用户名: 密码: 验证码:
若干表面功能化修饰纤维素材料的制备及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球经济和工业的高速发展,煤、石油、天然气等不可再生资源被大量消耗,环境污染问题也日益严重,人们开始关注可再生资源的开发和利用。纤维素物质是自然界最丰富的原材料,具有良好的生物相容性、生物降解性、柔韧性、无毒性、多孔性,因而有关纤维素材料的开发和应用成为了当前的研究热点之一。其中,新型纤维素功能材料,如膜材料、发光材料、智能响应材料、疏水材料、抗菌材料、凝胶材料、生物医用材料等被人们竞相开发,成为了纤维素科学领域的研究重点。
     本文以天然纤维素物质(普通定量滤纸)为基底,以活性的钛酸四丁酯或锆酸四丁酯为前体物,通过表面溶胶-凝胶法在纤维素纳米纤维表面沉积超薄的金属氧化物凝胶膜(TiO2或Zr02凝胶层),从而活化相对惰性的纤维素表面,用以组装不同功能分子和客体物质,制备出各种具有特定功能和性质的纤维素功能材料,主要结论如下:
     (1)寡聚核苷酸功能化的纤维素材料:以锆酸四丁酯为前体物,通过表面溶胶-凝胶法在纤维素纳米纤维表面沉积超薄的ZrO2凝胶层,然后利用磷酸基团与Zr02之间强的配位作用将大量端基磷酸化的探针DNA分子组装于其表面,得到寡聚核苷酸功能化的纤维素材料。SEM和TEM观察表明ZrO2凝胶层能在纳米尺度上复制纤维素的层次结构,即能在纤维素纳米纤维表面很好地覆盖,这为接下来探针DNA链的大量富集和目标DNA链的识别提供了有利条件。所制备的寡聚核苷酸功能化的纸能保持了较好的生物活性,能实现对与探针DNA链完全互补的目标DNA链的反复识别,且具有较好的选择性。相对与平面的石英片基底,纤维素基底具有大的表面积,因而探针DNA分子在纤维素基底上的组装量要远远高出其在石英片基底上的组装量,故基于纤维素基底的DNA识别体系的检测限能达纳摩尔级,要低于基于平面石英片基底的识别体系的检测限两个数量级。此外,对比实验表明,ZrO2凝胶层对于探针DNA的组装和接下来的识别都是必不可少的。
     (2)基于纤维素材料的半胱氨酸比色传感器:以锆酸四丁酯为前体物,通过表面溶胶-凝胶法在纤维素纳米纤维表面沉积超薄的ZrO2凝胶层,然后利用羧基与Zr02之间强的配位作用将大量的N719-Hg2+复合物组装于其表面,得到纸质的半胱氨酸比色传感器(类似pH试纸),显示出橙色。半胱氨酸分子中含有游离的巯基,与Hg的结合能力很强,因而当传感器材料与半胱氨酸水溶液接触时,固定在纤维素纤维表面的N719-Hg2+复合物中的Hg能被半胱氨酸夺取,橙色的传感材料立即变为紫色(染料N719的颜色),同时该材料UV-vis谱图中的某一谱带在传感后发生了480nm到520nm的红移,很好地对应了材料颜色的转变。该检测体系方便、快速具有很好的便携性,其检测限低至20μM,且具有很好的选择性,对其它19种天然氨基酸及其混合物均无变色响应。同时该检测体系具有良好的抗干扰能力,能够将其从包含其它19种天然氨基酸的混合溶液中检测出来。我们对该传感材料的重复利用性质也做了研究,通过半胱氨酸和Hg(N03)2水溶液的交替处理可以实现反复使用。此外,对比实验表明,Zr02凝胶层对于N719-Hg2+复合物组装的组装和接下来的比色传感都是必不可少的。
     (3)抗菌的纤维素材料:以钛酸四丁酯和壳聚糖乳酸盐为前体物,通过LbL的方法在滤纸基底的纤维素纤维表面交替沉积二氧化钛凝胶层和壳聚糖层得到纤维素/二氧化钛/壳聚糖复合材料。该材料在微观的纳米层次上具有独特的电缆状的核-壳结构,表现为纤维素纳米纤维的核以及核表面所包覆的平整且均匀的二氧化钛/壳聚糖复合物壳,对于10个二氧化钛/壳聚糖双层的膜来说,其平均后都为14nm)。将沉积有二氧化钛/壳聚糖复合物膜的纤维素材料用于Ag+吸附再在紫外光的照射下将其原位还原,产生银纳米颗粒,得到纤维素/二氧化钛/壳聚糖/银纳米颗粒复合材料。该材料在微观的纳米层次上同样具有电缆状的核-壳结构,表现为纤维素纳米纤维的核、核表面所包覆的均匀的二氧化钛/壳聚糖/银纳米颗粒复合物壳,以及均匀分布在纳米纤维表面的粒径在4-10nm的银纳米颗粒。此外,抗菌实验表明,表而功能化修饰的纤维素材料对大肠杆菌和金黄色葡萄球菌均具有一定的抗菌活性。其中二氧化钛/壳聚糖复合物膜修饰的纤维素材料的抗菌效率低于60%,而二氧化钛/壳聚糖/银纳米颗粒复合物膜修饰的纤维素材料由于高的银含量使其能杀死几乎所有接种的细菌,表现出优异的抗菌能力。
     (4)具有催化性能的纤维素材料:以钛酸四丁酯为前体物,通过表面溶胶-凝胶法在纤维素纳米纤维表面沉积超薄的Ti02凝胶层。然后采用LbL的方法,通过静电作用将阳离子聚电解质PDDA层以及带负电的KAuCl4和阴离子聚电解质PSS双组分层交替组装到Ti02凝胶层覆盖的纤维素纳米纤维表面,之后用NaBH4水溶液将组装的KAuCl4原位还原成金纳米颗粒,得到金纳米颗粒修饰的纤维素材料。该材料继承了原有纤维素物质层次的纤维状结构:具有典型的金纳米颗粒表面等离子体共振吸收,表现为UV-vis谱图中在520nm处有一明显的吸收峰;其纤维素纳米纤维表面附着着许多粒径在5nm左右的金纳米颗粒。该材料对NaBH4还原4-硝基苯酚(4-NP)的反应具有明显的催化效果,10mL反应液(其中4-NP的浓度为0.1mM, NaBH4的浓度为10mM)经金纳米颗粒修饰的纤维素材料(cellulose/(TiO2)5/Au@(PDDA/PSS)10)过滤一次后,4-NP的转化率高达74.0%,经三次过滤后转化率高达98.7%;相比之下,纯滤纸、沉积有二氧化钛凝胶膜的滤纸以及沉积有二氧化钛凝胶层和聚电解质PDDA/PSS多层的滤纸对该反应均无催化效果,同时对4-NP也无明显吸附作用。
With the rapid development of the global economy and industry, nonrenewable resources such as coal, petroleum and natural gas has been excessively consumed, giving rise to the serious environmental pollution, therefore, more and more attention was paid to the renewable resources. Among them, cellulose substance is the richest raw material in the word, which possesses good biocompatibility, biodegradability, flexibility, nontoxicity and porosity, hence the research regarding the functionalization and application of cellulose materials becomes one of the hottest spots in material research community. Meanwhile, various functional cellulose materials like membrane materials, luminescent materials, smart responsive materials, hydrophobic materials, antibacterial materials, gel materials and medical materials have been largely explored, being the focus in the scope of cellulose science.
     Herein, employing natural cellulose substance (ordinary quantitative filter paper) as substrate and metal alkoxide (titanium(IV)n-butoxide or zirconium(IV)n-butoxide) as precursor, an ultrathin metaloxide (TiO2or ZrO2) gel film was first deposited onto cellulose nanofibers of filter paper by means of a surface sol-gel process. The deposited metaloxide gel layer activated the relatively inert surface of cellulose fibers and favord the following immobilization of different functional molecules or guest substances onto its surface, which endowed the cellulose materials with desired functionalities and properties, resulting in lots of advanced functional cellulose materials. The details are described as follows.
     (1) Oligonecleotide-functionalized cellulose material:Employing zirconium(IV) n-butoxide as precursor, uniform ultrathin zirconia gel film was first deposited on each cellulose nanofiber in bulk filter paper by a facile surface sol-gel process. Relying on the large surface area and strong affinity of zirconia for phosphate group, terminally phosphated probe DNA was abundantly immobilized on the cellulose fibers so as to convert the composite into a biofunctional material for sensitive, selective and repetitive recognition for the corresponding complementary target DNA at a nanomolar level. By contrast, in spite of the viability of immobilization of probe DNA and recognition of target DNA on quartz plate, the amount of captured probe DNA or recognized target DNA on such flat substrate, was much less than that captured or recognized on filter paper, resulting in relatively insensitive recognition event. Moreover, control experiments on bare filter paper (without zirconia nanocoating) suggested that the zirconia gel film was essential for probe DNA immobilization and the subsequent target DNA recognition.
     (2) Cellulose based colorimetric cysteine (Cys) chemosensor:Employing zirconium(Ⅳ) n-butoxide as precursor, uniform ultrathin zirconia gel film was first deposited on each cellulose nanofiber in bulk filter paper by a facile surface sol-gel process. Immobilization of ruthenium dye-Hg2+complex (N719-Hg2+complex) monolayer on such ultrathin zirconia gel film coated cellulose nanofibers of filter paper was conducted to fabricate a solid-phase sensing device with high sensitivity, selectivity and reversibility for colorimetric detection of Cys in aqueous media. This assay relied on the specific mercury displacement by cysteine from the immobilized N719-Hg2+complex. The dissociation of N719and Hg2+caused by such mercury displacement engendered obvious orange-to-purple color change of the zirconia gel layer and N719-Hg2+complex modified filter paper as well as the corresponding band shift from480nm to520nm in UV-vis spectra, hence realizing the colorimetric detection of cysteine. The detection limit of this assay is20μM by the naked eye and the selectivity for Cys against interference of the other19natural amino acids and their mixture is extremely high. Additionally, the deposition of the zirconia gel film onto cellulose fibers was crucial, and without the metal oxide layer, immobilization of the N719-Hg2+complex and subsequent Cys sensing would not be accomplished.
     (3) Antibacterial cellulose material:organic/inorganic hybrid materials comprised of titania/chitosan composite were uniformly coated on cellulose nanofibers of filter paper by alternately depositing titania gel layer and chitosan layer for a given number of times. The resultant surface-modified cellulose nanofibers possessed a cable-like core-shell structure, showing cellulose nanofiber core adhered with flat and homogeneous titania/chitosan composite shell, whose average thickness is14nm for10-cycle deposition of titania/chitosan bilayer. By adsorbing silver ions with titania/chitosan composite modified paper followed by reducing the immobilized silver ions with UV irradiation, another kind of organic/inorganic hybrid nanocoating composed of titania/chitosan/silver composite was uniformly deposited on cellulose nanofibers of filter paper. Such resultant surface-decorated cellulose nanofibers also possessed a core-shell structure, exhibiting cellulose nanofiber core coated with14-nanometer-thick titania/chitosan/Ag composite shell for10-cycle titania/chitosan bilayer deposition as well as polydispersed nanosized silver particles (4-20nm in diameter) well distributed on the shell. Moreover, antibacterial tests suggested that the titania gel film coated cellulose papers and the titania/chitosan composite modified cellulose papers exhibited moderate antibacterial activity against E. coli and S. aureus with the antibacterial effects not more than60%, while the titania/chitosan/silver composite decorated cellulose papers nearly disinfected all the inoculated bacteria due to the high loading of Ag NPs, showing splendid antibacterial activity.
     (4) Catalytic cellulose material:Employing titanium(IV) n-butoxide as precursor, uniform ultrathin titania gel film was first deposited on each cellulose nanofiber in bulk filter paper by a facile surface sol-gel process. Then, cationic polyelectrolyte layer PDDA as well as the two-component layer containing anionic polyelectrolyte PSS and KAuCl4were alternatively self-assembled onto the titania gel film pre-coated cellulose nanofibers of filter paper through electrostatic interaction. Followed by treatment with aqueous solution of NaBH4, the immobilized KAuCl4molecules were in situ reduced to Au NPs with the diameters about5nm, thus yielding Au NPs modified cellulose material, which inherited the original morphological characteristics of virgin cellulose substance with the hierarchically fibrous structures and exhibited typical SPR band around520nm in UV-vis spectra. Such Au NPs modified cellulose material also showed satisfactory catalytic activity toward the reduction reaction of4-nitrophenol (4-NP) with NaBH4in aqueous environment. By filtering10mL aqueous solution containing4-NP (0.1mM) mixed with NaBH4(10mM) through the Au NPs modified cellulose material (cellulose/(TiO2)5/Au@(PDDA/PSS)10) for one time, the conversion ratio of4-NP reached up to74.0%, which could be further promoted to98.7%after triple filtrations. In sharp contrast, pure filter paper, the titania gel film coated paper and the titania/PDDA/PSS multilayer modified paper displayed neither catalytic effect toward such reduction reaction nor apparent physical adsorption of4-NP.
引文
[1]R. Kumar, D. Liu, L. Zhang, Advances in proteinous biomaterials, J. Biobased Mater. Bioenergy 2008,2,1-24.
    [2]S. Sun, Y. Song, Q. Zheng, Morphologies and properties of thermo-molded biodegradable plastics based on glycerol-plasticized wheat glutn, Food Hydrocolloids 2007,21,1005-1013.
    [3]E. Heuser, The chemistry of cellulose, Wiley & Sons, Inc., New York,1944.
    [4]J. L. Slavin, P. M. Brauer, J. A. Marlett, Neutral detergent fiber, hemicellulose and cellulose digestibility in human subjects, J. Nutr.1981,111,287-297.
    [5]L. Yang, Newly progress on bacterial cellulose, Microbiology 2003,30,95-98.
    [6]L. Peng, Y. Kawagoe, P. Hogan, D. Delmer, Sitosterol-β-glucoside as primer for cellulose synthesis in plants, Science 2002,295,147-150.
    [7]高洁,汤烈贵,纤维素科学,北京,科学出版社,1996.
    [8]D. Klemm, D. Schumann, U. Udhardt, S. Marsch, Bacterial synthesized cellulose-artificial blood vessels for microsurgery, Prog. Polym. Sci.2001,26, 1561-1603.
    [9]D. Y. Delmer, Biosynthesis of cellulose, Adv. Carbohydr. Chem. Biochem.1983, 41,105-153.
    [10]W. Czaja, A. Krystynowicz, S. Bielecki, R. M. Brown Jr., Microbial cellulose-the natural power to heal wounds, Biomaterials 2006,27,145-151.
    [11]Henrik Backdahl, G. Helenius, A. Bodin, U. Nannmark, B. R. Johansson, B. Risberg, P. Gatenholm, Mechanical properties of bacterial cellulose and interactions with smooth muscle cells, Biomaterials 2006,27,2141-2149.
    [12]周毓,刘艳,细菌纤维素研究进展,广州化工2007,35,8-9.
    [13]A. K. Mohanty, M. Misra, L. T. Drzal, Sustainable bio-composites from renewable resources:opportunities and challenges in the green materials world, J. Polym. Environ.2002,10,19-26.
    [14]张俐娜,薛奇,莫志深,高分子物理近代研究方法,武汉:武汉大学出版社,2003.
    [15]钱人元,高聚物的分子量测定,北京,科学出版社,1965.
    [16]W. Brown, R. Wiskston, Viscosity-molecular weight relationship for cellulose in cadoxen and hydrodyanamic interpretation, Eur. Polym. J.1965,1,1-10.
    [17]T. Kondo, Hydrogen bonds in cellulose and cellulose derivatives,2004.
    [18]M. Wada, L. Heux, A. Isogai, Y. Nishiyama, H. Chanzy, J. Sugiyama, Improved structural data of cellulose ⅢⅠ prepared in supercritical ammonia, Macromolecules 2001,34,1237-1243.
    [19]J. Sugiyama, J. Persson, H. Chanzy, Combined infrared and electron diffraction study of the polymorphism of native celluloses, Macromolecules 1991,24, 2461-2466.
    [20]A. J. Michell, Second-derivative FTIR spectra of native celluloses from volonia and tunicin, Carbohydr. Res.1993,241,47-54.
    [21]A. J. Michell, Second-derivative FTIR spectra of native celluloses, Carbohydr. Res.1990,197,53-60.
    [22]P. Langan, Y. Nishiyama, H. Chanzy, X-ray structure of mercerized cellulose 11 at 1 A resolution, Biomacromolecules 2001,2,410-2416.
    [23]K. H. Gardner, J. Blackwell, The hydrogen bonding in native cellulose, Biochimica et Biophysica Acta 1974,343,232-2237.
    [24]T. Kondo, E. Togawa, R. M. Brown, "Nematic Ordered Cellulose":A concept of glucan chain association, Biomacromolecules 2001,2,1324-1330.
    [25]Y. Sekiguchi, C. Sawatari, T. Kondo, A gelation mechanism depending on hydrogen bond formation in regioselectively substituted O-methylcelluloses, Carbohydr. Polym.2003,53,145-153.
    [26]H. Itagaki, M. Tokai, T. Kondo, Physical gelation process for cellulose whose hydroxyl groups are regioselectively substituted by fluorescent groups, Polymer 1997,38,4201-4205.
    [27]T. Kondo, Supermolecular architecture of wood cell wall cellulose: characterization using infrared microspectroscopy and liquid-mode atomic force microscopy, Advances in Lignocellulosics Characterization 1999,337-355.
    [28]H. Chanzy, B. Henrissat, M. Vincendon, S. F. Tanner, P. S. Belton, Solid-state 13C NMR and electron microscopy study on the reversible cellulose I→cellulose IIIi transformation in Valonia, Carbohydr. Res.1987,160,1-11.
    [29]F. Horrii, A. Hirai, R. Kitamaru, CP/MAS 13C NMR spectra of the crystalline components of nativ celluloses, Macromolecules 1987,20,2117-2120.
    [30]H. Kono, Y. Numata, T. Erata, M. Takai,13C and 1H resonance assignment of mercerized cellulose Ⅱ by two-dimensional MAS NMR spectroscropies, Macromolecules 2004,37,5310-5316.
    [31]P. Zugenmaier, Conformation and packing of various crystalline cellulose fiber, Prog. Polym. Sci.2001,26,1341-1417.
    [32]A. Isogai, M. Usuda, T. Kato, T. Uryu, R. H. Atalla, Solid-state CP/MAS carbon-13 NMR study of cellulose polymorphs, Macromolecules 1989,22, 3168-3172.
    [33]A. J. Sarko, J. Southwick, J. Hayashi, Packing analysis of carbohydrates and polysaccharides.6. Crystal structure of cellulose Ⅱ, Macromolecules 1976,9, 851-857.
    [34]A. J. Sarko, J. Southwick, J. Hayashi, Packing analysis of carbohydrates and polysaccharides.7. Crystal structure of cellulose I and its relationship to other cellulose polymorphs, Macromolecules 1976,9,857-863.
    [35]S. P. Rowland, In modified cellulosics, Academic press Inc., New York,1978, 147-167.
    [36]J. L. Bose, E. J. Roberts, S. P. Rowland, The availability of hydroxyl groups in native and mercerized cotton celluloses, J. Appl. Polym. Sci.1971,15, 2999-3007.
    [37]J. O. Warwicker, R. Jeffries, R. L. Cobran, R. N. Robinson, A Review of the literature on the effect of Caustic. Soda and other swelling agents on fine structure of cotton, Shirley Institute Pamphlet 93, England, St Ann's Press, 1966.
    [38]S. Vicini, E. Princi, G. Luciano, E. Franceschi, E. Pedemonte, D. Oldak, H. Kaczmarek, A. Sionkowska, Thermal analysis and characterisation of cellulose oxidised with sodium methaperiodate, Thermochim. Acta 2004,418,123-130.
    [39]A. E. J. de Nooy, A. C. Besemer, H. Van Bekkum, Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans, Carbohydr. Res.1995,269,89-98.
    [40]T. Saito, M. Hirota, N. Tamura, H. Fukuzumi, S. Kimura, L. Heux, A. Isogai, Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions, Biomacromolecules 2009,10,1992-1996.
    [41]S. Rajam, C.-C. Ho, Graft coupling of PEO to mixed cellulose esters microfiltration membranes by UV irradiation, J. Membr. Sci.2006,281, 211-218.
    [42]J. Bras, C. Vaca-Garcia, M.-E. Borredon, W. Glasser, Oxygen and water vapor permeability of fully substituted long chain cellulose esters (LCCE), Cellulose 2007,14,367-374.
    [43]E. A. Appel, X. J. Loh, S. T. Jones, C. A. Dreiss, O. A. Scherman, Sustained release of proteines from high water content supramolecular polymer hydrogels, Biomaterials 2012,33,4646-4652.
    [44]J. Amim Jr., D. F. S. Petri, F. C. B. Maia, P. B. Miranda, Ultrathin cellulose ester films:preparation characterization and protein immobilization, Quim. Nova 2010,33,2064-2069.
    [45]S. Kamel, N. Ali, K. Jahangir, S. M. Shah, A. A. El-Gendy, Pharmaceutical significance of cellulose:A review, Express Polym. Lett.2008,2,758-778.
    [46]D. Fenn, T. Heinze, Novel 3-mono-O-hydroxyethyl cellulose:synthesis and structure characterization, Cellulose 2009,16,853-861.
    [47]S. Lemeune, H. Jameel, H.-M. Chang, J. F. Kadla, Effects of ozone and chlorine dioxide on the chemical properties of cellulose fiber, J. Appl. Polym. Sci.2004, 93,1219-1223.
    [48]H. Thomas, L. Tim, Unconventional methods in cellulose functionalization, Prog. Polym. Sci.2001,26,1689-1762.
    [49]T. Heinze, T. Lincke, D. Fenn, Efficient allylation of cellulose in dimethyl sulfoxide/tetrabutylammonium fluoride trihydrate, Polym. Bull.2008,61,1-9..
    [50]W. Dahou, D. Ghemati, A. Oudia, D. Aliouche, Preparation and biological characterization of cellulose graft copolymers, Biochem. Eng. J.2010,48, 187-194.
    [51]刘新,李静,晏飞来,金春义,徐静静,木质纤维素预处理工艺的研究现状,黑龙江农业科学2010,2,112-114.
    [52]邵自强,门爽,朱怡超,不同预处理条件下纤维素结构变化及其在DMAc/LiCl中的溶解,应用化工2006,35,586-590.
    [53]M. Imai, K. Ikari, I. Suzuki, High-performance hydrolysis of cellulose using mixed cellulose species and ultrasonication pretreatment, Biochem. Eng. J.2004, 17,79-83.
    [54]M. Aliyu, M. J. Hepher, Effects of ultrasound energy on degradation of cellulose material, Ultrason. Sonochem.2000,7,265-268.
    [55]E. Varga, A. S. Schmidt, K. Reczey, A. B. Thomsen, Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility, Appl. Biochem. Biotechnol.2003,104,37-50.
    [56]T. Yamashiki, T. Matsui, M. Saitoh, Y. Matsuda, K. Okajima, K. Kamide, T. Sawada, Characterization of cellulose treated by the steam explosion method. Part 1:Influence of cellulose resources on changes in morphology, degree of polymerization, solubility and solid structure, Brit. Polym. J.1990,22,73-83.
    [57]T. Yamashiki, T. Matsui, M. Saitoh, Y. Matsuda, K. Okajima, K. Kamide, T. Sawada, Characterization of cellulose treated by the steam explosion method. Part 1:Effect of treatment conditions on changes in morphology, degree of polymerization, solubility in aqueous sodium hydroxide and supermolecular structure of soft wood pulp during steam explosion, Brit. Polym. J.1990,22, 121-128.
    [58]B. M. Kabyemela, T. Adschiri, Rapid and selective conversion of glucose to crythrose in supercritical water, Ind. Eng. Chem. Res.1997,36,5063-5067.
    [59]B. M. Kabyemela, M. Takigawa, Mechanism and kinetics of cellobiose decomposition in sub-and supercritical water, Ind. Eng. Chem. Res.1998,37, 357-361.
    [60]T. Heinze, T. Liebert, Unconventional methods in cellulose functionalization, Prog. Polm. Sci.2001,26,1689-1762.
    [61]W. Wolfgang, N. Irene, P. Burkart, Studies on the regioselectivity of cellulose sulfation in an N2O4-N,N-dimethylformamide-cellulose system, Carbohydr. Res. 1993,240,245-252.
    [62][62] W. Wagenknecht, I. Nehls, B. Philipp, The formation and stability of partially and completely substituted cellulose nitrite esters in dipolar aprotic solvents containg N2O4, Carbohydr. Res.1992,237,211-222.
    [63]T. Liebert, D. A. Klemm, A new soluble and hydrolytically cleavable intermediate in cellulose functionalization:cellulose dichloroacetate (CDCA), Acta. Polym.1998,48,124-128.
    [64]N. G. Tsygankova, D. D. Grinshpan, A. O. Koren, MNDO modeling of complex formation in N,N-dimethylacetamide-lithium chloride cellulose dissolving system, Cell. Chem. Technol.1996,30,353-357.
    [65]N. Tamai, D. Tatsumi, T. Matsumoto, Rheological properties and molecular structure of tunicate cellulose in LiCl/1,3-dimethyl-2-imidazolidinone, Biomacromolecules 2004,5,422-432.
    [66]R. P. Swatloski, S. K. Spear, J. D. Holbrey, R. D. Rogers, Dissolution of cellulose with ionic liquids, J. Am. Chem. Soc.2002,124,4974-4975.
    [67]R. P. Swatloski, A. E. Visser, W. M. Reichert, G. A. Broker, L. M. Farina, J. D. Holbrey, R. D. Rogers, On the solubilization of water with ethanol in hydrophobic hexafluorophosphate ionic liquids, Green Chem.2002,4,81-87.
    [68]H. Zhang, J. Wu, J. Zhang, J. He, 1-Alyl-3-methylimidazolium chloride room temperature ionic liquid:A new and powerful nonderivatizing solvent for cellulose, Macromolecules 2005,38,8272-8277.
    [69]王犇,曹妍,黄科林,李会泉,廖丹葵,王金淑,蔗渣纤维素在离子液体中的溶解与再生,化工学报,2010,61,1592-1598.
    [70][70] T. Heinze, K. Schwikal, S. Barthel, Ionic liquids as reaction medium in cellulose functionalization, Macromol. Biosci.2005,5,520-525.
    [71]A. Isogai, A. Ishizu, J. Nakano, Disolution mechanism of cellulose in SO2-amine-dimethylsulfoxide, J. Appl. Polym. Sci.1987,33,1283-1290.
    [72]K. Hattori, E. Abe, T. Yoshida, J. A. Cuculo, New solvents for cellulose. Ⅱ. Ethylenediamine/thiocyanate salt system, Polym. J.2004,36,123-130.
    [73][73] C. Graenacher, R. Sallmann, Cellulose solutions,1939, US Patent 2179181.
    [74]D. L. Johnson, N. Y. Rochester, Compounds dissolved in cylic amine oxide, 1969, US Patent,3447939
    [75][75] T. Rosenau, A. Potthast, H. Sixta, P. Kosma, The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process), Prog. Polym. Sci.2001,26,1763-1837.
    [76]H. Sobue, H. Kiessig, K. Hess, The cellulose-sodium hydroxide-water system as a function of the temperature, Zeitschrift fuer physikalische chemie. Abteilung B 1939,43,309-328.
    [77]A. Isogai, R. H. Atalla, Dissolution of cellulose in aqueous NaOH solutions, Cellulose 1998,5,309-319.
    [78]K. Kamide, K. Okajima, K. Kowsaka, Dissolution of natural cellulose into aqueous alkali solution:role of super-molecular structure of cellulose, Ploym. J. 1992,24,71-86.
    [79]J. Kunze, H. P. Fink, Structure changes and activation of cellulose by caustic soda solution with urea, Macromol. Symp.2005,223,175-188.
    [80][80] J. Cai, L. Zhang, Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions, Macromol. Biosci.2005,5,539-548.
    [81]L. Zhang, D. Ruan, S. J. Gao, Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution, J. Polym. Sci. Part B:Polym. Phys.2002,40, 1521-1529.
    [82]H. Qi, Q. Yang, L. Zhang, T. Liebert, T. Heinze, The dissolution of cellulose in NaOH-based aqueous system by two-step process, Cellulose 2011,18,237-245.
    [83]A. Lue, L. Zhang, D. Ruan, Inclusion complex formation of cellulose in NaOH-thiourea aqueous system at low temperature, Macromol. Chem. Phys. 2007,208,2359-2366.
    [84]H. Jin, C. Zha, L. Gu, Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution, Carbohydr.Res.2007,342,851-858.
    [85]J. Cai, L. Zhang, C. Chang, G. Cheng, X. Chen, B. Chu, Hydrogen-bond-induced inclusion complex in aqueous cellulose/LiOH/urea solution at low temperature, Chem. Phys. Chem.2007,8,1572-1579.
    [86]J. Cai, L. Zhang, S. Liu, Y. Liu, X. Xu, X. Chen, B. Chu, X. Guo, J. Xu, H. Cheng, C. C. Han, S. Kuga, Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures, Macromolecules 2008,41,9345-9351.
    [87]G. Viswanathan, S. Murugesan, V. Pushparaj, O. Nalamasu, P. M. Ajayan, R. J. Linhardt, Preparation of biopolymer fibers by electrospinniing from room temperature ionic liquids, Biomacromolecules 2006,7,415-418.
    [88]S. Xu, J. Zhang, A. He, J. Li, H. Zhang, C. C. Han, Electrospinningn of native cellulose from nonvolatile solvent system, Polymer 2008,2911-2917.
    [89]S.-L. Quan, S.-G. Kang, I.-J. Chin, Characterization of cellulose fibers electrospum using ionic liquid, Cellulose 2010,17,223-230.
    [90]L. Nyfors, M. Suchy, J. Laine, E. Kontturi, Ultrathin cellulose films of tunable nanostructured morphology with a hydrophobic componet, Biomacromolecules 2009,10,1276-1281.
    [91]M. Nogi, S. Iwamoto, A. N. Nakagaito, H. Yano, Optically transparent nanofiber paper, Adv. Mater.2009,21,1595-1598.
    [92]S. Deguchi, M. Tsudome, Y. Shen, S. Konishi, K. Tsujii, S. Ito, K. Horikoshi, Preparation and characterization of nanofibrous cellulose plate as a new solid support for microbial culture, Soft Maler.2007,3,1170-1175.
    [93]Y. Cao, H. Li, Y. Zhang, J. Zhang, J. He, Structure and properties of novel regenerated cellulose films prepared from cornhusk cellulose in room temperature ionic liquids,J.Appl. Polym. Sci.2010,116,547-554.
    [94]J.-i. Kadokawa, M.-a. Murakami, Y. Kaneko, A facile preparation of gel materials from a solution of cellulose in ionic liquid, Carbohydr. Res.2008,343, 769-772.
    [95]K.Prasad, Y. Kaneko, J.-i. Kadokawa, Novel gelling systems of κ-, ι-,λ- carrageenans and their composite gels with cellulose using ionic liquid, Macromol. J.2009,9,376-382.
    [96]J.-i. Kadokawa, M.-a. Murakami, A. Takegawa, Y. Kaneko, Preparation of cellulose-starch composite gel and fibrous material from a mixture of the polysaccharides in ionic liquid, Carbohydr. Polym.2009,75,180-183.
    [97]A. Takegawa, M.-a. Murakami, Y. Kaneko, J.-i. Kadokawa, Preparation of chitin/cellulose composite gels and films with ionic liquids, Carbohydr. Polym. 2010,79,85-90.
    [98]J. Cai, L. Zhang, Unique gelation behavior of cellulose in NaOH/urea aqueous solution, Biomacromolecules 2006,7,183-189.
    [99]D. Ruan, A. Lue, L. Zhang, Gelation behaviors of cellulose solution dissolved in aqueous NaOH/thiourea at low temperature, Polymer 2008,49,1027-1036
    [100]S. Liang, J. Wu, H. Tian, L. Zhang, J. Xu, High-strength cellulose/poly(ethylene glycol) gels, ChemSusChem 2008,1,558-563.
    [101]M. Zaborowska, A. Bodin, H. Backdahl, J. Popp, A. Goldstein, P. Gatenholm, Microporous bacterial cellulose as a potential scaffold for bone regeneration, Acta Biomater.2010,6,2540-2547.
    [102]E. E. Brown, M.-P. Laborie, Bioengineering bacterial cellulose/poly(ethylene oxide) nanocomposites, Biomacromolecules 2007,8,3074-3081.
    [103]H. Valo, M. Kovalainen, P. Laaksonen, M. Hakkinen, S. Auriola, L. Peltonen, M. Linder, K. Jarvinen, J. Hirvonen, T. Laaksonen, Immobilization of protein-coated drug nanoparticles in nanofibrillar cellulose matrices-Enhanced stability and release, J. Control. Release 2011,156,390-397.
    [104]T.-J. Park, S.-H. Lee, T. J. Simmons, J. G. Martin, S. A. Mousa, E. A. Snezhkova, V. V. Sarnatskaya, V. G. Nikolaev, R. J. Linhardt, Heparin-cellulose-charcoal composites for drug detoxification prepared using room temperature ionic liquids, Chem. Commun.2008,5022-5024.
    [105]T. Abitbol, D. Gray, CdSe/ZnS QDs embedded in cellulose triacetate films with hydrophilic surfaces, Chem. Mater.2007,19,4270-4276.
    [106]C. Chang, J. Peng, L. Zhang, D.-W. Pang, Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices, J. Mater. Chem.2009,19, 7771-7776.
    [107]T. Niu, Y. Gu, J. Huang, Luminescent cellulose sheet fabricated by facile self-assembly of cadmium selenide nanoparticles on cellulose nanofibres, J. Mater. Chem.2011,21,651-656.
    [108]M. Xu, B. R. Bunes, L. Zang, Paper-based vapor detection of hydrogen peroxide:Colorimetric sensing with tunable interface, ACS Appl. Mater. Interfaces 2011,3,642-647.
    [109]M. Ornatska, E. Sharpe, D. Andreescu, S. Andreescu, Paper bioassay based on ceria nanoparticles as colorimetric probes, Anal. Chem.2011,83,4273-4280.
    [110]J. Isaad, A. El Achari, Colorimetric sensing of cyanide anions in aqueous media based on functional surface modification of natural cellulose materials, Tetrahedron 2011,67,4939-4947.
    [111]X. Zhang, J. Huang, Functional surface modification of natural cellulose substances for colorimetric detection and adsorption of Hg2+in aqueous media, Chem. Commun.2010,46,6042-6044.
    [112]S. Chen, S. Chen, S. Jiang, M. Xiong, J. Luo, J. Tang, Z. Ge, Environmentally friendly antibacterial cotton textiles finished with siloxane sulfopropylbetaine, ACS Appl. Mater. Interfaces 2011,3,1154-1162.
    [113]D. Roy, J. S. Knapp, J. T. Guthrie, S. Perrier, Antibacterial cellulose fiber via RAFT surface graft polymerization, Biomacromolecules 2008,9,91-99.
    [114]A.-H. Lim, S. M. Hudson, Application of a fiber-reactive chitosan derivative to cotton fabric as an antimicrobial textile finish, Carbohydr. Polym.2004,56, 227-234.
    [115]G. Yang, J. Xie, F. Hong, Z. Cao, X. Yang, Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane:Effect of fermentation carbon sources of bacterial cellulose, Carbohydr. Polym.2012,87,839-845.
    [116]S. Li, S. Zhang, X. Wang, Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process, Langmuir 2008,24, 5585-5590.
    [117]D. Nystrom, J. Lindqvist, E. Ostmark, A. Hult, E. Malmstrom, Superhydrophobic bio-fibre surfaces via tailored grafting architecture, Chem. Commun.2006,3594-3596.
    [118]H. Ogihara, J. Xie, J. Okagaki, T. Saji, Simple method for preparing superhydrophobic paper:Spray-deposited hydrophobic silica nanoparticle coatings exhibit high water-repellency and transparency, Langmuir 2012,28, 4605-4608.
    [119]S. Li, Y. Wei, J. Huang, Facile fabrication of superhydrophobic cellulose materials by a nanocoating approach, Chem. Lett.2010,39,20-21.
    [120]C. Jin, R. Yan, J. Huang, Cellulose substance with reversible photo-responsive wettability by surface modification,J. Mater. Chem.2011,21,17519-17525.
    [121]C. Jin, Y. Jiang, T. Niu, J. Huang, Cellulose-based material with amphiphobicity to inhibit bacterial adhesion by surface modification, J. Mater. Chem.2012,22, 12562-12567.
    [1]J. Lu, G. Getz, E. A. Miska, E. Alvarez-Saavedra, J. Lamb, D. Peck, A. Sweet-Cordero, B. L. Ebert, R. H. Mak, A. A. Ferrando, J. R. Downing, T. Jacks, H. R. Horvitz, T. R. Golub, MicroRNA expression profiles classify human cancers, Nature 2005,435,834-838.
    [2]D. P. Bratu, B.-J. Cha, M. M. Mhlanga, F. R. Kramer, S. Tyagi, Visualizing the distribution and transport of mRNAs in living cells, Proc. Natl. Acad. Sci. U.S.A. 2003,100,13308-13313.
    [3]K. Arora, N. Prabhakar, S. Chand, B. D. Malhotra, Escherichia coli genosensor based on polyaniline,Anal. Chem.2007,79,6152-6158.
    [4]M. W. Kanan, M. M. Rozenman, K. Sakurai, T. M. Snyder, D. R. Liu, Reaction discovery enabled by DNA-templated synthesis and in vitro selection, Nature 2004,431,545-549.
    [5]A. J. Hopwood, C. Hurth, J. Yang, Z. Cai, N. Moran, J. G. Lee-Edghill, A. Nordquist, R. Lenigk, M. D. Estes, J. P. Haley, C. R. McAlister, X. Chen, C. Brooks, S. Smith, K. Elliott, P. Koumi, F. Zenhausern, G. Tully, Integrated microfluidic system for rapid forensic DNA analysis:Sample collection to DNA profile, Anal. Chem.2010,82,6991-6999.
    [6]J. Liu, Z. Cao, Y. Lu, Functional nucleic acid sensors, Chem. Rev.2009,109, 1948-1998.
    [7]H. Wang, R. Yang, L. Yang, W. Tan, Nucleic acid conjugated nanomaterials for enhanced molecular recognition, ACS Nano 2009,3,2451-2460.
    [8]A. Sassolas, B. D. Leca-Bouvier, L. J. Blum, DNA biosensors and microarrays, Chem. Rev.2008,108,109-139.
    [9]H. Peng, C. Soeller, J. Travas-Sejdic, Novel conducting polymers for DNA sensing, Macromolecules 2007,40,909-914.
    [10]W. C. E. Schofield, J. McGettrick, T. J. Bradley, J. P. S. Badyal, S. Przyborski, Rewritable DNA Microarrays, J. Am. Chem. Soc.2006,128,2280-2285.
    [11]S. Pan, L. Rothberg, Chemical control of electrode functionalization for detection of DNA hybridization by electrochemical impedance spectroscopy, Langmuir 2005,21,1022-1027.
    [12]Z. Zhang, P. Liang, X. Zheng, D. Peng, F. Yan, R. Zhao, C.-L. Feng, DNA immobilization/hybridization on plasma-polymerized pyrrole, Biomacromolecules 2008,9,1613-1617.
    [13]D. Sethi, A. Kumar, R. P. Gandhi, P. Kumar, K. C. Gupta, New protocol for oligonucleotide microarray fabrication using SU-8-coated glass microslides, Bioconjugate Chem.2010,21,1703-1708.
    [14]S. Mahajan, D. Sethi, S. Seth, A. Kumar, P. Kumar, K. C. Gupta, Construction of oligonucleotide microarrays (biochips) via thioether linkage for the detection of bacterial meningitis, Bioconjugate Chem.2009,20,1703-1710.
    [15]R. Voicu, R. Boukherroub, V. Bartzoka, T. Ward, J. T. C. Wojtyk, D. D. M. Wayner, Formation, characterization, and chemistry of undecanoic acid-terminated silicon surfaces:Patterning and immobilization of DNA, Langmuir 2004,20,11713-11720.
    [16]M. K. L. Cheung, D. Trau, K. L. Yeung, M. Carles, N. J. Sucher,5'-Thiolated oligonucleotides on (3-Mercaptopropyl)trimethoxysilane-,mica:Surface topography and coverage, Langmuir 2003,19,5846-5850.
    [17]G.-J. Zhang, G. Zhang, J. H. Chua, R.-E. Chee, E. H. Wong, A. Agarwal, K. D. Buddharaju, N. Singh, Z. Gao, N. Balasubramanian, DNA sensing by silicon nanowire:Charge layer distance dependence, Nano Lett.2008,8,1066-1070.
    [18]M. Curreli, C. Li, Y. Sun, B. Lei, M. A. Gundersen, M. E. Thompson, C. Zhou, Selective functionalization of In2O3 nanowire mat devices for biosensing application,J. Am. Chem. Soc.2005,127,6922-6923.
    [19]A. Ganguly, C.-P. Chen, Y.-T. Lai, C.-C. Kuo, C.-W. Hsu, K.-H. Chen, L.-C. Chen, J. Mater. Chem.2009,19,928-933.
    [20]C.-P. Chen, A. Ganguly, C.-H. Wang, C.-W. Hsu, S. Chattopadhyay, Y.-K. Hsu, Y.-C. Chang, K.-H. Chen, L.-C. Chen, Label-free daul sensing of DNA molecules using GaN nanowires,Anal. Chem.2009,81,36-42.
    [21]S. Song, Z. Liang, J. Zhang, L. Wang, G. Li, C. Fan, Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis, Angew. Chem., Int. Ed. 2009,48,8670-8674.
    [22]S. Shrestha, C. M. Y. Yeung, C. E. Mills, J. Lewington, S. C. Tsang, Chemically immobilized single-stranded oligonucleotides on praseodymium oxide nanoparticles as an unlabeled DNA sensor probe using impedance, Angew. Chem., Int. Ed.2007,46,3855-3859.
    [23]G. Jiang, A. S. Susha, A. A. Lutich, F. D. Stefani, J. Feldmann, A. L. Rogach, Cascaded FRET in conjugated polymer/quantum dot/dye-labeled DNA complexes for DNA hybridization detection, ACS Nano 2009,3,4127-4131.
    [24]C. V. Nguyen, L. Delzeit, A. M. Cassell, J. Li, J. Han, M. Meyyappan, Preparation of nucleic acid functionalized carbon nanotube arrays, Nano Lett. 2002,2,1079-1081.
    [25]S. E. Baker, K. Y. Tse, E. Hindin, B. M. Nichols, T. L. Clare, R. J. Hamers, Covalent functionalization for biomolecular recognition on vertically aligned carbon nanofibers, Chem. Mater.2005,17,4971-4978.
    [26]J. Huang, T. Kunitake, Nano-precision replication of natural cellulosic substances by metal oxides, J. Am. Chem. Soc.2003,125,11834-11835.
    [27]N. Zhu, A. Zhang, Q. Wang, P. He, Y. Fang, Electrochemical detection of DNA hybridization using methylene blue and electro-deposited zirconia thin films on gold electrodes, Anal. Chim. Acta 2004,510,163-168.
    [28]Z. Guo, R. A. Guilfoyle, A. J. Thiel, R. Wang, L. M. Smith, Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports, Nucleic Acids Res.1994,22,5456-5465.
    [29]V. Vamvakaki, N. A. Chaniotakis, DNA stabilization and hybridization detection on porous silicon surface by EIS and total reflection FT-IR spectroscopy, Electroanalysis 2008,17,1845-1850.
    [30]F. Bessueille, V. Dugas, V. Vikulov, J. P. Cloarec, E. Souteyrand, J. R. Martin, Assessment of porous silicon substrate for well-characterised sensitive DNA chip implement, Biosens. Bioelectron.2005,21,908-916.
    [31]S. Pan, L. J. Rothberg, Interferometric sensing of biomolecular binding using nanoporous aluminum oxide templates, Nano Lett.2003,3,811-814.
    [32]D.-K. Kim, K. Kerman, M. Saito, R. R. Sathuluri, T. Endo, S. Yamamura, Y.-S. Kwon, E. Tamiya, Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry, Anal. Chem.2007,79, 1855-1864.
    [33]S. O. Meade, M. Y. Chen, M. J. Sailor, G. M. Miskelly, Multiplexed DNA detection using spectrally encoded porous SiO2 photonic crystal particles, Anal. Chem.2009,81,2618-2625.
    [34]B. Kannan, D. E. Williams, M. A. Booth, J. Travas-Sejdic, High-sensitivity, label-free DNA sensors using electrochemically active conducting polymers, Anal. Chem.2011,83,3415-3421.
    [35]A. P. Abel, M. G. Weller, G. L. Duveneck, M. Ehrat, H. M. Widmer, Fiber-optic evanescent wave biosensor for the detection of oligonucleotides, Anal. Chem.1996,68,2905-2912.
    [36]J. A. Ferguson, T. C. Boles, C. P. Adams, D. R. Walt, A fiber-optic DNA biosensor microarray for the analysis of gene expression, Nat. Biotechnol.1996, 14,1681-1684.
    [37]X. H. Fang, X. J. Liu, S. Schuster, W. H. Tan, Designing a novel molecular beacon for surface-immobilized DNA hybridization studies, J. Am. Chem. Soc. 1999,121,2921-2922.
    [38]J. Li, W. H. Tan, K. M. Wang, D. Xiao, X. H. Yang, X. X. He, Z. Q. Tang, Ultrasensitive optical DNA biosensor based on surface immobilization of molecular beacon by a bridge structure, Anal. Sci.2001,17,1149-1153.
    [39]X. J. Liu, W. H. Tan, A fiber-optic evanescent wave DNA biosensor based on novel molecular beacons, Anal. Chem.1999,71,5054-5059.
    [40]T. Vong, J. ter Maat, T. A. van Beek, B. van Lagen, M. Giesbers, J. C. M. van Hest, H. Zuilhof, Site-specific immobilization of DNA in glass microchannels via photolithography, Langmuir 2009,25,13952-13958.
    [41]J. Huang, I. Ichinose, Biomolecular modification of hierarchical cellulose fibers through titania nanocoating, T. Kunitake, Angew. Chem., Int. Ed.2006,45, 2883-2886.
    [42]X. Zhang, J. Huang, Functional surface modification of natural cellulose substances for colorimetric detection and adsorption of Hg2+ in aqueous media, Chem. Commun.2010,46,6042-6044.
    [1]E. Weerapana, C. Wang, G. M. Simon, F. Richter, S. Khare, M. B. D. Dillon, D. A. Bachovchin, K. Mowen, D. Baker, B. F. Cravatt, Quantitative reactivity profiling predicts functional cysteines in proteomes, Nature 2010,468,790-795.
    [2]K. G. Reddie, K. S. Carroll, Expanding the functional diversity of proteins through cysteine oxidation, Curr. Opin. Chem. Biol.2008,12,746-754.
    [3]X. F. Wang, M. S. Cynader, Pyruvate released by astrocytes protects neurons from copper-catalyzed cysteine neurotoxicity, J. Neurosci.2001,21, 3322-3331.
    [4]W. Droge, E. Holm, Role of cysteine and glutathione in HIV infection and other diseases associated with muscle wasting and immunological dysfunction, FASEB J.1997,11,1077-1089.
    [5]J. Liu, H. C. Yeo, E. Overvik-Douki, T. Hagen, S. J. Doniger, D. W. Chu, G. A. Brooks, B. N. Ames, Chronically and acutely exercised rats:biomarkers of oxidative stress and endogenous antioxidants, J. Appl. Physiol.2000,89,21-28.
    [6]S. Shahrokhian, Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode, Anal. Chem.2001,73,5972-5978.
    [7]D. Potesil, J. Petrlova, V. Adam, J. Vacek, B. Klejdus, J. Zehnalek, L. Trnkova, L. Havel, R. Kizek, Simultaneous femtomole determination of cysteine, reduced and oxidized glutathione, and phytochelatin in maize (Zea mays L.) kernels using high-performance liquid chromatography with electrochemical detection, J. Chromatogr., A 2005,1084,134-144.
    [8]A. Zinellu, S. Sotgia, B. Scanu, M. F. Usai, A. G. Fois, V. Spada, A. Deledda, L Deiana, P. Pirina, C. Carru, Simultaneous detection of N-acetyl-1-cysteine and physiological low molecular mass thiols in plasma by capillary electrophoresis, Amino Acids 2009,37,395-400.
    [9]M. K. Amini, J. H. Khorasani, S. S. Khaloo, S. Tangestaninejad, Cobalt(II) salophen-modified carbon-paste electrode for potentiometric and voltammetric determination of cysteine, Anal. Biochem.2003,320,32-38.
    [10]H. Xu, M. Hepel, "Molecular Beacon"-based fluorescent assay for selective detection of glutathione and cysteine, Anal. Chem.2011,83,813-819.
    [11]O. Rusin, N. N. St Luce, R. A. Agbaria, J. O. Escobedo, S. Jiang, I. M. Warner, F. B. Dawan, K. Lian, R. M. Strongin, Visual detection of cysteine and homocysteine, J. Am. Chem. Soc.2004,126,438-439.
    [12]W. Wang, O. Rusin, X. Xu, K. K. Kim, J. O. Escobedo, S. O. Fakayode, K. A. Fletcher, M. Lowry, C. M. Schowalter, C. M. Lawrence, F. R. Fronczek, I. M. Warner, R. M. Strongin, Detection of homocysteine and cysteine, J. Am. Chem. Soc.2005,127,15949-15958.
    [13]Y. Guo, S. Shao, J. Xu, Y. Shi, S. Jiang, A specific colorimetric cysteine sensing probe based on dipyrromethane-TCNQ assembly, Tetrahedron Lett. 2004,45,6477-6480.
    [14]L. Deng, W. Wu, H. Guo, J. Zhao, S. Ji, X. Zhang, X. Yuan, C. Zhang, Colorimetric and ratiometric fluorescent chemosensor based on diketopyrrolopyrrole for selective detection of thiols:an experimental and theoretical study, J. Org. Chem.2011,76,9294-9304.
    [15]W. Wei, X. Liang, G. Hu, Y. Guo, S. Shao, A highly selective colorimetric probe based on 2,2',2"-trisindolylmethene for cysteine/homocysteine, Tetrahedron Lett.2011,52,1422-1425.
    [16]X. Zhang, X. Ren, Q.-H. Xu, K. P. Loh, Z. K. Chen, One-and two-photon turn-on fluorescence probe for cysteine and homocysteine with large emission shift, Org. Lett.2009,11,1257-1260.
    [17]Z. Yan, S. Guang, H. Xu, X. Liu, An effective real-time colorimetric sensor for sensitive and selective detection of cysteine under physiological conditions, Analyst 2011,136,1916-1921.
    [18]M. J. Antony, M. Jayakannan, Polyaniline nanoscaffolds for colorimetric sensing of biomolecules via electron transfer process, Langmuir 2011,27, 6268-6278.
    [19]Z. Chen, Y. He, S. Luo, H. Lin, Y. Chen, P. Sheng, J. Li, B. Chen, C. Liu, Q. Cai, Label-free colorimetric assay for biological thiols based on ssDNA/silver nanoparticle system by salt amplification, Analyst 2010,135,1066-1069.
    [20]J.-S. Lee, P. A. Ulmann, M. S. Han, C. A. Mirkin, A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine, Nano Lett.2008,8,529-533.
    [21]J. Zhang, X. Xu, Y. Yuan, C. Yang, X. Yang, A Cu@Au nanoparticle-based colorimetric competition assay for the detection of sulfide anion and cysteine, ACS Appl. Mater. Interfaces 2011,3,2928-2931.
    [22]W. Hao, A. McBride, S. McBride, J. P. Gao, Z. Y. Wang, Colorimetric and nearinfrared fluorescence turn-on molecular probe for direct and highly selective detection of cysteine in human plasma,J. Mater. Chem.2011,21,1040-1048.
    [23]F.-J. Huo, Y.-T. Yang, J. Su, Y.-Q. Sun, C.-X. Yin, X.-X. Yan, Indicator approach to develop a chemosensor for the colorimetric sensing of thiol-containing water and its application for the thiol detection in plasma, Analyst 2011,136,1892-1897.
    [24]Z. Yao, H. Bai, C. Li, G. Shi, Colorimetric and fluorescent dual probe based on a polythiophene derivative for the detection of cysteine and homocysteine, Chem. Commun.2011,47,7431-7433.
    [25]C.-M. Cheng, A. W. Martinez, J. Gong, C. R. Mace, S. T. Phillips, E. Carrilho, K. A. Mirica, G. M. Whitesides, Paper-based ELISA, Angew. Chem., Int. Ed. 2010,49,4771-4774.
    [26]A. W. Martinez, S.T. Phillips, M. J. Butte, G. M. Whitesides, Patterned paper as a platform for inexpensive, low-volume, portable bioassays, Angew. Chem., Int. Ed.2007,46,1318-1320.
    [27]S. M. Z. Hossain, R. E. Luckham, A. M. Smith, J. M. Lebert, L. M. Davies, R. H. Pelton, C. D. M. Filipe, J. D. Brennan, Development of a bioactive paper sensor for detection of neurotoxins using piezoelectric inkjet printing of sol-gel-derived bioinks,Anal. Chem.2009,81,5474-5483.
    [28]M. Ornatska, E. Sharpe, D. Andreescu, S. Andreescu, Paper bioassay based on ceria nanoparticles as colorimetric probes,Anal. Chem.2011,83,4273-4280.
    [29]W. Zhao, M. M. Ali, S. D. Aguirre, M. A. Brook, Y. Li, Paper-based bioassays using gold nanoparticle colorimetric probes, Anal. Chem.2008,80,8431-8437.
    [30]M. Xu, B. R. Bunes, L. Zang, Paper-based vapor detection of hydrogen peroxide:Colorimetric sensing with tunable interface, ACS Appl. Mater. Interfaces 2011,3,642-647.
    [31]X. Zhang, J. Huang, Functional surface modification of natural cellulose substances for colorimetric detection and adsorption of Hg2+ in aqueous media, Chem. Commun.2010,46,6042-6044.
    [32]M. K. Nazeeruddin, D. Di Censo, R. Humphry-Baker, M. Gratzel, Highly selective and reversible optical, colorimetric, and electrochemical detection of mercury(II) by amphiphilic ruthenium complexes anchored onto mesoporous oxide films, Adv. Funct. Mater.2006,16,189-194.
    [33]E. Coronado, J. R. Galan-Mascaros, C. Marti-Gastaldo, E. Palomares, J. R. Durrant, R. Vilar, M. Gratzel, M. K. Nazeeruddin, Reversible colorimetric probes for mercury sensing,J.Am. Chem. Soc.2005,127,12351-12356.
    [34]E.-H. Kang, T. Bu, P. Jin, J. Sun, Y. Yang, J. Shen, Layer-by-layer deposited organic/inorganic hybrid multilayer films containing noncentrosymmetrically orientated azobenzene chromophores, Langmuir 2007,23,7594-7601.
    [35]S. Pawsey, K. Yach, J. Halla, L. Reven, Self-assembled monolayers of alkanoic acids:a solid-state NMR study, Langmuir 2000,16,3294-3303.
    [36]P. J. Thistlethwaite, M. L. Gee, D. Wilson, Diffuse reflectance infrared Fourier transform spectroscopic studies of the adsorption of oleate/oleic acid onto zirconia, Langmuir 1996,12,6487-6491.
    [37]J. Huang, I. Ichinose, T. Kunitake, Biomolecular modification of hierarchical cellulose fibers through titania nanocoating, Angew. Chem., Int. Ed.2006,45, 2883-2886.
    [38]Y. Gu, X. Liu, T. Niu, J. Huang, Superparamagnetic hierarchical material fabricated by protein molecule assembly on natural cellulose nanofibres, Chem. Commun.2010,6096-6098.
    [39]W. Xiao, J. Huang, Immobilization of oligonucleotides onto zirconiamodified filter paper and specific molecular recognition, Langmuir 2011,27, 12284-12288.
    [40]T. Niu, Y. Gu, J. Huang, Luminescent cellulose sheet fabricated by facile selfassembly of cadmium selenide nanoparticles on cellulose nanofibres, J. Mater. Chem.2011,21,651-656.
    [41]Y. Gu, J. Huang, Fabrication of natural cellulose substance derived hierarchical polymeric materials,J. Mater. Chem.2009,19,3764-3770.
    [42]Y. Gu, T. Niu, J. Huang, Functional polymeric hybrid nanotubular materials derived from natural cellulose substances, J. Mater. Chem.2010,20, 10217-10223.
    [1]D. B. Mitzi, Thin-film deposition of organic-inorganic hybrid materials, Chem. Mater.2001,13,3283-3298.
    [2]G. Budroni, A. Corma, Gold-organic-inorganic high-surface-area materials as precursors of highly active catalysts, Angew. Chem., Int. Ed.2006,45,3328-3331.
    [3]J. Boucle, P. Ravirajan, J. Nelson, Hybrid polymer-metal oxide thin films for photovoltaic applications, J. Mater. Chem.2007,17,3141-3153.
    [4]Q. F. Xu, J. N. Wang, K. D. Sanderson, Organic-inorganic composite nanocoatings with superhydrophobicity, good transparency, and thermal stability, ACS Nano 2010, 4,2201-2209.
    [5]W.-S. Kim, M.-G. Kim, J.-H. Ahn, B.-S. Bae, C. B. Park, Protein micropatterning on bifunctional organic-inorganic sol-gel hybrid materials, Langmuir,2007,23, 4732-4736.
    [6]A. El Kadib, K. Molvinger, C. Guimon, F. Quignard, D. Brunel, Design of stable nanoporous hybrid chitosan/titania as cooperative bifunctional catalysts, Chem. Mater.2008,20,2198-2204.
    [7]A. El Kadib, K. Molvinger, M. Bousmina, D. Brunel, Improving catalytic activity by synergic effect between base and acid pairs in hierarchically porous chitosan@titania nanoreactors, Org. Lett.2010,12,948-951.
    [8]C. Suwanchawalit, A. J. Patil, R. K. Kumar, S. Wongnawa, S. Mann, Fabrication of ice-templated macroporous TiO2-chitosan scaffolds for photocatalytic applications, J. Mater. Chem.2009,19,8478-8483.
    [9]F. A. Al-Sagheer, S. Merchant, Visco-elastic properties of chitosan-titania nano-composites, Carbohydr. Polym.2011,85,356-362.
    [10]X. Shi, T. Cassagneau, F. Caruso, Electrostatic interactions between polyelectrolytes and a titania precursor:Thin film and solution studies, Langmuir 2002,18,904-910.
    [11]J. Huang, T. Kunitake, Nano-precision replication of natural cellulosic substances by metal oxides, J.Am. Chem. Soc.2003,125,11834-11835.
    [12]Z. Modrzejewska, D. Binias, A. Wojtasz-Pajak, M. Dorabialska, R. Zarzycki, Crystalline structure of chitosan microgranules cross-linked with Cu2+ and Ag+ ions, Cryst. Growth Des.2008,8,4372-4377.
    [13]K. S. V. K. Rao, P. R. Reddy, Y.-I. Lee, C. Kim, Synthesis and characterization of chitosan-PEG-Ag nanocomposites for antimicrobial application, Carbohydr. Polym. 2012,87,920-925.
    [14]L. Wang, R. Xing, S. Liu, H. Yu, Y. Qin, K. Li, J. Feng, R. Li, P. Li, Recovery of silver (Ⅰ) using a thiourea-modified chitosan resin, J. Hazard. Mater.2010,180, 577-582.
    [15]H. Oveisi, S. Rahighi, X. Jiang, Y. Nemoto, A. Beitollahi, S. Wakatsuki, Y. Yamauchi, Unusual antibacterial property of mesoporous titania films:Drastic improvement by controlling surface area and crstallinity, Chem. Asian J.2010,5, 1978-1983.
    [16]L. Zhao, H. Wang, K. Huo, L. Cui, W. Zhang, H. Ni, Y. Zhang, Z. Wu, P. K. Chu, Antibacterial nano-structured titania coating incorporated with silver nanoparticles, Biomaterials 2011,32,5706-5716.
    [17]D. S. Kim, S.-Y. Kwak, Photocatalytic inactivation of E. coli with a mesoporous TiO2 coated film using the film adhesion method, Environ. Sci. Technol.2009,43, 148-151.
    [18]A. R. Sarasam, R. K. Krishnaswamy, S. V. Madihally, Blending chitosan with polycaprolactone:Effects on physicochemical and antibacterial properties, Biomacromolecules 2006,7,1131-1138.
    [19]T. Wu, S. Zivanovic F. A. Draughon, W. S. Conway, C. E. Sams, Physicochemical properties and bioactivity of fungal chitin and chitosan, J. Agric. Food Chem.2005, 53,3888-3894.
    [20]W. J. Yang, T. Cai, K.-G. Neoh, E.-T. Kang, G. H. Dickinson, S. L.-M. Teo, D. Rittschof, Biomimetic anchors for antifouling and antibacterial polymer brushes on stainless steel, Langmuir 2011,27,7065-7076.
    [21]Z. Shi, K. G. Neoh, E. T. Kang, Surface-grafted viologen for precipitation of silver nanoparticles and their combined bactericidal activities, Langmuir 2004,20, 6847-6852.
    [22]G. Yang, J. Xie, F. Hong, Z. Cao, X. Yang, Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane:Effect of fermentation carbon sources of bacterial cellulose, Carbohydr. Polym.2012,87,839-845.
    [23]A. Niu, Y. Han, J. Wu, N. Yu, Q. Xu, Synthesis of one-dimensional carbon nanomaterials wrapped by silver nanoparticles and their antibacterial behavior, J. Phys. Chem. C 2010,114,12728-12735.
    [24]Md. S. A. S. Shah, M. Nag, T. Kalagara, S. Singh, S. V. Manorama, Silver on PEG-PU-TiO2 polymer nanocomposite film:An excellent system for antibacterial applications, Chem. Mater.2008,20,2455-2460.
    [25]J. Song, H. Kang, C. Lee, S. H. Hwang, J. Jang, Aqueous synthesis of silver nanoparticle embedded cationic polymer nanofibers and their antibacterial activity, ACSAppl. Mater. Interfaces 2012,4,460-465.
    [26]W. Zhang, P. K. Chu, J. Ji, Y. Zhang, X. Liu, R. K. Y Fu, P. C. T. Ha, Q. Yan, Plasma surface modification of poly vinyl chloride for improvement of antibacterial properties, Biomaterials 2006,27,44-51.
    [27]W. Zhang, Y.-H. Zhang, J.-H. Ji, J. Zhao, Q. Yan, P. K. Chu, Antimicrobial properties of copper plasma-modified polyethylene, Polymer 2006,47,7441-7445.
    [28]T. Niu, Y. Gu, J. Huang, Luminescent cellulose sheet fabricated by facile self-assembly of cadmium selenide nanoparticles on cellulose nannofibres, J. Mater. Chem.2011,21,651-656.
    [29]J. Huang, I. Ichinose, T. Kunitake, A. Nakao, Preparation of nanoporous titania films by surface sol-gel process accompainied by low-temperature oxygen plasma treatment, Langmuir 2002,18,9048-9053.
    [30]1. Moriguchi, H. Maeda, Y. Teraoka, S. Kagawa, Preparation of TiO2 ultrathin film by newly developed two-dimensional sol-gel process,J.Am. Chem. Soc.1995,117, 1139-1140.
    [31]N. Nino-Martinez, G. A. Martinez-Castanon, A. Arago-Pina, F. Martinez-Gutierrez, J. R. Martinez-Mendoza, F. Ruiz, Characterization of silver nanoparticles synthesized on titanium dioxide fine particles, Nanotechnology 2008,19,065711 (8pp).
    [32]Y. Zhang, X. Liu, J. Huang, Hierarchical mesoporous silica nanotubes derived from natural cellulose substance, ACSAppl. Mater. Interfaces 2011,3,3272-33275.
    [33]T. Maneerung, S. Tokura, R. Rujiravanit, Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing, Carbohydr. Polym.2008,72, 43-51.
    [34]D. M. Eby, N. M. Schaeublin, K. E. Farrington, S. M. Hussain, G. R. Johnson, Lysozyme catalyzes the formation of antimicrobial silver nanoparticles, ACS Nano 2009,3,984-994.
    [35]S. Begin-Colin, A. Gadalla, G. Le Caer, O. Humbert, F. Thomas, O. Barres, F. Villieras, L. F. Toma, G. Bertrand, O. Zahraa, M. Gallart, B. Honerlage, P. Gilliot, On the origin of the decay of the photocatalytic activity of TiO2 powders ground at high energy, J. Phys. Chem. C 2009,113,16589-16602.
    [36]A. K. Sinha, K. Suzuki, Preparation and characterization of novel mesoporous ceria-titania, J. Phys. Chem. B 2005,109,1708-1714.
    [37]L. Zhang, J. Shi, Z. Jiang, Y. Jiang, R. Meng, Y. Zhu, Y. Liang, Y. Zheng, Facile preparation of robust microcapsules by manipulating metal-coordination interaction between biomineral layer and bioadhesive layer, ACS Appl. Mater. Interfaces 2011, 3,597-605.
    [38]G. Lawrie, I. Keen, B. Drew, A. Chandler-Temple, L. Rintoul, P. Fredericks, L. Gr(?)ndahl, Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS, Biomacromolecules 2007,8,2533-2541.
    [39]J. Zhang, Y. Yuan, X. Xu, X. Wang, X. Yang, Core/shell Cu@Ag nanoparticles:A versatile platform for colorimetric visualization of inorganic anions, ACS Appl. Mater. Interfaces 2011,3,4092-4100.
    [40]U. Manna, S. Patil, Encapsulation of uncharged water-insoluble organic substance in polymeric membrane capsules via layer-by-layer approach, J. Phys. Chem. B 2008,112,13258-13262.
    [41]M. Li, M. E. Noriega-Trevino, N. Nino-Martinez, C. Marambio-Jones, J. Wang, R. Damoiseaux, F. Ruiz, E. M. V. Hoek, Synergistic bactericidal activity of Ag-TiO2 nanoparticles in both light and dark conditions, Environ. Sci. Technol.2011,45, 8989-8995.
    [42]V. R. Giri Dev, J. Venugopal, S. Sudha, G. Deepika, S. Ramakrishna, Dyeing and antimicrobial characteristics of chitosan treated wool fabrics with henna dye, Carbohydr. Polym.2009,75,646-650.
    [43]M. Ranjbar-Mohammadi, M. Arami, H. Bahrami, F. Mazaheri,N. M. Mahmoodi, Grafting of chitosan as a biopolymer onto wool fabric using anhydride bridge and its antibacterial property, Colloids Surfaces B:Biointerfaces 2010,76,397-403.
    [44]J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, M. J. Yacaman, The bactericidal effect of silver nanoparticles, Nanotechnology 2005,16,2346-2353.
    [45]P. Dallas, V. K. Sharma, R. Zboril, Silver polymeric nanocomposites as advanced antimicrobial agents:Classification synthetic paths, applications, and perspectives, Adv. Colloid Interface Sci.2011,166,119-135.
    [1]D. Astruc, F. Lu, J. R. Aranzaes, Nanoparticles as recyclable catalysts:The frontier between homogeneous and heterogeneous catalysisi, Angew. Chem., Int. Ed.2005,44,7852-7872.
    [2]G. C. Bond, P. A. Sermon, G. Webb, D. A. Buchanan, P. B. Wells, Hydrogenation over supported gold catalysts, Chem. Commun.1973,444-445.
    [3]M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0℃, Chem. Lett.1987, 405-408.
    [4]A. Stephen, K. Hashmi, G. J. Hutchings, Gold catalysis, Angew. Chem., Int. Ed. 2006,45,7896-7936.
    [5]Z. Ma, S. Dai, Development of novel supported gold catalysts:A materials perspective, Nano Res.2011,4,3-32.
    [6]M. Stratakis, H. Garcia, Catalysis by supported gold nanoparticles:Beyond aerobic oxidative processes, Chem. Rev.2012,112,4469-4506.
    [7]Y. Zhang, X. Cui, F. Shi, Y. Deng, Nano-gold catalysis in fine chemical synthesis, Chem. Rev.2012,112,2467-2505.
    [8]M. Zhao, L. Sun, R. M. Crooks, Preparation of Cu nanoclusters within dendrimer templates, J. Am. Chem. Soc.1998,120,4877-4878.
    [9]S. Ivanova, V. Pitchon, Y. Zimmermann, C. Petit, Preparation of alumina supported gold catalysts:Influence of washing procedures, mechanism of particles size growth,Appl. Catal., A 2006,298,57-64.
    [10]Q. An, M. Yu, Y. Zhang, W. Ma, J. Guo, C. Wang, Fe3O4@carbon microsphere supported Ag-Au bimetallic nanocrystals with the enhanced catalytic activity and selectivity for the reduction of nitroaromatic compounds, J. Phys. Chem. C 2012,116,22432-22440.
    [11]E. V. Shevchenko, M. I. Bodnarchuk, M. V. Kovalenko, D. V. Talapin, R. K. Smith, S. Aloni, W. Heiss, A. P. Alivisatos, Gold/iron oxide core/hollow-shell nanoparticles, Adv. Mater.2008,20,4323-4329.
    [12]A. Corma, P. Serna, H. Garcia, Gold catalysts open a new general chemoselective route to synthesize oximes by hydrogenation of α,β-unsaturated nitrocompounds with H2,J. Am. Chem. Soc.2007,129,6358-6359.
    [13]A. Abad, A. Corma, H. Garcia, Catalyst parameters determining activity and selectivity of supported gold nanoparticles for the aerobic oxidation of alcohols: The molecular reaction mechanism, Chem. Eur.J.2008,14,212-222.
    [14]K. Mallick, M. S. Scurrell, CO oxidation over gold nanoparticles supported on TiO2 and TiO2-ZnO:Catalytic activity effects due to surface modification of TiO2 with ZnO, Appl. Catal., A 2003,253,527-536.
    [15]M. Comotti, W. C. Li, B. Spliethoff, F. Schuth, Support effect in high activity gold catalysts for CO oxidation,J. Am. Chem. Soc.2006,128,917-924.
    [16]Y. Tai, K. Tajiri, Preparation, thermal stability, and CO oxidation activity of highly loaded Au/titania-coated silica aerogel catalysts, Appl. Catal., A 2008, 342,113-118.
    [17]J. Chen, J. Lin, Y. Kang, W. Yu, C. Kuo, B. Wan, Preparaton of nano-gold in zeolites for CO oxidation:Effects of structures and number of iron exchange sites of zeolites,Appl. Catal., A 2005,291,162-169.
    [18]P. Mukherjee, C. R. Patra, R. Kumar, M. Sastry, Entrapment and catalytic activity of gold nanoparticles in amine-functionalized MCM-41 matrices synthesized by spontaneous reduction of aqueous chloroaurate ions, Phys. Chem. Commun.2001,5,1-2.
    [19]K. Esumi, R. Isono, T. Yoshimura, Preparation of PAMAM-and PPI-metal (silver, platinum, and palladium) nanocomposites and their catalytic activities for reduction of 4-nitrophenol, Langmuir 2004,20,237-243.
    [20]J. C. Garcia-Martinez, R. Lezutekong,, R. M. Crooks, Dendrimer-encapsulated Pd nanoparticles as aqueous, room-temperature catalysts for the stille reaction,J. Am. Chem. Soc.2005,127,5097-5103.
    [21]S. Kidambi, M. L. Bruening, Multilayered polyelectrolyte films containing palladium nanoparticles:Synthesis, characterization, and application in selective hydrogenation, Chem. Mater.2005,17,301-307.
    [22]J. Dai, M. L. Bruening, Catalytic nanoparticels formed by reduction of metal ions in multilayered polyelectrolyte films, Nano Lett.2002,2,497-501.
    [23]X. Zhang, H. Wang, Z. Su, Fabrication of Au@Ag core-shell nanoparticles using polyelectrolyte multilayers as nanoreactors, Langmuir 2012,28, 15705-15712.
    [24]D. E. Bergbreiter, C. Li, Poly(4-tert-butylstyrene) as a soluble polymer support in homogeneous catalysis, Org. Lett.2003,5,2445-2447.
    [25]Y. Mei, G. Sharma, Y. Lu, M. Ballauff, M. Drechsler, T. Irrgang, R. Kempe, High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes, Langmuir,2005,21,12229-12234.
    [26]Y. Li, Y. Pan, L. Zhu, Z. Wang, D. Su, G. Xue, Facile and controlled fabrication of functional gold nanoparticle-coated polystyene composite particle, Macromol. Rapid Commun.2011,32,1741-1747.
    [27]H.-S. Seon, S. Huh, Au/Au@polythiophene core/shell nanospheres for heterogeneous catalysis of nitroarenes, ACS Appl. Mater. Interfaces 2012,4, 6324-6331.
    [28]S. Zhang, W. Wu, X. Xiao,, J. Zhou, J. Xu, F. Ren, C. Jiang, Polymer-supported bimetallic Ag@AgAu nanocomposites:Synthesis and catalytic properties, Chem. Asian J.2012,7,1781-1788.
    [29]Y.-J. Liao, H.-B. Pan, C. M. Wai, Pt, Rh and Pt-Rh nanoparticles on modified single-walled carbon nanotubes for hydrogenation of benzene at room temperature, J. Nanosci. Nanotechnol.2011,11,8580-8585.
    [30]K. Pelzer, K. Philippot, B. Chaudret, Ruthenium nanoparticles in nanoporous alumina membranes:Preparation, characterization and catalytic properties, Z. Anorg.Allg. Chem.2003,629,1217-1222.
    [31]H.-P. Kormann, G. Schmid, K. Pelzer, K. Pholippot, B. Chaudret, Gas phase catalysis by metal nanoparticles in nanoporous alumina membrane, Z. Anorg. Allg. Chem.2004,630,1913-1918.
    [32]D. M. Dotzauer, J. Dai, L. Sun, M. L. Bruening, Catalytic membranes prepared using layer-by-layer adsorption of polyelectrolyte/metal nanoparticle films in porous supports, Nano Lett.2006,6,2268-2272.
    [33]D. M. Dotzauer, S. Bhattacharjee, Y. Wen, M. L. Bruening, Nanoparticle-containing membrances for the catalytic reduction of nitroaromatic compounds, Langmuir 2009,25,1865-1871.
    [34]J. Huang, T. Kunitake, Nano-precision replication of natural cellulosic substances by metal oxides, J. Am. Chem. Soc.2003,125,11834-11835.
    [35]E. Kharlampieva, J. M. Slocik, T. Tsukruk, R. R. Naik, V. V. Tsukruk, Polyaminoacid-induced growth of metal nanoparticles on layer-by-layer templates, Chem. Mater.2008,20,5822-5831.
    [36]I. Moriguchi, H. Maeda, Y. Teraoka, S. Kagawa, Preparation of TiO2 ultrathin film by newly developed two-dimensional sol-gel process, J. Am. Chem. Soc. 1995,117,1139-1140.
    [37]T. Niu, Y. Gu, J. Huang, Luminescent cellulose sheet fabricated by facile self-assembly of cadmium selenide nanoparticles on cellulose nannofibres,J. Mater. Chem.2011,21,651-656.
    [38]Q. Wang, P. J. Hauser, New characterization of layer-by-layer self-assembly deposition of polyelectrolytes on cotton fabric, Cellulose 2009,16,1123-1131.
    [39]Y. Xia, J. Ouyang, Significant Conductivity enhancement of conductive poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) films through a treatment with organic carboxylic acids and inorganic acids, ACS Appl. Mater. Interfaces,2010,2,474-483.
    [40]S. Chen, K. Huang, Electrochemical and spectroscopic studies of nitrophenyl moieties immobilized on gold nanoparticles, Langmuir 2000,16,2014-2018.
    [41]A. C. Malcolm, J. M. Parnis, A. J. Vreugdenhil, Size control and characterization of Au nanoparticle agglomeration during encapsulation in sol-gel matrices,J.Non-cryst. Solids 2011,357,1203-1208.
    [42]N. Pradhan, A. Pal, T. Pal, Catalytic reduction of aromatic nitro comounds by coinage metal nanoparticles, Langmuir,2001,17,1800-1802.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700