用户名: 密码: 验证码:
新型香豆素类化合物的合成及其抑菌活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
香豆素(coumarins)类化合物广泛分布于伞形花科等很多高等植物以及微生物代谢产物中,其生理活性丰富多样,如具生长调节、光敏作用、抗菌抗病毒、利胆解痉、抗凝血、肝毒性、辐射防护及降血糖作用等;具有优异的荧光活性,可作荧光显色剂、荧光探针及非线性光学材料。长期以来,新香豆素类衍生物合成及生物活性、光学特性的研究在医药、光学材料等前沿领域,一直非常活跃。
     基于对香豆素类化合物的丰富多样的生物活性,尤其是抗菌活性的思考,本论文旨在以具抗菌活性的天然香豆素为一级先导物,通过分子设计、结构修饰,合成多系列香豆素类化合物,同步进行常见农业病菌活性筛选,通过结构与活性的关系分析,优化结构修饰与合成,寻找高抗菌活性的新型香豆素先导分子。
     1.由不同取代酚与乙酰乙酸乙酯或d1-苹果酸,通过Pechmann缩合反应制备了8种香豆素化合物,再经相转移催化Williamson反应合成相应衍生新化合物35个,结构均经IR, MS,1H-NMR表征得以证实。此部分化合物可分为三类,伞型酮和4-甲基伞型酮及其衍生物;7-甲基或8-甲基香豆素及其衍生物;氯代香豆素类化合物。
     对Pechmann缩合反应进行了较深入的试验研究,特别是对吡喃环4-位无取代的香豆素母体化合物的制备。此类化合物须由取代酚与dl-苹果酸进行缩合,传统方法时间反应长、酸用量大,且产率很低。通过较系统的试验研究,建立了以微波辐射促进反应体系,减少了质子酸的用量,反应时间大大缩短,产率亦有较明显提高。对相转移催化Williamson反应亦进行了优化试验,建立了此反应的最佳反应体系。
     2.4,7-二羟基香豆素及其衍生物的合成
     以间苯二酚和氰基乙酸为原料,经Pechmann反应、水解制备了4,7-二羟基香豆素,再经选择性醚化反应合成了7-羟基-4-甲氧基香豆素和4-乙氧基-7-羟基香豆素。再由7-羟基-4-甲氧基香豆素和4-乙氧基-7-羟基香豆素经相转移催化Williamson反应合成4,7-二羟基香豆素的衍生物。共合成了2个系列的20个新的4,7-二羟基香豆素衍生物,中间产物及目标产物结构经IR, MS,1H-NMR表征得以证实。结构通式如下:
     对关键中间体4,7-二羟基香豆素的合成路线和反应条件进行了深入研究,筛选出了较佳反应路线和实验条件。对Williamson反应从温度、时间、原料配比、催化剂及用量等各因素进行了优化试验,筛选出了最佳实验条件。
     3.苯环C-烯丙基取代的香豆素化合物的合成香豆素母体结构中苯环或吡喃环上不同取代基对其生物活性有导向性影响,而很多天然活性香豆素化合物在苯环或吡喃环上有烃基侧链,尤以不饱和侧链为多,故研究如何向母体引入烃基侧链,特别是不饱和侧链的合成方法很有意义。本论文设计的目标化合物之一——C-烯丙基香豆素化合物,采用了如下合成路线:由7-羟基香豆素类化合物先通过Williamson反应制备7-烃氧基香豆素衍生物(O),化合物0通过反应可得到C-烯丙基香豆素化合物(A)。
     Claisen重排反应是此项研究内容的关键。经典Claisen重排反应的条件苛刻,效率很低,产品难处理,产率一般较低(多数不到50%),很多反应还存在位置选择性问题(邻位与对位取代的竞争)。本论文对不同取代的O-烯丙基化合物进行深入试验研究,合成了8种C-烯丙基取代香豆素,结构均经IR,MS,41H-NMR表征得以证实。对各化合物的合成反应通过改变溶剂及催化剂等条件进行优化实验,提高反应效率及反应的化学选择性。建立了微波促进O-烯丙基香豆素Claisen重排反应的新方法,在强极性质子性溶剂乙二醇中,通过微波间歇式加热,反应产率有较大提高,后处理简便,是7-烃氧基香豆素化合物进行Claisen重排反应的较好反应模式。
     4.苯环C-异戊烯基取代香豆素衍生物的合成
     相对烯丙基,异戊烯基侧链在在天然活性香豆素化合物的结构中更为普遍,而在化学合成中,向苯环或吡喃环上引入异戊烯基侧链更困难,国内外医药、天然化学等领域中类似研究领域均没有解决此难题。
     本论文采用了多种方法进行异戊烯基香豆素的合成,如金属催化偶联、碱性介质中直接取代、催化直接取代等,合成了四种C-异戊烯基取代香豆素,结构均经IR,MS,1H-NMR表征得以证实。
     5.生物活性研究
     采用菌丝生长速率法和浊度法测定了合成的香豆素化合物对水稻纹枯病菌,小麦赤霉病菌,番茄灰霉病菌,辣椒疫霉病菌和番茄早疫病菌等五种常见植物病原菌的毒力(4,7-二羟基衍生物的生物活性实验所用植物病原菌除上述五种外,增加了水稻白叶枯病菌)。50mg/L试验浓度下,大多数测试化合物对几种供试病菌均有不同程度的抑制作用,且对水稻纹枯病菌的抑制活性最为明显。4-甲氧基香豆素衍生物明显例外,此类化合物整体对番茄灰霉病菌活性最高。
     化合物lc、If、2c、3c、3f、6c、 A-6、 P-1-1-a和PM-1-a对水稻枯纹病菌的抑制率均在85%以上,化合物1c、3d、7和A-7对小麦赤霉病菌的抑制率均在80%左右,化合物10b对水稻白叶枯病菌抑制率达到90%,初步表现出了良好的生物活性,有进一步深入研究的价值。
Coumarins (or benzopyrones) are widely exisiting in Nature. A large member of coumarins, of natural and synthetic origin, shows excellent biological activities, such as inhibitory of platelet aggregation, antibacterial, anticancer, inhibitory of steroid reductase and inhibitory of HIV-1protease. Coumarins are also used as food additives, optical brightening agents in cosmetics, dispersed fluorescent, and laser dyes. Therefore, various researchs of coumarin derivatives have attracted considerable interest.
     The biological activities of coumarins brighly depend on their substitution pattern. For example,7-hydroxycoumarin exhibits antioxidant properties and cytostatic, antibacterial, antiviral, xanthine oxidase inhibitor, antihyperglycemic, casein kinase inhibitor activities. To search for new coumarins with antibacterial activities and to investigate structure-activity relationships, synthesis of some novel hydroxycoumarin derivatives and their antibacterial activities were studied in this work.
     1. Synthesis of hydroxycoumarins and their derivatives
     Eight hydroxycoumarins were synthesized by Pechmann condensation from variously substituted phenols with ethyl acetoacetate or d,l-malic acid. Thirty five new derivatives of those hydroxycoumarins were obtained from these hydroxycoumarins via Williamson reaction. Structures of all the synthetic coumarins were confirmed by IR, NMR and MS. These coumarins can be classified as three types as follows:
     umbelliferone derivatives7(8)-methylcoumarins coumarin chlorides
     Coumarins can be synthesised using various methods including Perkin, Pechmann, Knoevenagel, Reformatsky and Wittig reactions. Among these, the Pechmann reaction was widely applied starting from very simple starting materials, and provided good yields of variously substituted coumarins. Condensation of substituted phenols with β-keto esters in the presence of an acid afforded4-substituted coumarins.
     A major content in this work focuses on the synthesis of hydrocoumarins without C-4 methyl group. These coumarins could be prepared via Pechmann condensation with d,l-malic and phenols. However, this method shows some disadvantages, such as severe reaction conditions, low yield of products, and hard purification. To overcome these shortcomings, new reaction conditions under microwave irradiation were developed as follows:microwave power240W, reaction time30s×5, cone. sulfuric aicd, substituted resorcinols and d,l-malic aicd (1:1.2), the yields were in the range of52%-70%.
     The Williamson reactions were carried out in acetone and catalyzed by tetrabutylammonium bromide (TB AB) as a phase transfer catalyst in presence of KI. The optimized conditions of Williamson reaction were as follows:n(hydroxycoumarin):n(alkyl halid):n(K2CO3):n(TBAB)=1.0:1.5:2.5:0.1,60℃-100℃for4h-17h, the yields were in the range of60%-93%.
     2. Synthesis of4,7-dihydroxycoumarin and its derivatives
     4,7-Dihydroxycoumarin was synthesized from resorcinol and cyanoacetic via Pechmann reaction followed by hydrolysis in31%yield.7-Hydroxy-4-methoxycoumarin and4-ethoxy-7-hydroxycoumarin were synthesized from4,7-dihydroxycoumarin. Twenty new coumarin derivatives from these two hydroxycoumarins were synthesized via Williamson reaction. The optimized conditions of Williamson reaction were:n(7-Hydroxy-4-methoxycoumarin) or n(4-ethoxy-7-hydroxycoumarin):n(alkylhalides):n(anhydrous potassium carbonate):n(TBAB)=1:1.5:2.5:0.1, reaction in DMF at60-80℃for10-27h. Structures of all synthsized coumarins were confirmed by IR, NMR and MS. These coumarins can be classified into two types as follows:
     3. Synthesis of C-alkyl coumarins
     Many coumarins having C-alkyl substituent at benzene ring exhibit a conducting effect on biologicakl activities. The side chain of C-alkyl is also very important to the activitiy. These interesting properties make C-alkyl coumarins very interesting targets. However, synthesis of these coumarins is very difficult. At present, Classien rearrangement is frequently used as a general means to prepare C-alkyl coumarins from O-alkyl coumarins, because O-alkyl coumarins can be easyly synthesized. The synthesis route of these targets is summarized as below.
     Considering the main drawbacks of this method such as using excess toxic solvents, high temperatures, low yields of products and long reaction times (24h and more), a new synthesis under microwave irradiation was employed proposed in this work. Using this, the rearrangement reaction could be completed in10-15min with the yields of42%-75%. Eight C-alkyl coumarins were obtained, their structures were confirmed by IR, NMR and MS.
     4. Synthesis of C-prenyl coumarins
     C-Prenyl side chain of natural coumarins with biological activities is more commonly observed than other C-alkyl derivative. So, attachment of C-prenyl substituent to coumarins is crucial. Unfortunately, there is no effective way to introduce C-prenyl substituent into the skeleton of coumarin yet. Many methods had been attempted in this paper, and four C-prenyl coumarins were synthesized in low ylieds. All structures of the C-prenyl coumarins were confirmed by IR, NMR and MS.
     5. Study of antibacterial activities
     The antibacterial activities of some synthesized coumarins against Rhizoctonia solani, Gibberella zeae, Botrytis cinerea Pers, Phytophara capsici and Alternaria solani were evaluated (besides,4,7-dihydroxycoumarin against Xanthomonas oryzae pv. Oryzae was also tested). The preliminary bioassay showed that most of the coumarins (in a concentration of50mg/L) were active against those plant fungus pathogens, and some of them exhibited satisfactory antibacterial activities against Rhizoctonia solani, Fusarium graminearum or Xanthomonas oryzae pv. Oryzae.
     Compounds1c、1f、2c、3c、3f、6c、 A-6、 P-1-1-a and PM-1-a exhibit potent activity against Rhizoctonia solani with inhibitory rates of85%~94%. Compounds1c、3d、7and A-7showed satisfactory antibacterial activities against Rhizoctonia solani with80%inhibitory rate.4-Methoxy-7-ethoxycoumarin presents the most potent antibacterial activities against Xanthomonas oryzae pv. Oryzae with a inhibitory rate of90%.
引文
[1]陈万义,新农药的研发——方法进展[M],北京:化学工业出版社,1996:1-18
    [2]尚尔才,试论农药与医药的联合开发[J],世界农药,2001,23(2),1-4
    [3]徐任生,天然产物化学[M],北京:科学出版社,1993:608-609
    [4]Christie, R, Lui Chih-hung, Studies of fuorescent dyes:part 1. An investigation of the electronic spectral properties of substituted coumarins[J]. Dyes and Pigments,1999,42:85-93
    [5]Lake B., Coumarin Metabolism, Toxicity and carcinogenicity:relevance for human risk[J]. Food and Chemical Toxicology,1999,37:423-453
    [6]Pais J., Bowers K., Stoddard A., et al. A continuous fluorescent assay for protein prenyltransferases measuring diphosphate release[J]. Analytical Biochemistry,2005,345:302-311
    [7]Azuma K., Suzuki S., Uchiyama, S., et al. A study of the relationship between the chemical structures and the fluorescence quantum yields of coumarins, quinoxalinones and benzoxazinones for the development of sensitive fluorescent derivatization reagents[J]. Photochem. Photobiol. Sci.,2003,2, 443-449
    [8]韩莹,周卫芬,香豆素磺酰脲类化合物的合成及其降血糖活性研究[J].中国药科大学学报,2002,33(2):93-97
    [9]黄晓龙,李兰敏,徐世平,抗癌及癌化学预防药物的研究:3-α-酮醛香豆素衍生物的合成及其抗致突活性与结构间的关系[J].药学学报,1996,31(7):509-516
    [10]孙一峰,宋化灿,许晓航,3-氨基香豆素及其衍生物的合成[J].中山大学学报(自然科学版),2002,41(6):42-45
    [11]Jurd L.,King A. D., Mihara, K.,The effect of alkylation on the antimicrobial activitives of 7-hydroxy and 4-hydroxycoumarins[J].Experientia,1970,26,1281-1286
    [12]徐任生,天然产物化学[M],北京:科学出版社,1993:590-595
    [13]Kashman Y., Gustafson K. R.,Fuller R. W., et al. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropica rRainforest tree,Calophyllum lanigerum[J]. J. Med.Chem.,1992,35 (15):2735-27)
    [14]Fortin H., Tomasi S., Jaccard P., et al. A prenyloxycoumarin from Psiadia dentata[J]. Chem. Pharm.Bull.,2001,49 (5):619-621
    [15]Shikishima Y., Takaishi Y, Honda G., et al. Chemical constituents of Prangos tschimganica, structure elucidation and absolute configuration of coumarin and furanocoumarin derivatives with anti-HIV activity [J]. Chem. Pharm. Bull.,2001,49 (7):877-880
    [16]Sancho R., Marquez N., Gomez.M., et al. Imperatorin inhibits HIV-1 replication through an Spl dependent pathway [J]. J.Biol. Chem.,2004,279 (36):37349-37359
    [17]Mazumder A., Wang S., Neamati N., et al. Antiretroviral agents as inhibitors of both human immunodeficiency virus type integrase and protease [J]. J Med Chem,1996,39(13):2472-2481
    [18]Lan X., Yasuo T., Mark C., et al. Anti-AIDS agents.37:synthesis and structure-activity relationships of (3'R,4'R)-(+)-CIS-khellactone derivatives as novel potent anti-HIV agents[J]. J.Med.Chem.1999, 42:2662-2672
    [19]Okuyama T., Takata M.,Nishino, H. et al. Studies on the antitumor-promoting activity of naturally occurring substances. Ⅱ. Inhibition of tumorpromoter enhanced phospholipid metabolism by umbelliferous materials[J], Chem. Pharm. Bull.1990,38:1084-1086
    [20]Nishino H., Okuyama T., Takata M., et al.Studies on the anti-tumor-promoting activity of naturally occurring substances. IV. Pd-II [(1)anomalin,(1)praeruptorin B], a seselin-type coumarin, inhibits the promotion of skin tumor formation by 12-0-tetradecanoylphorbol-13-acetate in 7,12-dimethylbenz[a]anthraceneinitiated mice[J], Carcinogenesis,1990,11:1557-1561.
    [21]Okuyama T., Takata M., Takayasu J., et al. Anti-tumorpromotion by principles obtained from Angelica keiske[J].Planta Med.1991,57:242-246
    [22]Mizuno A., Takata M., Okada Y.. et al. Structures of new coumarins and antitumor-promoting activity of coumarins from Angelica edulis[J], Planta Med.1994,60:333-336.
    [23]Itoa C., Itoigawa M., Furukawa H., et al. Anti-tumor-promoting effects of 8-substituted 7-methoxycoumarins on Epstein±arr virus activation assay[J]. Cancer Lett.,1999,138:87-92
    [24]Itoigawa M., Ito C.,Tan H.T., et al. Cancer chemopreventive agents,4-Phenyl-coumarins from
    Calophyllum Inophyllum[J]. Cancer Lett.,2001,169 (1):15-19.
    [25]张庆林,赵精华,毕建进,蛇床子中3种逆转肿瘤细胞多药耐药活性香豆素[J].中草药,2003,34(2):104-106.
    [26]Itoa C, Itoigawa M., Onoda S., Chemical constituents of Murraya siamensis:three coumarins and their anti-tumor promoting effect[J]. Phytochemistry 2005,66:567-572
    [27]Mofty A.M., A preliminary report on the treatment of leukoderma with Ammi majus Linn[J].,J. R. Egypt.Med. Assn.1948,31:651-665.
    [28]Lewis H.M., Therapeutic progress Ⅱ:treatment of psoriasis[J]. J. Clin. Pharm. Therap,1994,19: 223-232.
    [29]Mcneel W., Goa K.L.,5-Methoxypsoralen -a review of its effects in psoriasis and vitiligo[J]. Drugs, 1998,56:667-690.
    [30]徐汉虹,鞠荣,植物源光活化毒素的研究与新农药开发[J],华南农业大学学报(自然科学版),
    2003,24(4): 100-105
    [31]Jamkhandi P. S., Rajagopal S., Sirsi M.,4-Hydroxy-l-thiacoumarins. VI. anticoagulant activty and chemical structure in 4-hydroxy-l-thiacoumarins and related compounds [J]. Indian.J.Expt. Biol. 1968,6:224-229.
    [32]Hermodson M.A.,Barker W.M., Link J.P.,Studies on the 4-hydroxycoumarins:synthesis of the metabolites and some other derivatives of Warfarin[J]. J. Med. Chem.1971,14:167-169.
    [33].Pandey G., Muralikrishna, C.,. Bhalerao,U.T., Mushroom tyrosinase catalysed syhthesis of coumestans, benzofuran derivatives and related heterocycliccompounds[J].Tetrahedron,1989,45 (21):6867-6874
    [34]Monia M, Mirko P, Giovanni A, Characterization of anti-coagulant properties of prenylated coumarin ferulenol[J]. Biochimica et Biophysica Acta,2007,1770:1437-1440
    [35]张韶瑜,孟林,高文远,香豆素类化合物生物学活性研究进展[J].中国中药杂志,2005,30(6):410-414
    [36]Sergio M., Aracell P., Rache M., Natural products with calmodulin inhibitor properties[J].Phytochemistry,2007,68:1882-1903
    [37]Yusa T., Matsubara Y., Sawabe A., et al. Structures and physiological activity of coumarins in hassaku (Citrus hassaku Hort) and amanatsu (Gnatsudaidai) peels[J]. Yukagaku,1992,41: 249-251.
    [38]刘建新,黄彬,连其深,花椒毒酚的药理学研究进展[J].赣南医学院学报,2004,20(2):103-107
    [39]Sawake A., Kumamoto N., Matsubara Y. Structure-function relationship of bioactive compounds in citrus fruit peels[J]. Recent Res Dev Agric Biol Chem,1998,2:143-166
    [40]Schinkovitz A., Gibbons S., Stavri M., et al. Ostruthin:an antimycobacterial coumarin from the roots of peucedanum Ostruthium[J]. Plantamedica,2003,69 (4):369-371
    [41]Wu S., A lkaloids and coumarins of Citrus grandis[J]. Phytochem istry,1988,27:3717-3718
    [42]Ahmad R.,Shahverdi M.,Roohollah M., et al. Bioassay-guided isolation and identification of an antibacterial compound from frula persica var persica roots[J], Daru,2005,13(1):17-19
    [43]Ana C. S.,Sandra A.,Ce'sar A.,et al. Antifungal activity of some coumarins obtained from species of Pterocaulon (Asteraceae) [J]Journal of Ethnopharmacology,2006,107:95-98
    [44]Smyth T., Ramachandran V.N., Smyth W.F. A study of the antimicrobial activity of selected naturally occurring and synthetic coumarins[J] International Journal of Antimicrobial Agents,2009,33:421-426
    [45]Ghate M. Synthesis of vanillin ethers from 4-(bromomethyl)coumarins as anti-inflammatory agents [J]. European Journal of Medicinal Chemistry,2003,38:297-302
    [46]Curini M. Synthesis and anti-inflammatory activity of natural and semisynthetic geranyloxy coumarins [J]. Bioorganic & Medicinal Chemistry Letters,2004,14:2241-2243
    [47]李钥,陈志龙,光活化杀虫剂研究进展[J],化学进展,2004,16(1):110-115
    [48]Ypema H. L., Gold R. E. Kresoxim-methyl:modification of a naturally occurring compound to produce a new fungicide[J]. Plant Disease.1999,83 (1):4-19
    [49]Heitz J.K, Downum K.R. Light activated pesticides. ACS Symp.Ser.339. Washington, DC: American Chemical Society,1987
    [50]Trumble J.T., Millar J. G. Biological activity of marmesin and demethylsuberosin against a generalist herbivore, Spodoptera exigua (Lepidoptera:Noctuidae) [J].J.Agric. Food Chem.1996. 44:2859-2864
    [51]Handler M.R.经济而有效的第二代抗凝血杀鼠剂[J],农药译从,1992,14(2):19-23
    [52]董天义,阎丙申,抗凝血灭鼠剂研究进展[J],医学动物防治,1998,14(4):61-67
    [53]Kofinas C, Chinou I, Loukis A, et al. Flavoniods and bioactive coumarins of Tordylium apulum[J].Phytochemistry,1998,48(4):637-641.
    [54]Oliva A., Meepagala K.M., Wedge D.E., et al. Natural fungicides from Ruta graveolens L.Leaves, including a new quino akaloid[J]. J.Agric. Food Chem.2003,51:890-896
    [55]Al-barwani F.M., Eltayeb E.A. Antifungal compounds from induced Conium maculatum L. plants [J]. Biochemical Systematics and Ecology,2004,32:1097-1108.
    [56]Carpinella M.C.,Ferrayoli C.G., Palacios S.M., Antifungal synergistic effect of Scopoletin, a hydroxycoumarin isolated from Melia azedarach L. Fruits[J].J. Agric. Food Chem.2005,53: 2922-2927
    [57]石志琦,沈寿国,徐朗莱,等.蛇床子素对植物病原真菌抑制机制的初步研究[J].农药学学报,2004,6(4):28-32
    [58]毕红波,生物源杀菌剂的潜在先导物的筛选研究[J].世界农药,2005,27(4):27-30
    [59]郝双红,宗广辉,魏艳,滨蒿内酯的合成及其农用生物活性研究[J].青岛农业大学学报(自然科学版),2007,24(4):241-244
    [60]Macias F.A., Simonet A.M., Galindo J.C.G et al. Bioactive phenolics and polar compounds from Melilotus messanensis[J]. Phytochemistry,1999,50:35-46
    [61]Vyvyan J.R. Allelochemicals as leads for new herbicides and agrochemicals [J].Tetrahedron,2002,58:1631-1646
    [62]Garazd M.M., Garazd Y.L., Shilin S.V., Modified coumarins.5.amino-acid derivatives of 3-hydroxy-7,8,9-tetrahydrobenzo[c]chromen-6-one[J]. Chem.Natural comp.2002,38(5):416-423
    [63]Tyagi Y. K., Kumar A., Raj H. G. et al. Synthesis of novel amino and acetyl amino-4-methylcoumarins and evaluation of their antioxidant activity [J]. Europ.Med. Chem.2005, 40:413-420
    [64]Sharma, G.V.M., Reddy J.J.,Lakshmi P.S., et al., An e□cient ZrCl4 catalyzed one-pot solvent free protocol for the synthesis of 4-substituted coumarins[J].Tetrahedron Lett.2005,46:6119-6121
    [65]Li J.J., Name reactions:A collection of detailed reaction mechanisms [M]. Third Edition.Berlin: Springger-Verlag,2008:452-453
    [66]Romanelli G.P., Bennardi D., Ruiz D. M., et al.,A solvent-free synthesis of coumarins using a Wells-Dawson heteropolyacid as catalyst[J]. Tetrahedron Lett.2004,45:8935-8939
    [67]Maheswara M., Siddaiah V., Damu G.L.V. et al. A solvent-free synthesis of coumarins via Pechmann condensation using heterogeneous catalyst[J]. Molecular Catalysis A: Chem.2006,255:49-52
    [68]Bose D., Rudradas A. P., Babu M.H.,The indium(III) chloride-catalyzed von Pechmann reaction: a simple and effective procedure for the synthesis of 4-substituted coumarins[J].Tetrahedron Lett.2002,43:9195-9197
    [69]Alexander V.M., Bhat R.P., Samant S.D., Bismuth(III) nitrate pentahydrate—a mild and inexpensive reagent for synthesis of coumarins under mild conditions[J]. Tetrahedron Lett.2005,46:6957-6959
    [70]Valizadeh H. Shockravib A. An efficient procedure for the synthesis of coumarin derivatives using TiCl4 as catalyst under solvent-free conditions [J]. Tetrahedron Lett.2005,46:3501-3503
    [71]Hegedus M., Hell Z. Zeolite-catalyzed Pechmann synthesis of coumarins [J]. Catalysis Lett.2006, 112:105-108
    [72]杨建明,吕剑,苯基磺酸官能化分子筛催化合成香豆素类化合物[J].,有机化学,2004,24:(4):450-453
    [73]Potdar M.K., Rasalkar M.S., Mohile S.S. et al. Convenient and efficient protocols for coumarin synthesis via Pechmann condensation in neutral ionic liquids[J]. Molecular Catalysis A: Chem.2005,235:249-252
    [74]Manhas M.S., Ganguly S.N., Mukherjee S., Microwave initiated reactions:Pechmann coumarin synthesis[J]. Tetrahedron Lett.2006,47:2423-2425
    [75]Singh V., Singh J. Kaur K.P. et al. Acceleration of the Pechmann reaction by microwave irradiation: application to the preparation of coumarins[J]. J. Chem. Research (S),1997,1:58-59
    [76]Prajapati D.,Gohain M.Iodine a simple,effective and inexpensive catalyst for the synthesis of substituted coumarins[J].Catal Lett.2007,119:59-63
    [77]Frere S., Thiery V.,Besson T., Microwave acceleration of the Pechmann reaction on graphite:montmorillonite K10:application to the preparation of 4-substituted 7-aminocoumarins[J].Tetrahedron Lett.2001,42:2791-2794
    [78]Bailey B.C., Boettner F., Production of Coumarins from Maleic and Malic Acid[J]. J.Indu.Engin.Chem.,1921,13:905-906
    [79]Gunnewegh E.A., Hoefnagel A.J., Bekkum H., Zeolite catalysed synthesis of coumarin derivatives[J]. J.Mole. Catal. A:Chem.1995,100:87-92
    [80]Curini M., Epifano F., Maltese F. et al. Synthesis and anti-inflammatory activity of natural and semisynthetic geranyloxycoumarins[J]. Bioorg. Med. Chem. Lett.2004,14:2241-2243
    [81]庞思平,王琳,白柠檬素的合成[J].北京理工大学学报,2005,25(8):743-745
    [82]Symeonidis T., Chamilos M., Hadjipavlou-Litina D.J. et al. Synthesis of hydroxycoumarins and hydroxybenzo[f]- or [h]coumarins as lipid peroxidation inhibitors[J]. Bioorg. Med. Chem. Lett. 2009,19:1139-1142
    [83]章维华,蒋木庚,TBAB相转移催化合成7-烷氧基香豆素[J].合成化学,2008,16(5):561-563
    [84]谈云龙,卢爱民,章维华,微波法合成7-羟基-8-甲基香豆素[J].化学试剂(已录用)
    [85]Perkin W.H., On the artificial Production of coumarin and formation of its homolognes[J].J.Chem.Soc.,1868,21:53-55
    [86]Huang Y., Lu Z.Y., Peng Q. et al. Synthesis of novel coumarin-terminated poly (p-phenylene vinylene)s for application in LEDs[J].J. Mater.Sci.,2005,40:601-6
    [87]Kovalenko S.N., Zubkov V.A., Chernykh V.P. et al. Recyclization of 2-imino-2H-l-benzopyrans usder the influence of nucleophilic reagets[J].Chem. hetero. Compd,1996,32(2):163-168.
    [88]Vilar S., Quezada E., Santana L. et al. Design, synthesis, and vasorelaxant and platelet antiaggregatory activities of coumarin-resveratrol hybrids[J]. Bioorg. Med. Chem. Lett.2006, 16:257-261
    [89]Camur M., Bulut M., The synthesis and characterization of novel soluble phthalocyanines substituted with 7-octyloxy-3-(4-oxyphenyl)coumarin moieties[J]. Dyes and Pigments 2008,77:165-170
    [90]Matos M.J, Vina D.,Picciau C. et al. Synthesis and evaluation of 6-methyl-3-phenylcoumarins as poten and selective MAO-B inhibitors[J]. Bioorg. Med. Chem. Lett.2009,19:5053-5055
    [91]Matos M.J., Vina D., Quezada E. et al. A new series of 3-phenylcoumarins as potent and selective MAO-B inhibitors[J]. Bioorg. Med. Chem. Lett.2009,19:3268-3270
    [92]Voznyi Y.V., Dekaprilevich M.O., Yufit D.S. et al. Synthesis of -4- trifluromethyl-7-hydroxycoumarin derivatives [J]. Izvestiya Akademii Nauk, Seriya Khimicheskaya,1991,6: 1371-1375
    [93]Yu T., Zhao Y.L.,Ding X.S. et al. Synthesis, crystal structure and photoluminescent behaviors of 3-(1H-benzotriazol-1-yl)-4-methyl-benzo[7,8]coumarin[J]. J. Photo. Photobiology A:Chem., 2007,188:245-251
    [94]Li X., Jain N., Russell R.K. et al.,Development of a scalable synthetic process for selective bromination of 4-methyl-3,7-substituted coumarins [J]. Organic Process Research & Development 2006,10,354-360
    [95]Mhiri C.,Iadhar F.,Gharhi B.E. et al. Convenient Synthesis of 3- Arylcoumarins from arylacetonitriles[J]. Synth. Comnum.1999,29,1451-1461
    [96]徐群,魏静,马文辉,微波辐射促进合成系列7-二乙氨基类香豆素及其荧光性质的研究[J]. 染料与染色.2007,44(3):20-23.
    [97]Berthelot T., Lain G.., Latxague L. et al. Synthesis of novel fluorogenic L-Fmoc Lysine derivatives as potential tools for imaging cells[J]. J. Fluorescence,2004,14(6):671-675
    [98]孙一峰,张东娣,马世营,香豆素衍生物的合成及结构表征[J].影像科学与光化学,2008,26(5):393-402
    [99]Petrosyan V.A.,Adaevskaya L.V.,Chizhov O.S. et al. Possibility of applying the electrochemical verson of the Homer reaction to the synthesis of unsaturated lactones[J].Russian Chem. Bull.,1993,42(1):129-131
    [100]Tanaka T., Kumamoto T., Ishikawa T. Enantioselective total synthesis of anti HIV-1 active (+)-calanolide A through a quinine-catalyzed asymmetric intramolecular oxo-Michael addition[J]. Tetrahedron Lett.2000,41:10229-10232
    [101]Maes D., Vervisch S., Debenedetti S. Synthesis and structural revision of naturally occurring ayapin derivativesTetrahedron,2005,61:2505-2511
    [102]Maes D., Riveiro M.E., Shayo C. Eet al. Total synthesis of naturally occurring 5,6,7-and 5,7,8-trioxygenated coumarins[J]. Tetrahedron,2008,64:4438-4443
    [103]Upadhyay P.K., Kumar P., A novel synthesis of coumarins employing triphenyl(α-carboxymethylene)-phosphorane imidazolide as a C-2 synthon[J]. Tetrahedron Lett. 2009,50:236-238
    [104]Schiedel M., Briehn C.A., Bauerle P., C-C Cross-coupling reactions for the combinatorial synthesis of novel organic materials[J]. J. Organomet. Chem.,2002,653:200-208
    [105]Schio L., Chatreaux F., Klich M., Tosylates in palladium-catalysed coupling reactions. Application to the synthesis of arylcoumarin inhibitors of gyrase B[J]. Tetrahedron Lett.2000,41:1543-1547
    [106]Majumdar K. C, Chattopadhyay B., Nath S.,New Heck coupling strategies for the arylation of secondary and tertiary amides via palladium-catalyzed intramolecular cyclization[J]. Tetrahedron Lett.2008,49:1609-1612
    [107]Chang C.P, Santhanakrishnan V., Hong F.E., Synthesis of coumarin derivatives by palladium complex catalyzed intramolecular Heck reaction:Preparation of a 1,2-cyclobutadiene-substituted CpCoCb diphosphine chelated palladium complex[J].Inorg. Chem. Comm.,2009,12:596-598
    [108]Trost B.M., Toste F.D., A new Palladium-catalyzed addition:a mild method for the synthesis of coumarins[J].J. Am. Chem. Soc.1996,118,6305-6306
    [109]Catellani M., Chiusoli G.P., Marzolini G. et al. Designing a catalttic synthesis of 4-methylcoumarin from ortho-iodophenyl 3-butenoate:ring closure and isomerization control[J],J. Organomet. Chem.,1996,525:65-69
    [110]Fernandes T.A.,Carvalho R.,Goncalves T.,A tandem palladium-catalyzed Heck-lactonization through the reaction of ortho-iodophenols with β-substituted acrylates:synthesis of 4,6-substituted coumarins[J]. Tetrahedron Lett.2008,49:3323-3325
    [111]Li K., Zeng Y., Neuenswander B. et al. Sequential Pd(Ⅱ)-Pd(0) catalysis for the rapid synthesis of coumarins[J].J. Org. Chem.,2005,70:6515-6518
    [112]Shah V.R., Bose J. L., Shah R. C. New synthesis of 4-hydroxycoumarins[J]. Commun.1960,25: 677-678
    [113]Woods L.L, Johnson D. Coumarins from 2-hydroxyaryl acids and malonic acid[J]. Notes,1965, 30:4343-4344
    [114]Buckle D.R., Cantello B. C., Smith H., et al. Antiallergic activity of 4-hydroxy-3-nitroCoumarins[J].J. Med. Chem.,1975,18(4):391-394
    [115]Li H.Y, Boswell G.A. A facile synthesis of fluorinated 4-hydroxycoumarins[J]. Tetrahedron Lett.,1996,37(10):1551-1554
    [116]Xie L., Takeuchi Y., Cosentino L.M. et al. Anti-AIDS agents.37.Synthesis and structure-activity reactionships of (3'R,4'R)-(+)cis-khellactone derivatives as novel potent anti-HIV agents[J]J. Med. Chem.1999,42:2662-2672
    [117]Kirkiacharian S, Thuy D.T., Sicsic S. et al. Structure-activity relationships of some 3-substituted-4-hydroxycoumarins as HIV-1 protease inhibitors[J]. Ⅱ Farmaco,2002,57:703-708
    [118]张泽江.4-羟基香豆素合成技术[J].四川化工,1997,2:49-53
    [119]胡瑞.4-羟基香豆素合成方法概述[J].精细化工中间体,2005,35(1):24-30
    [120]Dittmer D.C., Li Q.,Avilov D.V., Synthesis of coumarins,4-hydroxycoumarins, and 4-hydroxyquinolinones by Tellurim-Triggered cyclizations[J]. J. Org. Chem.,2005,70:4682-4686
    [121]Alexey V. Kalinin, Alcides J. M. da Silva, Claudio C. Lopes, et al. Directed ortho metalation-cross coupling links. Carbamoyl rendition of the Baker-Venkatar rearrangement, regiospecific route to substituted 4-hydroxycoumarim[J]. Tetrahedron Lett.,1998,39:4995-4998
    [122]Jung J.C., Jung Y.J., Park O.S.A. Convenient one-pot synthesis of 4-hydroxycoumarin, 4-hydroxythio coumarin and 4-hydroxyquinolin-2 (1H)-one [J]. Synth. Commun.,2001, 31:1195-1198
    [123]Roma G, Braccio M.D, Carrieri A., et al. Coumarin,chromone,and 4(3H)-Pyrimidinone novel bicyclic and tricyclic derivatives as antiplatelet agents:synthesis, biological evaluation, and comparative molecular field analysis[J]. Bioorg. Med. Chem.,2003,11:123-138
    [124]Braccio M.D, Grossi G, Roma G. et al. Synthesis and in vitro inhibitory activity on human platelet aggregation of novel properly substituted 4-(1-piperazinyl)coumarins[J]. Europ. Med. Chem. 2004,39:397-409
    [125]Stadler E, Buser H.R., Defense chemicals in leaf surface wax synergistically stimulate oviposition by phytophagous insect[J]. Experientia,1984,40(10):1157-1159
    [126]Shukla Y.N., Srivastava A. Phytotoxic and antimicrobial constituents of Argyreia speciosa and Oenothera biennes [J]. Ethnopharm,1986,67:241-245
    [127]Sardari S., Mori Y., Horita K., et al. Synthesis and antifungal activity of coumarins and angular furanocoumarins[J]. Bioorg. Med. Chem.1999(9):1933-1940
    [128]Zhou P., Takaishi Y., Duan H., et al.Coumarins and bicoumarin from Ferula sumbul: anti-HIV activity and inhibition of cytokine release[J].,2000(53):689-697
    [129]石志琦,范永坚.天然化合物在农药中的应用研究[J].江苏农业学报,2002,18(2),126-128
    [130]石志琦,范永坚.天然化合物蛇床子素杀虫抑菌活性研究[J].江苏农业学报,2004,18(4):241-245
    [131]王春梅,蔡春,李优琴.蛇床子素结构修饰物JS-B对辣椒疫霉病菌的抑制作用[J].江苏农业科学,2007,5:72-75
    [132]Roland W., Hans G, Properties and solubilization of the prenyltransferase of isoflavonoid phytoalexin biosynthesis in soybean[J].Phytochemistry,1991,30(2):479-484
    [133]Satoshi T., Masaaki M., John L.I. et al. Isoflavone atropisomers from Piscidia erythrina[J].Phytochemistry,1993,34(2):545-552
    [134]Satoshi T., John L. I., Shiro N. et al. Fungitoxic dihydrofuranoisoflavones and related compounds in white lupin, Lupinus albus[J]. Phytochemistry,1984,23(9):1889-1900
    [135]Satoshi T., John L. I., Junya M. Identification of an epoxy-intermediate resulting from the fungal metabolism of a prenylated isoflavone[J].Phytochemistry,1989,28(8):2079-2084
    [136]于德泉,吴林.天然产物化学进展[M].北京:化学工业出版社,2005,5-9
    [137]William R. P., Nina J. B., Leslie G., et al. C-Geranyl compounds from Mimulus clevelandii[J]. J.Nat.Prod.1996,59(5):495-497
    [138]Li H., Fekadu F., Robert J. M., et al., A new prenylated flavonol from the root of Petalostemon purpureus[J]. J. Nat.Prod.1996,59(3)290-292
    [139]Nikaido T, Ohmoto T, Inhibition of adenosine 3.5-cyclic monophosphate phosphodiesterase by flavonoids[J]. Chem.Pharm.Bull.1989,37:1392
    [140]Koteswara R., Venkata R., Hari K. et al. Total Synthesis of Heliannone A and (R,S)-Heliannone B, Two Bioactive Flavonoids from Helianthus annuus Cultivars[J].J. Nat.Prod.,2001,64(3):368-369;
    [141]Laura P., Marcus K., Klaus P. et al. Synthesis of compounds with antiproliferative activity as analogues of prenylated natural products existing in Brazilian propolis[J]., Eu. J. Med.Chem., 2006,41(3),401-407
    [142]杨永刚,张宇,曹小平.(±)Cudraflavanone B及(±)-5-O-Methyl Cudraflavanone B的全合成研究[J].化学学报,2005,63(20),1901-1905
    [143]Bulut M., Erk C., Improved Synthesis of Some Hydroxycoumarins [J].Dyes and Pigment,1996,30, 99-104
    [144]Hassean V.,Abbas S.,An Efficient Procedure for the Synthesi of Coumarin Driivatives Using TiCl4 as Catalyst Under Solvent-free Conditions[J].Tetrahedron Lett.2005,46,3501-3503.
    [145]Manhas M.S., Ganguly S.N., Mukherjee S., et al. Microwave initiated reactions:Pechmann coumarin synthesis, Biginelli reaction, and acylation[J]. Tetrahedron Letters,2006,47(14): 2423-2425
    [146]Shah V.R., Bose J.L., Shah R. C., New synthesis of 4-hydroxycoumarins[J]. Communications, 1960,25:677-678
    [147]Buckle D.R., Cantello B.C., Smith H., et al. Antiallergic activity of 4-hydroxy-3-nitroCoumarins[J] Journal of Medicinal Chemistry,1975,18(4):391-394
    [148]Xie L., Takeuchi Y., Cosentino L. M., et al. Anti-AIDS agents.37. Synthesis and structure-activity relationships of (3'R,4'R)-(+)-CIS-khellactone derivatives as novel potent anti-HIV agents[J]. J.Med.Chem,1999,42,2662-2672
    [149]Pandey G., Muralikrishna C., Bhalerao U.T. Mushroom tyrosinase catalysed syhthesis of coumestans, benzofuranderivatives and related heterocycliccompounds[J]. Tetrahedron,1989, 45(21):6867-6874
    [150]郭大鹏.香豆素衍生物的合成及活性检测[D].南京:南京理工大学
    [151]Gignere R. J., Bray T. L., Duncan S. M., et al. Application of commercial microwave ovens to organic synthesis[J]. Tetrahedron Lett.1986,27:4945-4948
    [152]Kusano A., Nikaido T., Kuge T., et al. Inhibition of adenosine 3',5'-cyclic monophosphate phosphodiesterase by flavonoids from licorice roots and 4-arylcoumarins[J].Chem Pharm Bull. 1991; 39:930-933

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700