993,219:187~193.
    89. Iordachescu M., Imai R., Trehalose and abiotic stress in biological systems. Shanker A.&Venkateswarlu B.(ed.), Agricultural and Biological Sciences. Kurashiki: Academic Press,2011,215~234.
    90. Iturriaga G., Suárez R., Nova-Franco B., Trehalose Metabolism: from osmoprotection to signaling.Int J Mol Sci,2009,10:3793~3810.
    91. Jang I. C., Oh S. J., Seo J. S., et al., Expression of a bifunctional fusion of the Escherichia coligenes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic riceplants increases trehalose accumulation and abiotic stress tolerance without stunting growth. PlantPhysiol,2003,131:516~524.
    92. Jepsen H. F., Jensen B., Accumulation of trehalose in the thermophilic fungus Chaetomiumthermophilum var. coprophilum in response to heat or salt stress. Soil Biol Biochem,2004,36:1669~1674.
    93. Jorge J. A., Polizeli M. L. T. M., Thevelein J. M., et al., Trehalases and trehalose hydrolysis infungi. FEMS Microbiol Lett,1997,154:165~171.
    94. Kaase I., Falkenberg P., Styrvold O. B., et al., Molecular cloning and physical mapping of theotsBA genes, which encode the osmoregulatory trehalose pathway of Escherichia coli: evidencethat transcription is activated by katF (AppR). J Bacteriol,1992,174:889~898.
    95. Katoh H., Asthana R. K., Ohmori M., Gene expression in the cyanobacterium Anabaena sp.PCC7120under desiccation. Microbial Ecology,2004,47:164~174.
    96. Kitamoto Y., Gruen H. E., Distribution of cellular carbohydrates during development of themycelium and fruit-bodies of Flammulina velutipes. Plant Physiol,1976,58:485~491.
    97. Kitamoto Y., Akashi H., Tanaka H., et al., α-Glucose-1-phosphate formation by a novel trehalosephosphorylase from Flammulina velutipes. FEMS Microbiol Lett,1988,55:147~150.
    98. Kitamoto Y., Kobayashi A., Mori N., et al., Metabolic function of glycogen phosphorylase andtrehalose phosphorylase in fruit-body formation of Flammulina velutipes. Mycoscience,2001,42:143~147.
    99. Kizawa H., Miyagawa K. I., Sugiyama Y., Purification and characterization of trehalosephosphorylase from Micrococcus varians. Biosci Biotech Biochem,1995,59:1908~1912.
    100. Kocsy G., Brunner M., Rüegsegger A., et al., Glutathione synthesis in maize genotypes withdifferent sensitivities to chilling. Planta,1996,198:365~370.
    101. Kocsy G., Szalai G., Vágújfalvi A., et al., Genetic study of glutathione accumulation during coldhardening in wheat. Planta,2000,210:295~301.
    102. Kolbe A., Tiessen A., Schluepmann H., et al., Trehalose6-phosphate regulates starch synthesis viaposttranslational redox activation of ADP-glucose pyrophosphorylase. Proc Natl Acad Sci USA,2005,102:1118~1123.
    103. Kong W. W., Huang C. Y., Chen Q., et al., Nitric oxide is involved in the regulation of trehaloseaccumulation under heat stress in Pleurotus eryngii var. tuoliensis. Biotechnol Lett,2012,34:1915~1919.
    104. Lee D. H., Ryu H., Bae H. H., et al., Transgenic tobacco plants harboring the trehalose phosphatesynthase TPS gene of Escherichia coli increased tolerance to drought stress. Res J Biotechnol,2012,7:22~26.
    105. Leyman B., van Dijck P., Thevelein J. M., An unexpeeted plethora of trehalose biosynthesis genesin Arabidopsis thaliana. Trends Plant Sci,2001,6:510~513.
    106. Li B. Q., Zhou Z. W., Tian S. P., Combined effects of endo-and exogenous trehalose on stresstolerance and biocontrol efficacy of two antagonistic yeasts. Biological Control,2008,46:187~193.
    107. Lindquist S., The heat-shock response. Ann Rev Biochem,1986,55:1151~1191.
    108. Lins R. D., Pereira C. S., Hünenberger P. H., Trehalose-protein interaction in aqueous solution.Proteins,2004,55:177~186.
    109. López-Gómez M., Lluch C., Trehalose and abiotic stress tolerance. Ahmad P.&Prasad M. N. V.(eds), Abiotic Stress Responses In Plants: Metabolism, Productivity and Sustainability. Springer,New York,2012,253~265.
    110. Luo Y., Li W. M., Wang W., Trehalose: protector of antioxidant enzymes or reactive oxygen speciesscavenger under heat stress? Environ Exp Bot,2008,63:378~384.
    111. Lou Y., Li F., Wang G. P., et al., Exogenously-supplied trehalose protects thylakoid membranes ofwinter wheat from heat-induced damage. Biol Plant,2010,54:495~501.
    112. Lunn J. E., Feil R., Hendriks J. H. M., et al., Sugar-induced increases in trehalose6-phosphate arecorrelated with redox activation of ADPglucose pyrophosphorylase and higher rates of starchsynthesis in Arabidopsis thaliana. Biochem J,2006,397:139~148.
    113. Ma C., Wang A., Kong B., et al., Exogenous trehalose differentially modulate antioxidant defensesystem in wheat callus during water deficit and subsequent recovery. Plant Growth Regul,2013,3:1~6.
    114. MacKintosh C., Regulation of cytosolic enzymes in primary metabolism by reversible proteinphosphorylation. Curr Opin Plant Biol,1998,1:224~229.
    115. Matthew P., Trehalose6-phosphate. Curr Opin Plant Biol,2007,10(3):303~309.
    116. Martineau J. R., Specht J. E., Williams J. H., et al., Temperature tolerance in soybeans. I.Evaluation of a technique for assessing cellular membrane thermostability. Crop Science,1979,19:75~78.
    117. McDougall J., Kaasen I., Str m A. R., A yeast gene for trehalose-6-phosphate synthase and itscomplementation of an Escherichia coli otsA mutant. FEMS Microbiol Lett,1993,107:25~30.
    118. Miller G., Shulaev V., Mittler R., Reactive oxygen signaling and abiotic stress. Physiol Plant,2008,133:481~489.
    119. Mitsumasu K., Kanamori Y., Fujita M., et al., Enzymatic control of anhydrobiosis-relatedaccumulation of trehalose in the sleeping chironomid, Polypedilum vanderplanki. FEBS J,2010,277:4215~4228.
    120. Mittenbühler K., Holzer H., Purification and characterization of acid trehalase from the yeast suc2mutant. J Biol Chem,1988,263:8537~8543.
    121. Mittler R., Oxidative stress, antioxid ants and stress tolerance. Trends Plant Sci,2002,7:405~410.
    122. Mittova V., Theodoulou F., Kiddle G., et al., Coordinate induction of glutathione biosynthesis andglutathione metabolizing enzymes is correlated with salt tolerance in tomato. FEBS Lett,2003,554:417~421.
    123. Müller J., Boller T., Wiemken A., Effects of validamycin A, a potent trehalase inhibitor, andphytohormones on trehalose metabolism in roots and root nodules of soybean and cowpea. Planta,1995a,197:362~368.
    124. Müller J., Boller T., Wiemken A., Trehalose and trehalase in plants: recent developments. Plant Sci,1995b,112:1~9.
    125. Müller J., Boller T., Wiemken A., Trehalose affects sucrose synthase and invertase activities insoybean (Glycine max [L.] Merr.) roots. J Plant Physiol,1998,153:255~257.
    126. Müller J., Wiemken A., Aeschbacher R., Trehalose metabolism in sugar sensing and plantdevelopment. Plant Sci,1999,147:37~47.
    127. Müller J., Aeschbacher R. A., Wingler A., et al., Trehalose and trehalase in Arabidopsis. PlantPhysiol,2001,125:1086~1093.
    128. Nagalakshmi N., Prasad M. N. V., Responses of glutathione cycle enzymes and glutathionemetabolism to copper stress in Scenedesmus bijugatus. Plant Sci,2001,160:291-299.
    129. Nakano Y., Asada K., Spinach chloroplasts scavenge hydrogen peroxide on illumination. PlantCell Physiol,1980,21:1295~1307.
    130. Nali C., Guidi L., Filippi F., et al., Photosynthesis of two poplar clones contrasting in O3sensitivity.Trees,1998,12:196~200.
    131. Neves M. J., Fran ois J., On the mechanism by which a heat shock induces trehalose accumulationin Saccharomyces cerevisiae. Biochem J,1992,288:859~864.
    132. Nishimoto T., Nakada M., Nakada T., et al., Purification and properties of a novel enzyme,trehalose synthase, from Pimelobacter sp R48. Biosci Biotechnol Biochem,1996,60:640~644.
    133. Nobre A., Alarico S., Fernandes C., et al., A unique combination of genetic systems for thesynthesis of trehalose in Rubrobacter xylanophilus: properties of a rare actinobacterial TreT. JBacteriol,2008,190:7939~7946.
    134. Noubhani A., Bunoust O., Rigoulet M., et al., Reconstitution of ethanolic fermentation inpermeabilized spheroplasts of wild-type and trehalose-6-phosphate synthase mutants of the yeastSaccharomyces cerevisiae. Eur J Biochem,2000,267:4566~4576.
    135. Nounjan N., Theerakulpisut P., Effects of exogenous proline and trehalose on physiologicalresponses in rice seedlings during salt-stress and after recovery. Plant Soil Environ,2012,58:309~315.
    136. Noventa-Jord o M. A., de Lourdes M., Polizeli T. M., et al., Effects of temperature shifts on theactivities of Neurospora crassa glycogen synthase, glycogen phosphorylase andtrehalose-6-phosphate synthase. FEBS Lett,1996,378:32~36.
    137. Nwaka S., Kopp M., Burgert M., et al., Is thermotolerance of yeast dependent on trehaloseaccumulation? FEBS Lett,1994,344:225~228.
    138. Nwaka S., Kopp M., Holzer H., Expression and function of the trehalase genes NTH1andYBR0106in Saccharomyces cerevisiae. J Biol Chem,1995a,270:10193~10198.
    139. Nwaka S., Mechler B., Destruelle M., et al., Phenotypic features of trehalase mutants inSaccharomyces cerevisiae. FEBS Lett,1995b,360:286~290.
    140. Oberson J., Rawyler A., Brandle R., et al., Analysis of the heat-shock response displayed by twoChaetomium species originating from different thermal environments. Fungal Genet Biol,1999,26:178~189.
    141. Ocón A., Hampp R., Requena N., Trehalose turnover during abiotic atress in arbuscularmycorrhizal fungi. New Phytol,2007,174:879~891.
    142. Okuda T., Matsuda Y., Yamanaka A., et al., Abrupt increase in the level of hydrogen peroxide inleaves of winter wheat is caused by cold treatment. Plant Physiol,1991,97:1265~1267.
    143. Page-Sharp M., Behm C. A., Smith G. D., Involvement of the compatible solutes trehalose andsucrose in the response to salt stress of a cyanobacterial Scytonema species isolated from desertsoils. Biochim Biophys Acta,1999,1472:519~528.
    144. Paiva C. L. A., Panek A. D., Biotechnological applications of the disaccharide trehalose.Biotechnol Annu Rev,1996,2:293~314.
    145. Paliyath G., Droillard M. J., The mechanism of membrane deterioration and disassembly duringsenescence. Plant Physiol Biochem,1992,30:789~812.
    146. Panek A., Mattoon J., Regulation of energy metabolism in Saccharomyces cerevisiae: relationshipsbetween catabolite repression, trehalose synthesis, and mitochondrial development. Arch BiochemBiophys,1977,183:306~316.
    147. Parrou J. L., Jules M., Beltran G., et al., Acid trehalase in yeasts and filamentous fungi:localization, regulation and physiological function. FEMS Yeast Res,2005,5:503~511.
    148. Paul M., Pellny T., Goddijn O., Enhancing photosynthesis with sugar signals. Trends Plant Sci,2001,6:197~200.
    149. Pereira C. S., Lins R. D., Chandrasekhar I., et al., Interaction of the disaccharide trehalose with aphospholipid bilayer: a molecular dynamics study. Biophys J,2004,86:2273~2285.
    150. Piippo M., Allahverdiyeva Y., Paakkarinen V., et al., Chloroplast-mediated regulation of nucleargenes in Arabidopsis thaliana in the absence of light stress. Physiol Genomics,2006,25:142~152.
    151. Pitzschke A., Schikora A., Hirt H., MAPK cascade signalling networks in plant defence. Curr OpinPlant Biol,2009,12:1~6.
    152. Plourde-Owobi L., Durner S., Goma G., et al., Trehalose reserve in Saccharomyces cerevisiae:phenomenon of transport, accumulation and role in cell viability. Int J Food Microbiol,2000,55:33~40.
    153. Porchia A. C., Fiol D. F., Salerno G. L., Differential synthesis of sucrose and trehalose in Euglenagracilis cells during growth and salt stress. Plant Sci,1999,149:43~49.
    154. Qu Q., Lee S. J., Boss W., TreT, a novel trehalose glycosyltransferring synthase of thehyperthermophilic archeon Thermococcus litoralis. J Biol Chem,2004,279:47890~47897.
    155. Ramon M., Rolland F., Thevelein J. M., et al., ABI4mediates the effects of exogenous trehaloseon Arabidopsis growth and starch breakdown. Plant Mol Biol,2007,63:195~206.
    156. Ren Y., Dai X., Zhou J., et al., Gene expression and molecular characterization of a thermostabletrehalose phosphorylase from Termoanaerobacter tengcongensis. Sci China Ser C Life Sci,2005,48:221~227.
    157. Ribeiro M. J. S., Reinders A., Boller T., et al., Trehalose synthesis is important for the acquisitionof thermotolerance in Schizosaccharomyces pombe. Mol Microbiol,1997,25:571~581.
    158. Romero C., Bellés J. M., Vayá J. L., et al., Expression of the yeast trehalose-6-phosphate synthasegene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta,1997,201:293~297.
    159. Rouhi V., Samson R., Lemeur R., et al., Photosynthetic gas exchange characteristics in threedifferent almond species during drought stress and subsequent recovery. Environ Exp Bot,2007,59:117~129
    160. Saharan R. K., Sharma S. C., Correlation studies of trehalose with oxidative stress in ethanolstressed yeast Pachysolen tannophilus. Curr Res J Biol Sci,2010,2:300~305.
    161. Saito K., Kase T., Takahashi E., et al., Purification and characterization of a trehalose synthasefrom the basidiomycete Grifola frondosa. Appl Environ Microbiol,1998,64:4340~4345.
    162. Sampedro J. G., Guerra G., Pardo J. P., et al., Trehalose-mediated protection of the plasmamembrane H+-ATPase from Kluyveromyces lactis during freeze-drying and rehydration.Cryobiology,1988,37:131~138.
    163. Sampedro J. G., Cortés P., Mu oz-Clares R. A., et al., Thermal inactivation of the plasmamembrane H+-ATPase from Kluyveromyces lactis protection by trehalose. Biochim Biophys Acta,2001,1544:64~73.
    164. San Miguel P. F., Argüelles J. C., Differential changes in the activity of cytosolic and vacuolartrehalases along the growth cycle of Saccharomyces cerevisiae. Biochim Biophys Acta,1994,1200:155~160.
    165. Sanchez Y., Lindquist S., HSP104required for induced thermotolerance. Science,1990,248:1112~1115.
    166. Sanchez Y., Taulien J., Borkovich K. A., et al., Hsp104is required for tolerance to many forms ofstress. EMBO J,1992,11:2357~2364.
    167. Saruyama H., Tanida M., Effects of chilling on activated oxygen scavenging enzymes in lowtemperature sensitive and tolerant cultivars of rice (Oryza sativa L.). Plant,1995,109:105~113.
    168. Satoh-Nagasawa N. Nagasawa N., Malcomber S., et al., A trehalose metabolic enzyme controlsinflorescence architecture in maize. Nature,2006,441:227~230.
    169. Scandalios J. G., Oxygen stress and superoxide dismutases. Plant Physiol,1993,101:7~12.
    170. Schick I., Haltrich D., Kullbe K. D., Trehalose phosphorylase from Pichia fermentans and its rolein the metabolism of trehalose. Appl Microbiol Biotechnol,1995,43:1088~1095.
    171. Schlesinger M. J., Heat shock proteins: the search for functions. J Cell Biol,1986,103:321-325.
    172. Schluepmann H., Pellny T., van Dijken A., et al., Trehalose6-phosphate is indispensable forcarbohydrate utilization and growth in Arabidopsis thaliana. Proc. Natl Acad. Sci.,2003,100:6849~6854.
    173. Sebollela A., Louzada P. R., Sola-Penna M., et al., Inhibition of yeast glutathione reductase bytrehalose: possible implications in yeast survival and recovery from stress. Int J Biochem Cell Bio,2004,36:900~908.
    174. Sgherri C. L. M., Loggini B., Puliga S., et al., Antioxidant system in Sporobolus stapfianus:changes in response to desiccation and rehydration. Phytochemistry,1994,35:561~565.
    175. Shima S., Matsui H., Tahara S., et al., Biochemical characterization of rice trehalose-6-phosphatephosphatases supports distinctive functions of these plant enzymes. FEBS J,2007,274:1192~1201.
    176. Silva Z., Alarico S., Nobre A., et al., Osmotic adaptation of Thermus thermophilus RQ-1: lessonfrom a mutant deficient in synthesis of trehalose. J Bacteriol,2003,185:5943~5952.
    177. Simola M., H nninen A. L., Stranius S. M., et al., Trehalose is required for conformational repairof heat-denatured proteins in the yeast endoplasmic reticulum but not for maintenance ofmembrane traffic functions after severe heat stress. Mol Microbiol,2000,37:42~53.
    178. Singer M. A., Lindquist S., Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang oftrehalose. Trends Biotechnol,1998,16:460~468.
    179. Smirnoff N., The role of active oxygen in the response of plants to water deficit and desiccation.New Phytol,1993,125:27~58.
    180. Soto T., Fernández J., Vicente-Soler J., et al., Accumulation of trehalose by overexpression of tps1,coding for trehalose-6-phosphate synthase, causes increased resistance to multiple stresses in thefission yeast Schizosaccharomyces pombe. Appl Environ Microbiol,1999,65:2020~2024.
    181. Stiller I., Dulai S., Kondrák M., et al., Effects of drought on water content and photosyntheticparameters in potato plants expressing the trehalose-6-phosphate synthase gene of Saccharomycescerevisiae. Planta,2008,227:299~308.
    182. Str m A. R., Kaasen I., Trehalose metabolism in Escherichia coli: stress protection and stressregulation of gene expression. Mol Microbiol,1993,8:205~210.
    183. Sugawara M., Cytryn E. J., Sadowsky M. J., Functional role of Bradyrhizobium japonicumtrehalose biosynthesis and metabolism genes during physiological stress and nodulation. ApplEnviron Microbiol,2010,76:1071~1081.
    184. Sussman A. S., Lingappa B. T., Role of trehalose in ascospores of Neurospora Tetrasperma.Science,1959,130:1343.
    185. Tanaka K., Masuda R., Sugimoto T., et al., Water deficiency induced changes in the content ofdefensive substances against active oxygen in spinach leaves. Agric Biol Chem,1990,54:2629~2634.
    186. Tereshina V. M., Thermotolerance in fungi: the role of heat shock proteins and trehalose.Microbiology,2005,74:247~257.
    187. Theerakulpisut P., Gunnula W., Exogenous sorbitol and trehalose mitigated salt stress damage insalt-sensitive but not salt-tolerant rice seedlings. Asian Journal of Crop Science,2012,4:165~170.
    188. Thevelein J. M., Regulation of trehalose mobilization in fungi. Microbiol Rev,1984,48:42~59.
    189. Thevelein J. M., Hohmann S., Trehalose synthase: guard to the gate of glycolysis in yeast? TrendsBiochem Sci,1995,20:3~10.
    190. Thompson J. E., Legge R. L., Barber R. F., The role of free radicals in senescence and wounding.New Phytol,1987,105:317~344.
    191. Thompson J. E., The molecular basis of membrane deterioration during senescence. In: NoodenLD, Leopold AC (eds). Senescence and Aging in Plants. SanDiego (USA): Academic Press,1988,51~83.
    192. Timasheff S. N., The control of protein stability and association by weak interactions with water:how do solvents affect these processes? Annu Rev Biophys Biomol Struct,1993,22:67~97.
    193. Torrecillas A., Alarcón J. J., Domingo R., et al., Strategies for drought resistance in leaves of twoalmond cultivars. Plant Sci,1996,118:135~143.
    194. Tzvetkov M., Klopprogge C., Zelder O., et al., Genetic dissection of trehalose biosynthesis inCorynebacterium glutamicum: inactivation of trehalose production leads to impaired growth andan altered cell wall lipid composition. Microbiology,2003,149:1659~1673.
    195. Uyar E. O., Hamamci H., Türkel S., Effect of different stresses on trehalose levels in Rhizopusoryzae. J Basic Microbiol,2010,50:368~372.
    196. Velikova V., Yordanov I., Edreva A., Oxidative stress and some antioxidant systems in acidrain-treated bean plants: protective role of exogenous polyamines. Plant Sci,2000,151:59~66.
    197. Veluthambi K., Mahadevan S., Maheshwari R., Trehalose toxicity in Cuscuta reflexa: correlationwith low trehalase activity. Plant Physiol,1981,68:1369~1374.
    198. Veluthambi K., Mahadevan S., Maheshwari R., Trehalose toxicity in Cuscuta reflexa: sucrose decreasesin shoot tips upon trehalose feeding. Plant Physiol,1995,69:1247~1251.
    199. de Virgilio C., Piper P., Boner T., et al., Acquisition of thermotolerance in Saccharomycescerevisiae without heat shock protein hsp104and in the absence of protein synthesis. FEBS Lett,1991a,288:86~90.
    200. de Virgilio C., Müller J., Boller T., et al., A constitutive, heat shock-activated neutral trehalaseoccurs in Schizosaccharomyces pombe in addition to the sporulation-specific acid trehalase. FEMSMicrobiol Lett,1991b,84:85~90.
    201. de Virgilio C., Bürckert N., Boller T., et al., A method to study the rapid phosphorylation-relatedmodulation of neutral trehalase activity by temperature shifts in yeast. FEMS Lett,1991c,291:355~358.
    202. de Virgilio C., Bürckert N., Bell W., et al., Disruption of TPS2, the gene encoding the100-kDasubunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae,causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphataseactivity. Eur J Biochem,2005,212:315~323.
    203. Vogel G., Fiehn O., Jean-Richard-dit-Bressel L., et al., Trehalose metabolism in Arabidopsis:occurrence of trehalose and molecular cloning and characterization of trehalose-6-phosphatesynthase homologues. J Exp Bot,2001,52:1817~1826.
    204. Voit E. O., Biochemical and genomic regulation of the trehalose cycle in yeast: review ofobservations and canonical model analysis. J Theor Biol,2003,223:55~78.
    205. Vuorio O. E., Kalkkinen N., Londesborough J., Cloning of two related genes encoding the56-KDaand123-kDa subunits of trehalose synthase from the yeast Saccharomyces cerevisiae. Eur JBiochem,1993,216:849~861.
    206. Wang C. Y., Temperature preconditioning affects glutathione content and glutathione reductaseactivity in chilled zucchini squash. J Plant Physiol,1995,145:148~152.
    207. Wannet W. J. B., Op den Camp H. J. M., WisseLink H. W., et al., Purification and characterizationof trehalose phosphorylase from the commercial mushrooms Agaricus bisporus. Biochem BiophysActa,1998,1425:177~188.
    208. Wiemken A., Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie vanLeeuwenhoek,1990,58:209~217.
    209. Wingler A., Fritzius T., Wiemken A., et al., Trehalose induces the ADP-glucosepyrophosphorylase gene, ApL3, and starch synthesis in Arabidopsis. Plant Physiol,2000,124:105~114.
    210. Winkler K., Kienle I., Burgert M., et al., Metabolic regulation of the trehalose content of vegetativeyeast. FEBS Lett,1991,291:269~272.
    211. Wolfe K. H., Lohan A. L. E., Sequence around the centromere of Saccharomyces cerevisiaechromosome II: similarity of CEN2to CEN4. Yeast,1994,10: S41~S46.
    212. Wolschek M. F., Kubicek C. P., The filamentous fungus Aspergillus niger contains two“differentially regulated” trehalose-6-phosphate synthase-encoding genes, tpsA and tpsB. J BiolChem,1997,272:2729~2735.
    213. Xiang C., Oliver D. J., Glutathione metabolic genes coordinately respond to heavy metals andjasmonic acid in Arabidopsis. Plant Cell,1998,10:1539~1550.
    214. Yeo E. T., Kwon H. B., Han S. E., et al., Genetic engineering of drought resistant potato plants byintroduction of the trehalose-6-phosphate synthase (TPS1) gene from Saccharomyces cerevisiae.Mol Cells,2000,10:263~268.
    215. Yoshida H., Sugawara T., Hayashi J., Changes in carbohydrates and organic acids duringdevelopment of mycelium and fruit-bodies of Hiratake mushroom (Pleurotus ostreatus). Journal ofJapanese Society of Food Science and Technology,1986,33:519~528.
    216. Yoshida T., Sakamoto T., Water-stress induced trehalose accumulation and control of trehalase inthe cyanobacterium Nostoc punctiforme IAM M-15. J Gen Appl Microbiol,2009,55:135~145.
    217. Z hringera H., Burgerta M., Holzera H., et al., Neutral trehalase Nth1p of Saccharomycescerevisiae encoded by the NTH1gene is a multiple stress responsive protein. FEBS Lett,1997,412:615~620.
    218. Zeid I. M., Trehalose as osmoprotectant for maize under salinity-induced stress. Res J Agric BiolSci,2009,5:613~622.
    219. Zentella R., Mascorro-Gallardo J. O., van Dijck P., et al., A Selaginella lepidophyllatrehalose-6-phosphate synthase complements growth and stress-tolerance defects in a yeast tps1mutant. Plant Physiol,1999,119:1473~1482.
    220. Zhang S. Z., Yang B. P., Feng C. L., et al., Genetic transformation of tobacco with the trehalosesynthase gene from Grifola frondosa Fr. enhances the resistance to drought and salt in tobacco. JIntegr Plant Biol,2005,47:579~587.
    221. Zhang S. Z., Yang B. P., Feng C. L., et al., Expression of the Grifola frondosa trehalose synthasegene and improvement of drought-tolerance in sugarcane (Saccharum officinarum L.). J IntegrPlant Biol,2006,48:453~459.
    222. Zhu Y. L., Pilon-Smits E. A. H., Jouanin L., et al., Overexpression of glutathione synthetase inIndian mustard enhances cadmium accumulation and tolerance. Plant Physiol,1999,119:73~80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700