用户名: 密码: 验证码:
开关磁阻轮毂电机驱动系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与单电机驱动电动汽车相比,轮毂电机驱动系统驱动的电动汽车在动力源配置、底盘结构和车辆操控性等方面有其独特的技术特征和优势,是电动汽车发展的一个独特方向。电机驱动系统是电动汽车的三大关键零部件之一,可供选用的电机型式多种多样,性能各有千秋。其中开关磁阻电机(SR电机)以其简单牢固的结构、优异的性能而成为优选方案之一,经过近20年的不断努力,在汽车应用领域已取得了一大批研究成果并投入实际应用,发挥了巨大的社会效益和经济效益。在此基础上开展开关磁阻电机轮毂驱动系统的研究已成为必然。全文共分为七部分:
     简要介绍了电动汽车的发展概况和关键技术,对关键技术之一的各种电机驱动系统进行了分析比较,详细介绍了SR电机驱动系统的最新发展水平和研究方向及其应用于电动汽车的优缺点。对轮毂电机电动汽车的优点进行了阐述,总结了国内外轮毂电机电动汽车的发展近况。
     通过对现代汽车控制理论和技术的简要综述,明确指出对汽车的控制实质上是控制轮胎与路面间的作用力(包含驱动力和制动力),合理控制作用力能够实现先进的车辆控制技术,如驱动力控制(TCS)和稳定性控制(VSC),使得驾驶员对车辆的控制更为灵活稳定,提高了车辆在各种路面条件下的行驶性能。轮毂电机型式的电动汽车上各驱动轮具有各自独立的电机驱动系统,轮毂电机驱动系统的研究目标应是实现驱动轮驱动力矩、制动力矩的闭环控制。
     在分析常用的SR电机转矩闭环控制策略的基础上,针对其中的不足之处,提出了基于磁链检测的转矩控制策略。采用多变量(相电流、开通角和熄弧角)控制技术,彻底消除了传统控制中由于控制模式切换引起的转矩不平顺性。采用变结构PID控制相电流实现转矩闭环控制;从减小相电流峰值、有效值,提高电机效率和功率器件利用率的角度对开通角进行了优化;从控制定转子对齐位置相电流值减轻电机振动噪声的角度对熄弧角进行了优化,并详尽阐述了基于磁链平衡实现熄弧角控制的方法,最后进行了MATLAB/Simulink仿真研究。
     对磁链检测的精度进行了深入研究。运用有限元分析软件ANSYS7.0,对SR电机内部磁场分布进行了仿真分析,分别计算出电机绕组和检测绕组磁链及其相对误差,分析了检测绕组的匝数以及布置方式对相对误差的影响,得出了具有普遍意义的布置原则。研究了相间互感的影响,分别对NSNSNS、NNNSSS两者连接方式的磁场分布和电感矩阵进行了分析计算并结合实验,得出采用NSNSNS连接方式,相间的影响相互一致,一相的磁链、电流数据可精确地代表其余两相,电机转矩估算将具有更高的精度和准确性。详细阐述了硬件积分器的各种误差源,并针对每一种误差源给出了误差的解析表达式,通过分析可知采用低噪声高精度运算放大器OP-27构建的积分器在SR电机的各种工况下均具有非常高的精度。
     采用对比分析的方法对SRG的基本工作原理和特性、转矩闭环控制策略中转矩估算、电流滞环控制以及开关角度控制进行了研究。提出了基于磁链平衡的θextG控制方法。对SRG中可能出现的绕组电流失控问题进行了较为深入的分析,总结出了失控电流的变化规律,提出了具有针对性的控制措施。最后对转矩闭环控制策略进行了仿真计算,结果表明所采用的控制策略具有良好的动静态特性。
     构建了SR电机实验平台并进行了详尽的实验研究。设计并制作SR电机控制器,控制部分采用TI公司的DSP TMS320LF2407A并配合相应的外围元件,功率变换器采用非对称半桥电路,功率器件采用FUJI公司的IGBT 2MBI100-060L。为便于制动实验,研制了高频斩波负载装置,实现了发电电压的稳定和任意调节。设计了硬件积分器的校正电路。实验项目主要包括:电动(和制动)转矩-转速静态特性、电动(和制动)转矩阶跃响应动态特性、电动-制动间转换转矩阶跃响应特性。实验结果表明,采用本文提出的转矩控制策略,SR电机具有良好的转矩动静态特性。
     为了实现SR电机绕组电流或磁链的精确控制,必须提高SR电机功率变换器的工作频率以提高系统的动态响应速度。然而,较高的工作频率会引起严重的电磁干扰(EMI)和开关损耗从而导致系统整体效率降低。结合谐振开关(RS)、直流谐振环(RDCL)和脉冲宽度调制(PWM)的优点,提出了一种新型的软开关SR电机功率变换器,通过在非对称桥式电路的基础上增加一套换流电路,以此实现功率器件的软开关。在对变换器工作原理详细分析的基础上,导出了实现软开关的条件并给出了设计实例。仿真和实验研究证实了新型软开关SR电机变换器的可行性。
Compared with signal motor drive electric vehicle (EV), in-wheel motor drive EV will be a tendency of development because of its unique characters of chassis structure and vehicle manipulation. Motor drive system is one of three key parts of EV. There are diverse types of motor drive system with difference performance, Switched Reluctance Motor (SRM) is preferred because of its simple robust structure and outstanding performance. After 20 years study and development, SRM is succeed in application in EV domain, and is beneficial to economy and environment. This dissertation is devoted to the fundamental and experimental research of in-wheel SRM drive system, and is composed of following seven aspects.
     First of all, the development history and the critical techniques of electric vehicle are discussed, and the characters of diverse motor drive system are compared. As a promising candidate, the newest evolution of SRM and its merits and demerits for EV usage are particularly presented. The advantage and up to date development of in-wheel motor drive EV are summarized. Combining the advantages of in-wheel motor drive system and SRM, the research on SRM in-wheel motor drive system is becoming necessary.
     By analyzing vehicle theory and technique, the essence of vehicle manipulation is indicated, i.e. controlling force between road surface and tires (include traction force and brake force). By properly controlling the force, some advanced vehicle manipulation strategies, such as traction control system (TCS) and vehicle stability control (VSC), can be fulfilled. For in-wheel motor drive EV, every propelling wheel has its own motor drive system, the principal character in-wheel motor drive system should have is average torque closed-loop control.
     To overcome the shortcoming of conventional torque control of SRM and fulfill closed-loop average torque control for SRM more precisely, a novel torque control strategy is presented. By placing auxiliary gauge winding on the stator pole and adopting hardware integrator, the flux linkage is measured. Utilizing flux linkage and phase current, the output electromagnetism torque can be calculated. Synthesizing traditional CCC and APC mode, a multiparameter (phase current hysteretic threshold i ref, turn-on angleθon and extinguish angleθext) adjustment algorithm is adopted. i ref is used to decrease torque error by PID controller, meanwhileθon is used to minimize the peak and root-mean-square value of phase current, andθext is used to reduce vibration and acoustic noise of motor. A method based on flux linkage balance to control extinguish angleθext is presented in detail. Simulation software MATLAB/Simulink is used to validate the torque control strategy.
     To evaluate flux linkage measurement, flux linkage of phase winding and gauge winding with different turns and layout are calculated respectively using FEM software ANSYS 7.0, from calculation results of relative error the optimizing layout of gauge winding is find out. There are two connecting mode for three-phase SRM, i.e. NNNSSS and NSNSNS. By analyzing magnetic field distribution, calculating inductance matrix and experimental test, NSNSNS is proved to be a good connecting mode, which has virtue of working consistently and high torque estimation accuracy. The error analysis of hardware integrator is executed, low noise high precision operational amplifier OP-27 is precise enough for SRM application.
     SRM’s generator operation mode is very important for EV application. Compared with SRM, this dissertation contrastively discusses the fundamental theory and characters, torque estimation, current hysteresis control and angle control of Switched Reluctance Generator (SRG). A method based on flux linkage balance to control extinguish angleθextG is presented in detail. For the special uncontrollable phase current, this dissertation presents the mechanism and the solution. Using simulation software MATLAB/Simulink validates the braking torque closed loop control strategy.
     A SRM torque control experimental facility is established, and a series of experimental research are conducted to validate the proposed torque control strategies. Hardware implementation of a SRM controller is achieved using Texas Instrument’s TMS320LF2407A Digital Signal Processor (DSP) and some peripheral devices. The converter topology is asymmetric half-bridge circuit, power device is FUJI’s IGBT 2MBI100-060L. To achieve generator (braking) test, a special high-frequency loading device is designed, which has the ability of regulating voltage. Correcting circuit is made for hardware integrator. Experimental items include torque-rotational speed character, acceleration/deceleration character, torque stability character, torque step response character and motor/generator conversion character. From experimental results, the torque control strategy presented in this dissertation is thus proved to be effective, which has advantages of high precision and fast dynamic response.
     To improve the performance of switched reluctance motor (SRM) drives, some advanced control strategies have been proposed, such as current or flux linkage profile control. To achieve these strategies the motor phase current or phase flux linkage should be controlled precisely. All these require increasing the switching frequency of converter to increase dynamic response speed. However, higher switching frequency may cause higher switching losses, and thus higher Electro-Magnetic Interference (EMI) and lower overall efficiency. The use of soft-switching techniques in converter can resolve these issues. In this chapter a brand new soft-switching converter for SRM is presented, which has advantages of all Resonant Switch converter (RS), Resonant dc Link converter (RDCL) and Pulse Width Modulation (PWM). The addition of external commutating devices to conventional asymmetric bridge converter for SRM achieves the soft-switching of power devices. The conditions of soft switching are deduced and a practical design consideration is given. Finally, detailed simulation study of the complete system is presented and validated with experimental results.
引文
[1]张翔,赵韩,钱立军,等.国内各主要单位电动汽车研发项目进展情况及主要产品介绍.汽车技术, 2004, 5: 42-44
    [2]陈清泉,孙逢春.现代电动车技术.北京:北京理工大学出版社, 2002
    [3]陈清泉,孙立清.电动汽车的现状和发展趋势.科技导报, 2005, 23(4): 24-28
    [4]李春卉.电动汽车的发展现状和趋势研究.汽车工业研究, 2005, 5: 44-46
    [5]张煜,张春润,资新运,等.电动汽车核心技术及其发展趋势.汽车电器, 2004,9:1-4
    [6]汤双清,廖道训,吴正佳.电动汽车的核心技术及发展展望.机械科学与技术, 2003,22(2): 189-192
    [7]曹秉刚,张传伟,白志峰,等.电动汽车技术进展和发展趋势.西安交通大学学报, 2004,38(1):1-5
    [8]闫大伟,陈世元.电动汽车驱动电机性能比较.汽车电器, 2004, 2:4-6
    [9]王双红.应用于混合动力电动公交车的开关磁阻电机控制器的研究[博士学位论文].武汉:华中科技大学, 2005
    [10]陈隆昌,毛立志.用有限元法分析和计算开关磁阻电机的特性.中小型电机, 1994, 21(1): 8-12
    [11]蒋全,周鹗.开关磁阻电机静态特性的有限元分析.东南大学学报, 1989, 19(6): 93-99
    [12] Mizia J., Adamiak K., Eastham A.R., et al. Finite element force calculation: Comparison of methods for electric machines. IEEE Transactions on Magnetics, 1987, 24(1): 447-450
    [13] Low T.S., Lin H., Chen S.X. Analysis and comparison of switched reluctance motors with different physical sizes using a 2d finite element method. IEEE Transactions on Magnetics, 1995, 31(6): 3503-3505
    [14] Kim K. Field analysis of low acoustic noise switched reluctance motor. IEEE Transactions on Magnetics, 1996, 33(2): 2026-2029
    [15] Ohdachi Y., Kawase Y., Miura Y., et al. Optimum design of switched reluctancemotors using dynamic finite element analysis. IEEE Transactions on Magnetics,1996, 33(2): 2033-2036
    [16] Lin H., Low T.S., Chen S.X. Investigation on magnetic saturation in switched reluctance motor using 2d hybrid finite element method. IEEE Transactions on Magnetics,1996, 32(5): 4317-4319
    [17] Miller T J E, McGilp M. PC CAD for switched reluctance motor. Proceedings of Third International Conference on Electrical Machines and Drives, 1987, 360-366
    [18]吴建华.开关磁阻电机的设计理论及损耗计算的研究. [博士学位论文],武汉:华中理工大学,1994
    [19] Bolognani S, Buja G S. Switched-reluctance motor performance analysis based on an improved modeling of its magnetic characteristics. Electric Machines and Power Systems, 1991, 6(3): 484-491
    [20] Stephnson J.M. Computation of torque and current in doubly salient reluctance motors from nonlinear magnetisation data. IEE Journal on Electric Power Applications, 1979,126(5): 393-396
    [21] Miller T J E, McGilp M. Nonlinear theory of the switched reluctance motor for rapid computer-aided design. IEE Proceedings, Part B (Electric Power Applications), 1990,137(6): 337-347
    [22]孙剑波.开关磁阻电机的减振降噪和低转矩脉动研究[博士学位论文].武汉:华中科技大学, 2005
    [23] Metwally H. M. B., Faiz J., Finch J. W. Core loss in switched reluctance motor structures: experimental results. Proceedings of Int. Conference on Electric Machines, 1988: 31-34
    [24]林鹤云,周鹗.开关磁阻电机有限元分析与铁耗计算.电工技术学报, 1996, 11(6): 23-29
    [25] Materu P. N., Krishnan R. Estimation of switched reluctance motor losses. IEEE Transactions on Industry Applications, 1992, 28(3): 668-679
    [26] Jawad Faiz, M.B.B. Sharifian. Core losses estimation in a multiple teeth per stator pole switched reluctance motor. IEEE Transactions on Magnetics. 1994, 30(2):189-195
    [27] Simkin J., Trowbridge C. W. Three-dimensional nonlinear electromagnetic field computations, using scalar potentials. IEE Proceedings, Part B (Electric PowerApplications), 1980, 127(6): 368-374
    [28] Michaelides A. M., Pollock C. Effect of end core flux on the performance of the switched reluctance motor. IEE Proceedings, Part B (Electric Power Applications), 1994, 141(6): 308-316
    [29] Tang Y. Characterization, numerical analysis, and design of switched reluctance motors. IEEE Transactions on Industry Applications, 1997, 33(6): 1544-1552
    [30] Longya X, Ruckstadter E. Direct modeling of switched reluctance machine by coupled field-circuit method. IEEE Transactions on Energy Conversion, 1995, 10(3): 446-454
    [31] Janne V. Circuit theoretical approach to couple two-dimensional finite element models with external circuit equations. IEEE Transactions on Magnetics, 1996, 32(2): 400-410
    [32] Benhama A., Williamson, A.C., Reece, A.B.J. SRM torque computation from 3D finite element field solutions. Eighth International Conference on Electrical Machines and Drives, 1997:59 -63
    [33]常国强.开关磁阻电机驱动系统的一体化研究与实践. [博士学位论文],武汉:华中理工大学, 1999
    [34] Torrey D. A., Lang J. H. Optimal-efficiency excitation of variable-reluctance motor drives. IEE Proceedings, Part B (Electric Power Applications), 1991, 138(1): 1-14
    [35]徐国卿,陈永校.开关磁阻电机驱动系统电流波形及其对系统性能的影响.微特电机,1995, 6: 2-5
    [36]陈昊,樊晓明,朱学忠.开关磁阻电动机的换相理论与实践.南京航空航天大学学报,1996, 28(4): 492-498
    [37] Lovatt H. C., Stephenson J. M. Computer-optimized smooth-torque current waveforms for switched-reluctance motors. IEE Proceedings, Part B (Electric Power Applications), 1997, 144(5): 310-316
    [38] P. C. Kjaer, J. J. Gribble, T. J E. Miller. High-grade control of switched reluctance machines. IEEE Transactions on Industry Applications, 1997, 33(6): 1585-1593
    [39] Iqbal Husain, M. Ehsani. Torque ripple minimization in switched reluctance rnotor drives by PWM current control. IEEE Transactions on Power Electronics, 1996, 11(l): 83-88
    [40] Krzysztof Russa, Iqbal Husain, Malik E. Elbuluk. Torque-ripple minimization inswitched reluctance machines over a wide speed range. IEEE Transactions on Industry AppIications, 1998, 34(5): 1105-1112
    [41] Tseng K.J., Shuyu Cao. A SRM variable speed drive with torque ripple minimization control. IEEE Applied Power Electronics Conference and Exposition, APEC 2001, Vol.2: 1083-1089
    [42] Bolognani S., Zigliotto M. Fuzzy logic control of a switched reluctance motor drive. IEEE Transactions on Industry Applications, 1996, 32(5): 1063-1068
    [43]张焕春,江平.开关磁阻电动机的Fuzzy-PI控制.南京航空学院学报, 1990, 22(3): 72-80
    [44] Panda S.K., Zhu X.M., Dash P.K. Fuzzy gain scheduled PI speed controller for switched reluctance motor drive. International Conference on Industrial Electronics, Control and Instrumentation, IECON 97. 1997, 3: 989-994
    [45] Islam M.S., Anwar M.N., Husain I. A sensorless wide-speed range SRM drive with optimally designed critical rotor angles. Industry Applications Conference, Conference Record of the 2000 IEEE , 2000, 3: 1730-1737
    [46] Islam M.S., Husain I. Self-tuning of sensorless switched reluctance motor drives with online parameter identification. Industry Applications Conference, Conference Record of the 2000 IEEE , 2000, 3: 1738-1744
    [47] Islam M.S., Husain J. Torque-ripple minimization with indirect position and speed sensing for switched reluctance motors. IEEE Transactions on Industrial Electronics, 2000, 47(5): 1126-1133
    [48] Yang I.-W., Kim Y.-S. Rotor speed and position sensorless control of a switched reluctance motor using the binary observer. Electric Power Applications, IEE Proceedings- , 2000, 147(3): 220-226
    [49] Ashour H., Williams B. Sliding mode speed control of a shifted fully pitched switched reluctance machine. Electrical Machines and Systems, ICEMS 2001. Proceedings of the Fifth International Conference on , Vol.2:1042-1052
    [50] Wenzhu Lu, Keyhani A. Sensorless control of switched reluctance motors using sliding mode observers. Electric Machines and Drives Conference, IEMDC 2001. IEEE International Conference, 2001: 69-72
    [51] Boukhobza T., Gabsi M., Grioni B. Random variation of control angles, reduction of SRM vibrations. IEEE International Electric Machines and Drives Conference, IEMDC 2001. IEEE International Conference, 2001: 640-643
    [52] McCann R.A., Islam M.S., Husain, I. Application of a sliding-mode observer for position and speed estimation in switched reluctance motor drives. IEEE Transactions on Industry Applications , 2001, 37(1):51-58
    [53] Mir S, Elbuluk M E, Husain I. Torque-ripple minimization in switched reluctance motors using adaptive fuzzy control. IEEE Transactions on Industry Applications, 1999, 35(2): 461-468
    [54] Bortoff S A, Kohan R R , Milman R. Adaptive control of variable reluctance motors: a spline function approach. IEEE Transactions on Industry Electronics, 1998,45(3): 433-444
    [55] Reay D S, Mirkazemi-Moud M, Green T C, et al. Switched reluctance motor control via fuzzy adaptive systems. IEEE Control Systems Magazine (CSM), 1995, 15(3): 8-15
    [56] Panda S. K., Dash P. K. Application of nonlinear control to switched reluctance motors: a feedback linearisation approach. IEE Proceedings, Part B (Electric Power Applications), 1996, 143(5): 371-379
    [57] Rajarathnam A. V., Fahimi B., Ehsani M. Neural network based self-tuning control of a switched reluctance motor drive to maximize torque per ampere. IEEE Industry Applications Society Annual Meeting, 1997: 548-555
    [58] Rahman K. M., Rajarathnam A. V., Ehsani M. Optimized instantaneous torque control of switched reluctance motor by neural network. IEEE Industry Applications Society Annual Meeting, 1997: 556-563
    [59] Cameron, D.E., Lang, J.H., Umans, S.D. The origin and reduction of acoustic noise in doubly salient variable-reluctance motors. IEEE Transactions on Industry Applications, 1992, 28(6): 1250-1255
    [60] Wu, C.Y., Pollock, C. Time domain analysis of vibration and acoustic noise in the switched reluctance drive. Electrical Machines and Drives, 1993. Sixth International Conference on, 1993: 558-563
    [61] Cai, W., Pillay, P., Onekanda, A. Analytical formulae for calculating SRM modal frequencies for reduced vibration and acoustic noise design. Electric Machines and Drives Conference, 2001, IEMDC 2001, 2001:203-207
    [62] Anwar M.N., Husain I., Mir S., Sebastian T. Evaluation of acoustic noise and mode frequencies with design variations of switched reluctance machines. IEEE Transactions on Industry Applications, 2003, 39(3): 695-703
    [63]王宏华,王治平,江泉. SR电机定子振动的机电类比分析.机械制造与自动化, 2003, 3
    [64]吴建华,陈永校,王宏华.开关磁阻电机定子固有频率的计算.中国电机工程学报, 1997, 5
    [65] Zhangjun Tang, Pillay, P., Omekanda, A.M. Analysis of mounting effects on vibrations of switched reluctance motors. Electric Machines and Drives Conference, 2003. IEMDC03, 2003,1: 97-103
    [66] Cai, W., Pillay, P. Resonance frequencies and mode shapes of switched reluctance motors. Electric Machines and Drives Conference, 1999, IEMDC99 , 1999:44-47
    [67] Fahimi, B., Ehsani, M. Spatial distribution of acoustic noise caused by radial vibration in switched reluctance motors: application to design and control. Industry Applications Conference, 2000. Conference Record of the 2000 IEEE, 2000,1:114- 118
    [68]张式勤,刘芸芸,吴建华.开关磁阻电机定子振动的有限元分析.中小型电机, 2004,1
    [69] Jin-Woo Ahn, Sung-Jun Park, Dong-Hee Lee. Hybrid excitation of SRM for reduction of vibration and acoustic noise. IEEE Transactions on Industrial Electronics, 2004, 51(2): 374-380
    [70]陈昊,谢桂林. SR电动机双激磁路型式及其对径向力的影响.中国矿业大学学报, 1999,4
    [71] Grabner C., Schmidt E. Novel comparisons of nonlinear magnetic surface and volume forces inside 6/4 and 24/16 switched reluctance motor drives. Electric Machines and Drives Conference, 2003. IEMDC03, 2003, 1: 229-234
    [72] Picod C., Besbes M., Camus F., Gabsi M. Influence of stator geometry upon vibratory behaviour and electromagnetic performances of switched reluctance motors. Electrical Machines and Drives, 1997 Eighth International Conference on (Conf. Publ. No. 444) , 1997: 69-73
    [73] Sanada M., Morimoto S., Takeda Y., Matsui N. Novel rotor pole design of switched reluctance motors to reduce the acoustic noise. Industry Applications Conference, 2000. Conference Record of the 2000 IEEE , 2000,1:107-113
    [74]王宏华.开关磁阻电动机振动抑制研究及控制系统设计. [博士学位论文],杭州:浙江大学, 1997
    [75]王宏华.基于两步换相控制策略的SR电机直接数字控制系统设计.中国电机工程学报, 2001,7
    [76]李继生,王宽,徐信君,雷淑英.开关磁阻电机振动和噪声的分析及抑制措施.辽宁工程技术大学学报, 1998,3
    [77]王宏华.对降低SR电机振动和噪声的两步换相法的实验分析.电机与控制学报, 2001,1
    [78]王宏华,王忠建.开关磁阻电动机冲击振动特性分析.中小型电机, 2001,4
    [79]王宏华,陈永校,许大中,等.开关磁阻调速电机定子振动抑制.电工技术学报, 1998,3
    [80]于庆广,杨玉岗.开关磁阻电机(SRM)新型定子极型及其电磁关系仿真研究.系统仿真学报, 2001,13(6): 798-801
    [81]许家群,卞松江.开关磁阻电机极型改进研究.煤矿机电, 2001(4): 1-3
    [82] Changhwan Choi, Seungho Kim, Yongdae Kim, Kyihwan Park. A new torque control method of a switched reluctance motor using a torque-sharing function. IEEE Transactions on Magnetics, 2002,38(5):3288-3290
    [83] Han-Kyung Bae, Krishnan, R. A novel approach to control of switched reluctance motors considering mutual inductance. Industrial Electronics Society, 2000. IECON 2000. 26th Annual Conference of the IEEE, 2000, 1: 369-374
    [84]范正翘,王平.开关磁阻电动机转矩脉动的智能抑制方法.微特电机, 2000,2
    [85]杨波,曹家勇,陈幼平,等.一种降低开关磁阻电机转矩脉动的新方法.中小型电机, 2001,4
    [86] Shang, C., Reay, D.S., Williams, B.W. Commutating switched reluctance motors efficiently via CMAC neural network with learning rate function. American Control Conference, 1997. Proceedings of the 1997 , 1997, 1:237-241
    [87] Chapman, P.L., Sudhoff, S.D. Design and precise realization of optimized current waveforms for an 8/6 switched reluctance drive. IEEE Transactions on Power Electronics, 2002,17(1):76-83
    [88] Derdiyok, A., Inanc, N., Ozbulur, V., et al. Fuzzy logic based control of switched reluctance motor to reduce torque ripple. Electric Machines and Drives Conference Record, 1997, IEEE International , 18-21 May 1997, Pages:TB1/9.1 - TB1/9.3
    [89] Lei Huang, He-Xu Sun, Gui-Ying Song, Jian-Dong Chu. A fuzzy-logic-based torqueripple reduction method for switched reluctance motors. Machine Learning and Cybernetics, 2003 International Conference on , Volume: 5 , 2-5 Nov. 2003, Pages:2609 - 2613 Vol.5
    [90] Stankovic, A.M., Tadmor, G., Coric, Z.J. Low torque ripple control of current-fed switched reluctance motors. Industry Applications Conference, 1996. Thirty-First IAS Annual Meeting, IAS '96., Conference Record of the 1996 IEEE , Volume: 1 , 6-10 Oct. 1996, Pages:84 - 91 vol.1
    [91] Barrass, P.G., Mecrow, B.C. Flux and torque control of switched reluctance machines. Electric Power Applications, IEE Proceedings-, 1998,145(6):519-527
    [92] Cheok, A.D., Fukuda, Y. A new torque and flux control method for switched reluctance motor drives. IEEE Transactions on Power Electronics, 2002,17(4): 543-557
    [93] Jinupun, P., Chi-Kwong Luk, P. Direct torque control for sensorless switched reluctance motor drives. Power Electronics and Variable Speed Drives, 1998. Seventh International Conference on (IEE Conf. Publ. No. 456) , 1998: 329-334
    [94] Inderka, R.B., De Doncker, R.W.A.A. DITC-direct instantaneous torque control of switched reluctance drives. IEEE Transactions on Industry Applications, 2003,39(4):1046-1051
    [95] Murai Y., Cheng Ji. A simple soft-switched switched-reluctance motor drive. IECON98, 1998, (2): 911-916
    [96] Murai Y., Cheng Ji, Sugimoto S., et al. A capacitor-boosted, soft-switched switched-reluctance motor drive. APEC 99, 1999: 424- 429
    [97] Rolim L. G. B., Suemitsu W. I., Watanabe E. H. et al. Development of an improved switched reluctance motor drive using a soft-switching converter. Electric Power Applications, IEE Proceedings-, 1999, 145(5): 488-494
    [98] Lopez G. G., Kjaer P. C., Miller T. J. E. et al. Simulation study of resonant dc link inverter for current-controlled switched reluctance motors. Power Electronics and Drive Systems 1997, 1997: 757-761
    [99] Murai Y., Ji Cheng, Yoshida M. New soft-switched/switched-reluctance motor drive circuit. IEEE Transactions on Industry Applications, 1999, 35(1): 78-85
    [100]樊小明,经压枝,张焕春等.开关磁阻电机的一种无位置检测器方案的研究.电工技术学报, 1997, 12(6): 27-31
    [101]肖楚成.开关磁阻电动机间接式电容转子位置检测技术. [硕士学位论文],武汉:华中理工大学,1998
    [102] G. Suresh, B. Fahimi, M. Ehsani, Improvement of the accuracy and speed range in sensorless control of switched reluctance motors, Applied Power Electronics Conference and Exposition, IEEE, 1998:771-777
    [103] Ehsani M., Husain I., Mahajan S., et al. New modulation encoding techniques for indirect rotor position sensing in switched reluctance motors. IEEE Transactions on Industry Applications, 1994, 30(1): 85-91
    [104] Ma B., Feng W., Liu T., et al. Design and implementation of a sensorless switched reluctance drive system. IEEE Transactions on Aerospace and Electronic Systems ,1998, 34(4): 1193-1207
    [105] Husain I., Ehsani M. Rotor position sensing in switched reluctance motor drives by measuring mutually induced voltages. IEEE Transactions on Industry Applications. 1994, 30(3): 665-672
    [106] Gabriel Gallegos-Lopez, Philip C. Kjaer, T. J. E. Miller. High-grade position estimation for SRM drives using flux linkage-current correction model. IEEE Transactions on Industry Applications, 1999, 35(4): 859-869
    [107] J.P. Lyons, S .R .MacMinn, M.A. Preston. Flux-current methods for SRM rotor position estimation. Industry Applications Conference, IAS Annual Meeting, 1991:482-487
    [108] Gallegos-Lopez G, Kjaer P C, Miller T. J. E. New sensorless method for switched reluctance Motor Drives. IEEE Transactions on Industry Applications, 1998, 34(4): 832-840
    [109] Zhan Y. J., Chan C. C., Chau K. T. Novel sliding-mode observer for indirect position sensing of switched reluctance motor drives. IEEE Transactions on Industry Electronics, 1999, 46(2): 390-397
    [110] Panda S. K., Amaratunga G. A. J. Waveform detection technique for indirect rotor-position sensing of switched-reluctance motor drives part 1: analysis. IEE Proceedings, Part B (Electric Power Applications), 1993, 140(1): 80-88
    [111] Panda S. K., Amaratunga G. A. J. Waveform detection technique for indirect rotor-position sensing of switched-reluctance motor drives part 2: experimental results. IEE Proceedings, Part B (Electric Power Applications), 1993, 140(1): 89-96
    [112] K. M. Rahman, B. Fahimi, G. Suresh et al. Advantages of Switched Reluctance Motor Applications to EV and HEV: Design and Control Issues. IEEE Transactions on Industry Applications, 2000,36(1): 111-121
    [113] Jens-Peter Altendorf, Thomas Baumann, R. B. Inderka et al. OKOFEH-A Research Project for Initiating Further Development of Drive Systems for Electric-, Hybrid- and Fuel Cell Vehicles. Proceedings of EVS18, 2001
    [114]宋佑川,金国栋.电动轮的类型与特点.城市公共交通, 2004, 4: 16-18
    [115] O.Message, Samuel Gallion. EV Drives: Mechatronics challenges and design trend analysis. Proceedings of EVS18, 2001
    [116]顾云青,张立军.电动汽车电动轮驱动系统开发现状与趋势.汽车研究与开发, 2004, 12
    [117]吴世华,崔淑梅.电动汽车用永磁轮式电机综述.微特电机, 2005, 6: 40-45
    [118] Masayuki Terashima. Novel Motors and Controllers for High-Performance Electric Vehicle with Four In-Wheel Motors. IEEE Transactions on Industrial Electronics, 1997, 44 (2) : 28-38
    [119] Hiroshi Shimizu, Kiyomoto Kawakami, Yuko Kakizaki et al.“KAZ”The super electric vehicle. Proceedings of EVS18, 2001
    [120] Shiro Matsugaura, Kiyomoto Kawakami, Hiroshi Shimizu. Advanced Direct Drive System for New Concept Electric Vehicle“KAZ”. Proceedings of EVS18, 2001
    [121] Shiro Matsugaura. Evaluation of Performances for the In-Wheel Drive System for the New Concept Electric Vehicle“KAZ”. Proceedings of EVS19, 2002
    [122] Jeffery S. Ernat. Advanced Hybrid Electric Wheel Drive (Ahed) 8X8. The 24th Army Science Conference (ASC), Florida, November29-December 2, 2004.
    [123] NEWS U.S. Military Goes For Hybrid Vehicles-Experimental Marine Corps armored vehicle has diesel-electric drivetrain. IEEE Spectrum March, 2004.
    [124]陈辛波,万钢.独立悬架-电动轮模块的双横臂悬架机构设计.汽车工程, 2004, 5: 513-516
    [125]卓桂荣,陈辛波,王伟.制动盘可替代式轮毂电机外形机构设计.国家“十五”863计划电动汽车重大专项技术研讨会学术报告汇编.北京: 863计划电动汽车重大专项总体组, 2004: 37-41
    [126]卓桂荣,艾婷婷,陈慧,张立军.四轮驱动电动汽车的模型跟踪控制.国家“十五”863计划电动汽车重大专项技术研讨会学术报告汇编.北京: 863计划电动汽车重大专项总体组, 2004: 28-32
    [127]王双红,马志源,詹琼华.混合动力汽车用的50kW四相开关磁阻电机驱动系统.国家“十五”863计划电动汽车重大专项技术研讨会学术报告汇编.北京: 863计划电动汽车重大专项总体组. 2004: 284-290
    [128]余志生.汽车理论.北京:机械工业出版社, 2002
    [129]郭孔辉.汽车操纵稳定性.长春:吉林科学技术出版社, 1991
    [130]刘惟信.汽车设计.北京:清华大学出版社, 2001
    [131]司利增.汽车计算机控制.北京:人民交通出版社,2000
    [132] Shin-ichiro Sakaia, Yoichi Hori. Advanced motion control of electric vehicle with fast minor feedback loops: basic experiments using the 4-wheel motored EV“UOT Electric March II”. JSAE Review 22, 2001, 527-536
    [133] Motoki Shino, Masao Nagai. Yaw-moment control of electric vehicle for improving handling and stability. JSAE Review 22, 2001, 473-480
    [134] Farzad Tahami, Shahrokh Farhang, Reza Kazemi. A Fuzzy Logic Direct Yaw-Moment Control System for All-Wheel-Drive Electric Vehicles. Vehicle System Dynamics 2004, 41(3): 203-221
    [135]余卓平,张立军,熊璐.四驱电动车经济性改善的最优转矩分配控制.同济大学学报(自然科学版), 2005,33(10): 1355-1361
    [136]靳立强,王庆年,岳巍强,等.基于四轮独立驱动电动汽车的动力学仿真模型.系统仿真学报, 2005,17(12): 3053-3055
    [137]靳立强,王庆年,宋传学.四轮独立驱动电动汽车动力学控制仿真.吉林大学学报(工学版), 2004, 34(4): 547-553
    [138] Manabu Omae, Hiroshi Shimizu, Naohisa Hashimoto. Traction-Force-Distribution Control of EV with In-Wheel Motors for Lane Keeping. Proceedings of EVS18, 2001
    [139] Shin-ichiro Sakai, Takahiro Okano, Tai Chien Hwa et al. Experimental Studies on Vehicle Motion Stabilization with 4 Wheel Motored EV. Proceedings of EVS18, 2001
    [140] Shin-ichiro Sakai, Hideo Sado, Yoichi Hori. Motion control in an electric vehicle with 4 independently driven in-wheel motors. IEEE Transactions on Mechatronics,1999, 4(1): 9-16
    [141]詹琼华.开关磁阻电动机.武汉:华中科技大学出版社. 1992
    [142]曹家勇.开关磁阻电动机非线性控制的理论与实验研究[博士学位论文].武汉:华中科技大学, 2003
    [143] Adrian David Cheok, Yusuke Fukuda. A New Torque and Flux Control Method for Switched Reluctance Motor Drives. IEEE Transactions on Power Electronics, 2002,17(4): 543-557
    [144] Barrass P. G., Mecrow B. C. Flux and torque control of switched reluctance machines. IEE Proc.-Electr. Power Appl., 1998, 145(6): 519-527
    [145] Rahman K. M., Gopalakrishnan S., Fahimi B. et al. Optimized torque control of switched reluctance motor at all operational regimes using neural network. IEEE Transactions on Industry Applications, 2001, 37(3): 904-913
    [146] Blaabjerg F., Kjaer P. C., Rasmussen P. O. et al. Improved digital current control methods in switched reluctance motor drives. IEEE Transactions on Power Electronics, 1999, 14(3): 563-572
    [147] Shuanghong Wang, Qionghua Zhan, Zhiyuan Ma et al. Implementation of a 50kW four-phase switched reluctance motor drive system for hybrid electric vehicle. IEEE Transactions on Magnetics, 2005, 41(1): 501-504
    [148] R.B.Inderka, R.W.De Doncker. High Dynamic Direct Average Torque Control for Switched Reluctance Drives. IAS2001, 2001, 3: 2111-2115
    [149] R.B. Inderka, M. Menne, R.W. De Doncker: High-Dynamic Traction Control for Switched Reluctance Machine Drives. Proceedings of EVS19, 2002: 2091-2099
    [150] Christian E. Carstensen, R.B. Inderka, Yishay Netzer, R.W. De Doncker. Implementation of a 75kW Switched Reluctance Drive for Electric Vehicles. Proceedings of EVS19, 2002: 1488-1499
    [151] R.B. Inderka, M. Menne, R.W. De Doncker. Control of Switched Reluctance Drives for Electric Vehicle Applications. IEEE Transactions on Industrial Electronics, 2002, 49(1): 48-53
    [152] R.B. Inderka, Rik W. A. A. De Doncker. High-Dynamic Direct Average Torque Control for Switched Reluctance Drives. IEEE Transactions on Industry Applications, 2003, 39(4): 1040-1045
    [153] Sayeed Mir, Iqbal Husain, Malik E. Elbuluk. Switched Reluctance Motor Modelingwith On-Line Parameter Identification. IEEE Transactions on Industry Applications, 1998, 34(4): 776-783
    [154]邱亦惠,詹琼华,马志源,等.基于简化磁链法的开关磁阻电机间接位置检测.中国电机工程学报, 2001, 21(10): 59-62
    [155]曹承志.微型计算机控制新技术.北京:机械工业出版社, 2001
    [156] Schulz S. E., Rahman K. M.. High-Performance Digital PI Current Regulator for EV Switched Reluctance Motor Drives. Transactions on Industry Applications, 2003, 39(4): 1118-1126
    [157] Rahman K. M., Schulz S. E.. High-Performance Fully Digital Switched Reluctance Motor Controller for Vehicle Propulsion. IEEE Transactions on Industry Applications, 2002, 38(4): 1062-1071
    [158]程卫国,冯峰,姚东,等. MATLAB5.3应用指南.人民邮电出版社, 1999年第一版
    [159] P. J. Costa Branco. Simulation of a 6/4 Switched Reluctance Motor Based on Matlab/Simulink Environment. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(3): 989-1009
    [160] I. Husain, S. A. Hossain. Modeling, Simulation and Control of Switched Reluctance Motor Drives. IEEE Transactions on Industrial Electronics, 2005, 52(6): 1625-1634
    [161] Phop Chancharoensook, Muharnmed F. Rahman. Dynamic Modeling of a Four-Phase 8/6 Switched Reluctance Motor Using Current and Torque Look-Up Tables. IECON02, 2002, 1: 491-496
    [162]陈晓霞. ANSYS 7.0高级分析.北京:机械工业出版社, 2004
    [163]刘迪吉,曲民兴,朱学忠,刘闯.开关磁阻发电机.南京航空航天大学学报, 2003, 35(2): 109-115
    [164]朱学忠,刘闯,刘迪吉.开关磁阻电机发电运行的角度位置控制.南京航空航天大学学报, 2001, 33(1): 64-67
    [165]任贵勇,王常虹,马广程,陈兴林.开关磁阻电机的发电运行及其数字仿真研究.中国电机工程学报, 2001, 21(2): 29-32
    [166]田茂昕,马志源,詹琼华.基于MATLAB的开关磁阻发电机数字仿真.中小型电机, 2001, 28(2): 13-16
    [167] David A. Torrey. Switched Reluctance Generators and Their Control. IEEETransactions on Industrial Electronics, 2002, 49(1): 3-14
    [168] I. Kioskeridis, C. Mademlis. Optimal Efficiency Control of Switched Reluctance Generators. IEEE Transactions on Power Electronics, 2006, 21(4): 1062-1072
    [169] P. Chancharoensook, M. F. Rahman. Control of a Four-Phase Switched Reluctance Generator: Experimental Investigations. IEMDC03, 2003, 2: 842-848
    [170] R. Inderka, M. Menne, R. W. De Doncker. Generator Operation of a Switched Reluctance Machine Drive for Electric Vehicles. EPE 1999: 1-9
    [171]王晓明,王玲.电动机的DSP控制.北京:北京航空航天大学出版社, 2004
    [172]陈坚.电力电子学.北京:高等教育出版社, 2002
    [173]阮新波,严仰光.直流开关电源的软开关技术.北京:科学出版社, 2000
    [174] Huijie Yu, Byeong-Mun Song, Jih-Sheng (Jason) Lai. Design of a Novel ZVT Soft-Switching Chopper. IEEE Transactions on Power Electronics, 2002, 17(1): 101-108
    [175] Zhi Yang Pan, Fang Lin Luo. Novel Soft-Switching Inverter for Brushless DC Motor Variable Speed Drive System. IEEE Transactions on Power Electronics, 2004, 19(2): 280-288
    [176] K.H.Chao, C.M.Liaw. Three-phase soft-switching inverter for induction motor drives. IEE Proc.-Electr. Power Appl., 2001, 148(1): 8-20
    [177] Jamal Jafar Jafar, B. G. Fernandes. A New Quasi-Resonant DC-Link PWM Inverter Using Single Switch for Soft Switching. IEEE Transactions on Power Electronics, 2002, 17(6): 1010-1016
    [178] H. Bodur, A. Faruk Bakan. An Improved ZCT-PWM DC–DC Converter for High-Power and Frequency Applications. IEEE Transactions on Industrial Electronics, 2004, 51(1): 89-95
    [179]贺昱曜,王伟根,徐德民.串并联谐振DC-AC变换器原理分析、建模及仿真.中国电机工程学报, 1999, 19(12): 14-17
    [180]顾亦磊,陈世杰,吕征宇,等.单开关DC/DC变换器的一种软开关实现策略.中国电机工程学报, 2004, 24(11): 130-133

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700