用户名: 密码: 验证码:
无溶剂体系固定化磷脂酶Lecitase~(?)Ultra催化合成甘油二酯研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘油二酯(DAG)是近年来倍受关注的一种功能性油脂,可降低餐后血脂水平和抑制食欲,具有控制体重和防止肥胖症等功效。众多动物试验和人体试验结果表明,以DAG为食用油,安全可靠,不会带来健康问题和负面影响。目前DAG的酶法制备多采用脂肪酶催化,价格高,工业化成本较高。本论文研究了无溶剂体系磷脂酶Lecitase~(?) Ultra催化合成DAG的方法,基于工业化的考虑,对该酶进行固定化,便于重复使用,设计开发了新型鼓泡式反应器,将其用于固定化酶的催化反应,制备了高纯度DAG,并应用于搅打稀奶油中,为磷脂酶Lecitase~(?) Ultra的开发利用和DAG的制备提供理论和方法的指导。论文主要研究内容和结果如下:
     1、研究了游离磷脂酶Lecitase~(?) Ultra催化油酸和甘油直接酯化法合成1,3-DAG,考察了有机溶剂和无溶剂体系的反应效果,对无溶剂体系中的合成工艺进行优化。发现该酶在无溶剂体系中可实现DAG的快速酯化合成,仅1.5h反应,油酸酯化率达80.3%,产物中1,3-DAG含量为54.8wt%。
     2、研究了磷脂酶Lecitase~(?) Ultra的吸附法固定化条件,发现大孔树脂DA-201为最佳载体,得到固定化磷脂酶Lecitase~(?) Ultra(IM-LU)酶活为1652.4U/g。吸附动力学研究表明Langmuir方程可较好地描述该吸附过程,为单层吸附。经固定化后,磷脂酶的Km增大,Vmax减小,酶的热、pH、金属离子和储藏稳定性都有所提高。FTIR测定结果显示,经固定化过程,酶分子的二级结构稍有改变,其α-螺旋含量减少,β-折叠增多。
     3、研究了无溶剂体系IM-LU催化大豆油甘油解制备DAG的反应效果,对底物摩尔比、温度、加酶量等反应条件进行了优化,经12h反应,产物中DAG含量为53.7wt%。磷脂酶催化大豆油甘油解反应具有1,3-位点选择性,固定化过程未改变这一特性。与原料大豆油相比,DAG中饱和脂肪酸得到富集,亚油酸含量显著降低,油酸含量有一定升高。
     4、设计试制了新型鼓泡式反应器(BCR),将其用于IM-LU催化酯化合成1,3-DAG。与搅拌式反应器相比,BCR可节约酶制剂用量并加快反应进程,得到了快速合成1,3-DAG的工艺条件,经45min反应,酯化率达86.4%。在BCR中,酯化速度和酯化率明显提高,产物1,3-DAG含量为58.3wt%。BCR可避免因机械搅拌导致固定化酶的剪切失活,提高酶的操作稳定性。
     5、通过分子蒸馏制备高纯度DAG油,研究了其熔化结晶性能、固体脂肪含量和脂肪酸组成,并替代氢化植物油BL-39用于搅打稀奶油中。结果发现,随着DAG替代量的升高,搅打稀奶油的平均粒径大小、界面蛋白含量、脂肪部分聚结率和质构特性值等呈上升的变化趋势。5%–15%DAG替代量可缩短搅打时间,提高搅打稀奶油的站立稳定性,与对照样相比,其感官品质变化不大。20%以上替代量样品的站立稳定性和感官品质均较差,不宜用于本文的搅打稀奶油中。
Diacylglycerol (DAG), a functional lipid, has attracted a lot of attentions in recent years.It has several advantages, such as reducing the level of postprandial blood lipid, inhibitingappetite, controlling body weight and preventing obesity. Results from animal tests andhuman trials show that, as an edible oil, DAG is safe and does not bring health problems andnegative effects. Currently, DAG has been prepared through enzymatic method catalyzed bylipase, which is expensive for industrial application. In the present study, DAG wassynthesized catalyzed by phospholipase Lecitase~(?) Ultra in a solvent-free system. Based onpractical application consideration, Lecitase~(?) Ultra was immobilized for easily recycling usein this study. A novel enzyme reactor was developed and employed for enzymatic reactions.DAG with high purity was produced and applied in whipped cream. The new findings of thiswork will be useful for utilization of Lecitase~(?) Ultra as well as preparation of DAG-enrichedoil. The main research contents and results are as follows:
     1. In this work,1,3-DAG was synthesized through direct esterification reaction of oleicacid and glycerol catalyzed by Lecitase~(?) Ultra. The reactions in organic solvents system andsolvent-free system were examined, and the latter was selected. The reaction conditions insolvent-free system were optimized. The esterification efficiency was80.3%after1.5hreaction. The1,3-DAG content in product was determined as54.8wt%.
     2. Lecitase~(?) Ultra was immobilized onto macroporous resin DA-201via adsorptionmethod. The immobilized Lecitase~(?) Ultra (IM-LU) was obtained with a lipase activity of1652.4U/g. Langmuir equation was fit to describe this adsorption process, which was foundas a monolayer adsorption mechanism. After immobilization, the Kmof enzyme increased andVmaxdecreased. The thermal, pH and storage stability were all improved. The FTIR resultshowed that the secondary structure of enzyme had changed to some extent afterimmobilization. The content of α-helix decreased, and that of β-sheet increased.
     3. DAG was prepared through glycerolysis of soybean oil catalyzed by IM-LU in asolvent-free system. The reaction conditions were investigated containing mole ratio ofsubstrates, temperature, enzyme load, and so forth. With12h reaction, DAG content inproduct was53.7wt%. Both free Lecitase~(?) Ultra and IM-LU had1,3-regioselective property on soybean oil. Compared with the original oil, the saturated fatty acids in DAG wereenriched. The content of linoleic acid decreased significantly, and the content of oleic acidincreased to some extent.
     4. A novel bubble column reactor (BCR) was trial-manufactured and applied forenzymatic esterification to produce1,3-DAG. Compared with stirred tank reactor, the load ofIM-LU was reduced and the reaction was accelerated. After45min reaction, the esterificationefficiency was86.4%and the1,3-DAG content was58.3wt%. The BCR can avoid the shearinactivation of immobilized enzyme due to mechanical agitation. The stability of the enzymewas improved.
     5. DAG-enriched oil was prepared by molecular distillation. Its melting andcrystallization properties, solid fat content and fatty acid composition were investigated. TheDAG oil was used to substitute hydrogenated vegetable oil BL-39in whipped cream. Theresult showed that with the DAG substitution increasing, the average particle size, surfaceprotein concentration, partial coalescence of fat and textural property values of whippedcream increased. DAG substitution of5%–15%could shorten the whipping time and improvethe standing stability. And the organoleptic property had not changed much as compared withthe control. Sample with20%DAG substitution exhibited weak standing stability andorganoleptic property. As a result, it was inappropriate to be applied in whipped cream in thepresent study.
引文
[1] Hui H.Y.贝雷:油脂化学与工艺学(第三卷)[M].第五版.徐生庚,裘爱泳译.北京:中国轻工业出版社,2001.
    [2]赵霖,鲍善芬,傅红.油脂营养健康:厨中百味油为贵[M].北京:人民卫生出版社,2011.
    [3]张根旺.油脂化学[M].北京:中国财政经济出版社,1998.
    [4]郑建仙.现代新型蛋白和油脂食品开发[M].北京:科学技术文献出版社2003.
    [5]吴素萍.特种食用油的功能特性与开发[M].北京:中国轻工业出版社,2008.
    [6] Ingle D.L. Dietary energy value of medium-chain triglycerides [J]. Journal of FoodScience,1999,64:960–964.
    [7] Carvajal O., Nakayama M., Kishi T., et al. Effect of medium-chain fatty acid positionaldistribution in dietary triacylglycerol on lymphatic lipid transport and chylomicroncomposition in rats [J]. Lipids,2000,35:1345–1352.
    [8] Kaplan R.J., Greenwood C.E. Poor digestibility of fully hydrogenated soybean oil in rats:a potential benefit of hydrogenated fats and oils [J]. Journal of Nutrition,1998,128:875–880.
    [9] Xu X.B. Production of specific-structured triacylglycerols by lipase-catalyzed reactions: areview [J]. European Journal of Lipid Science Technology,2000:287–303.
    [10] Xu X.B. Enzymatic production of structured lipids [J]. Food Science,2000,21:195–198.
    [11] Smith R.E., Finley J.W., Leveille, G.A. Overview of salatrim, a family of low-calorie fats[J]. Journal ofAgriculture and Food Chemistry,1994,42:432–434.
    [12] Mc Neill G.P., Sonnet P.E. Low-calorie triglyceride synthesis by lipase-catalyzedesterification of monoglycerides [J]. Journal of the American Oil Chemists' Society,1995,72:1301–1307.
    [13] Xu X., Balchen S., Hoy C.E., et al. Production of specific-structured lipids by enzymaticinteresterification in a pilot continuous enzyme bed reactor [J]. Journal of the AmericanOil Chemists' Society,1998,75:1573–1579.
    [14] Watanabe Y., Sato Y.Y., Nagao T., et al. Production of monoacylglycerol of conjugatedlinoleic acid by esterification followed by dehydration at low temperature usingPenicillium camembertii lipase [J]. Journal of molecular catalysis B: enzymatic,2004,27:249–254
    [15] Kamphuis M.M.J.W., Mela D.J, Westerterp-Plantenga M.S. Diacylglycerols affectsubstrate oxidation and appetite in humans [J]. The American journal of clinical nutrition,2003,77:1133–1139.
    [16] Yasunaga K., Glinsmann W.H., Seo Y., et al. Safety aspects regarding the consumptionof high-dose dietary diacylglycerol oil in men and women in a double-blind controlledtrial in comparison with consumption of a triacylglycerol control oil [J]. Food andChemical Toxicology,2004,42:1419–1429.
    [17] Nagao T., Watanabe H., Goto N., et al. Dietary diacylglycerol suppresses accumulationof body fat compared to triacylglycerol in men in a double-blind controlled trial [J].Journal of Nutrition,2000,130:792–797.
    [18] Lo S.-K., Tan C.-P., Long K., et al. Diacylglycerol oil—properties, processes andproducts: a review [J]. Food and Bioprocess Technology,2008,1:223–233.
    [19] Morita O., Soni M.G. Safety assessment of diacylglycerol oil as an edible oil: Areview ofthe published literature [J]. Food and Chemical Toxicology,2009,47:9–21.
    [20]汪勇.磷脂酶A1(Lecitase Ultra)催化水解植物油脂研究[D].华南理工大学博士学位论文,2009.
    [21] Murase T., Mizuno T., Omachi T., et al. Dietary diacylglycerol suppresses high fat andhigh sucrose diet-induced body fat accumulation in C57BL/6J mice [J]. Journal of LipidResearch,2001,42:372–378.
    [22] Maki K.C., Davidson M.H., Tsushima R., et al. Consumption of diacylglycerol oil as partof a reduced-energy diet enhances loss of body weight and fat in comparison withconsumption of a triacylglycerol control oil [J]. American Journal of Clinical Nutrition,2002,76:1230–1236.
    [23] Watanabe H., Goto N., Fujimori N., et al. Effect of DAG on human long term intake [R].Kao Corporation Office Report, Kao Corporation, Tokyo, Japan,1996.
    [24] Yasunaga K., Glinsmann W.H., Seo Y., et al. Safety aspects regarding the consumptionof high-dose dietary diacylglycerol oil in men and women in a double-blind controlledtrial in comparison with consumption of a triacylglycerol control oil [J]. Food andChemical Toxicology,2004,42:1419–1429.
    [25] Watanabe H., Onizawa K., Taguchi H., et al. Nutritional characterization ofdiacylglycerols in rats [J]. Journal of Japan Oil Chemists’ Society,1997,46:301–308.
    [26] Gervois P., Torra I.P., Fruchart J.C., et al. Regulation of lipid and lipoprotein metabolismby PPAR activators [J]. Clinical Chemistry and Laboratory Medicine:(CCLM),2005,38:3–11.
    [27] Kondo H., Hase T., Murase T., et al. Digestion and assimilation features of dietary DAGin the rat small intestine [J]. Lipids,2003,38:25–30.
    [28] Ishii T. Acute oral toxicity study of DG-5in rats final report [R]. Drug Safety TestingCenter Co. Ltd., Kao Corporation, Saitama, Japan,2003.
    [29] Morita O., Tamaki Y., Kirkpatrick J.B., et al. Safety assessment of heated diacylglyceroloil: subchronic toxicity study in rats [J]. Food and Chemical Toxicology,2008,46:2748–2757.
    [30] Chengelis C.P., Kirkpatrick J.B., Marit G.B., et al. A chronic dietary toxicity study ofDAG (diacylglycerol) in Beagle dogs [J]. Food and Chemical Toxicology,2006,44:81–97.
    [31] Kasamatsu T., Ogura R., Ikeda N., et al. Genotoxicity studies on dietary diacylglycerol(DAG) oil [J]. Food and Chemical Toxicology,2005,43:253–260.
    [32] Chengelis C.P., Kirkpatrick J.B., Bruner R.H., et al. A24-month dietary carcinogenicitystudy of DAG in mice [J]. Food and Chemical Toxicology,2006,44:122–137.
    [33] Morita O., Knapp J.F., Tamaki Y., et al. Safety assessment of dietary diacylglycerol oil:a two-generation reproductive toxicity study in rats [J]. Food and Chemical Toxicology,2008,46:3059–3068.
    [34] Takei A., Toi T., Takahashi H., et al. Effects of diacylgcerol-containing mayonnaise onlipid metabolism and body fat in human [J]. Japanese Nutritional Food2001,4:89–101.
    [35] Yasunaga K., Tomonobu K., Katsuragi Y. Assessment of safety and physical complaintsbased on the long-term practical using evaluation by outside housewives [R]. KaoCorporation, Japan,2002.
    [36] Matsuyama T., Shoji,K., Watanabe H., et al. Effects of diacylglycerol oil on adiposity inobese children: initial communication [J]. Journal of Pediatrics Endocrinology andMetabolism,2006,19:795–804.
    [37] Yamamoto K., Takeshita M., Tokimitsu I., et al. Diacylglycerol oil ingestion in type2diabetic patients with hypertriglyceridemia [J]. Nutrition,2006,22:23–29.
    [38] Teramoto T., Watanabe H., Ito K., et al. Significant effects of diacylglycerol on body fatand lipid metabolism in patients on hemodialysis [J]. Clinical Nutrition,2004,23:1122–1126.
    [39] Honda H., Onishi M., Fujii K., et al. Measurement of glycidol hemoglobin adducts inhumans who ingest edible oil containing small amounts of glycidol fatty acid esters [J].Food and Chemical Toxicology,2011,49:2536–2540.
    [40] Blasi F., Cossignani L., Simonetti M.S., et al. Biocatalysed synthesis of sn-1,3-diacylglycerol oil from extra virgin olive oil [J]. Enzyme and Microbial Technology,2007,41:727–732.
    [41] Cheong L.Z., Tan C.P., Long K., et al. Production of a diacylglycerol-enriched palmolein using lipase-catalyzed partial hydrolysis: optimization using response surfacemethodology [J]. Food Chemistry,2007,105:1614–1622.
    [42] Rosu R., Yasui M., Iwasaki Y., et al. Enzymatic synthesis of symmetrical1,3-diacylglycerols by direct esterification of glycerol in solvent-free system [J]. Journalof the American Oil Chemists’ Society,1999,76:839–843.
    [43] Yang T., Zhang H., Mu H., et al. Diacylglycerols from butterfat: production byglycerolysis and short-path distillation and analysis of physical properties [J]. Journal ofthe American Oil Chemists’ Society,2004,81:979–987.
    [44] Yesiloglu Y., Kilic I. Lipase-catalyzed esterification of glycerol and oleic acid [J].Journal of the American Oil Chemists’ Society,2004,81:281–284.
    [45] Liao H.-F., Tsai W.-C., Chang S.-W., et al. Application of solvent engineering tooptimize lipase-catalyzed1,3-diglyacylcerols by mixture response surface methodology[J]. Biotechnology Letters,2003,25:1857–1861.
    [46] Kruger R.L., Valerio A., Balen M., et al. Improvement of mono and diacylglycerolproduction via enzymatic glycerolysis in tert-butanol system [J]. European Journal ofLipid Science and Technology,2010,112:921–927.
    [47] Zhao Y., Liu J., Deng L., et al. Optimization of Candida sp.99-125lipase catalyzedesterification for synthesis of monoglyceride and diglyceride in solvent-free system [J].Journal of Molecular Catalysis B: Enzymatic,2011,72:157–162.
    [48] Eoma T.-K., Kong C.-S., Byun H.-G., et al. Lipase catalytic synthesis of diacylglycerolfrom tuna oil and its anti-obesity effect in C57BL/6J mice [J]. Process Biochemistry,2010,45:738–743.
    [49] Fregolente P.B.L., Fregolente L.V., Pinto G.M.F., et al. Monoglycerides and diglyceridessynthesis in a solvent-free system by lipase-catalyzed glycerolysis [J]. AppliedBiochemistry and Biotechnology,2008,146:165–172.
    [50] Feltes M.M.C., Villeneuve P., Barea B., et al. Enzymatic production ofmonoacylglycerols and diacylglycerols from fish oil in a solvent-free system [J]. JournalofAmerican Oil Chemists’Society,2012,89:1057–1065.
    [51] Valerio A., Rovani S., Treichel H., et al. Optimization of mono and diacylglycerolsproduction from enzymatic glycerolysis in solvent-free system [J]. Bioprocess andBiosystems Engineering,2010,33:805–812.
    [52]邓友全.离子液体[M].北京:中国石化出版社,2006.
    [53] Lau R.M., Rantwijk F., Seddon K.R., et al. Lipase-catalyzed reactions in ionic liquid [J].Organic Letters,2000,2:4189–4191.
    [54] Kahveci D., Guo Z., Ozcelik B., et al. Lipase-catalyzed glycerolysis in ionic liquidsdirected towards diglyceride synthesis [J]. Process Biochemistry,2009,44:1358–1365.
    [55] Kahveci D., Guo Z., Ozcelik B., et al. Optimisation of enzymatic synthesis ofdiacylglycerols in binary medium systems containing ionic liquids [J]. Food Chemistry,2010,119:880–885.
    [56] Guo Z., Kahveci D., Ozcelik B., et al. Improving enzymatic production of diglyceridesby engineering binary ionic liquid medium system [J]. New Biotechnology,2009,26:37–43.
    [57] Matos L.M.C., Leal I.C.R., De Souza R.O.M.A. Diacylglycerol synthesis bylipase-catalyzed partial hydrolysis of palm oil under microwave irradiation andcontinuous flow conditions [J]. Journal of Molecular Catalysis B: Enzymatic,2011,72:36–39.
    [58] Babizc I., Leite S.G.F., De Souza R.O.M.A., et al. Lipase-catalyzed diacylglycerolproduction unde sonochemical irradiation [J]. Ultrasonics Sonochemistry,2010,17:4–6.
    [59] Goncalves K.M., Sutili F.K., Leite S.G.F., et al. Palm oil hydrolysis catalyzed by lipasesunder ultrasound irradiation—The use of experimental design as a tool for variablesevaluation [J]. Ultrasonics Sonochemistry,2012,19:232–236.
    [60] Byun H.-G., Eom T.-K., Jung W.-K., et al. Lipase-catalyzed hydrolysis of fish oil in anoptimum emulsion system [J]. Biotechnology and Bioprocess Engineering,2007,12:484–490.
    [61] Jackson M.A., King J.W. Lipase-catalyzed glycerolysis of soybean oil in supercriticalcarbon dioxide [J]. Journal ofAmerican Oil Chemists’Society,1994,71:961–967.
    [62] Cheong L.-Z., Tan C.-P., Long K., et al. Physicochemical, textural and viscoelasticproperties of palm diacylglycerol bakery margarine during storage [J]. Journal ofAmerican Oil Chemists’Society,2009,86:723–731.
    [63] Cheong L.-Z., Tan C.-P., Long K., et al. Physicochemical, textural and viscoelasticproperties of palm diacylglycerol bakery shortening during storage [J].Journal of theScience of Food andAgriculture,2010,90:2310–2317.
    [64] Cheong L.-Z., Tan C.-P., Long K., et al. Baking performance of palm diacylglycerolbakery fats and sensory evaluation of baked products [J]. European Journal of LipidScience Technology,2011,113:253–261.
    [65] Kawai S., Konishi Y. Acid oil-in-water emulsified composition [P]. PCT InternationalPatent Application no.2000, WO0078162.
    [66] Masui, K.,&Konishi, Y. Water-in-oil type emulsified fat and/or oil composition [P].PCT International Patent Application no.2001, WO0101787.
    [67] Bojse K., Svendsen A., Fuglsang C.C., et al. Lipolytic enzyme variants [P]. PCTInternationalApplication no.2000, WO32758.
    [68] Bojse K., Svendsen A., Fuglsang C.C., et al. Lipolytic enzyme variants [P]. US:7,312,062.2007.
    [69] Fernandez-Lorente G., Filice M., Terreni M., et al. Lecitase ultra as regioselectivebiocatalyst in the hydrolysis of fully protected carbohydrates strong modulation by usingdifferent immobilization protocols [J]. Journal of Molecular Catalysis B: Enzymatic,2008,51:110–117.
    [70]刘玉兰.油脂制取与加工工艺学[M].北京:科学出版社,2009.
    [71] Dijkstra A.J. Enzymatic degumming [J]. European Journal of Lipid Science andTechnology,2010,112:1178–1189.
    [72] Jahani M., Alizadeh M., Pirozifard M., et al. Optimization of enzymatic degummingprocess for rice bran oil using response surface methodology [J]. LWT-Food Science andTechnology,2008,41:1892–1898.
    [73] Sheelu G., Kavitha G., Fadnavis N.W. Efficient immobilization of Lecitase in gelatinhydrogel and degumming of rice bran oil using a spinning basket reactor [J]. Journal ofthe American Oil Chemists’ Society,2008,85:739–748.
    [74] Yang B., Wang Y.-H., Yang J.-G. Optimization of enzymatic degumming process forrapeseed oil [J]. Journal of the American Oil Chemists’ Society,2006,83:653–658.
    [75] De Maria L., Vind J., Oxenboll K.M., et al. Phospholipases and their industrialapplications [J]. Applied Microbiology and Biotechnology,2007,74:290–300.
    [76]安红,宋伟明,张虹波.磷脂化学及应用技术[M].北京:中国计量出版社,2006.
    [77] Baeza-Jimenez R., Gonzalez-Rodriguez J., Kim I.-H., et al. Use of immobilizedphospholipase A1-catalyzed acidolysis for the production of structuredphosphatidylcholine with an elevated conjugated linoleic acid content [J]. Grasas Aceites,2012,63:44–52.
    [78] Baeza-Jimenez R., Noriega-Rodriguez J.A., Garcia H.S., et al. Structuredphosphatidylcholine with elevated content of conjugated linoleic acid: Optimization byresponse surface methodology [J]. European Journal of Lipid Science and Technology,2012,114:1261–1267.
    [79] Kim I.-H, Garcia H.S., Hill Jr C.G. Phospholipase A1-catalyzed synthesis ofphospholipids enriched in n-3polyunsaturated fatty acid residues [J]. Enzyme andMicrobial Technology,2007,40:1130–1135.
    [80] Zhang K., Liu Y., Wang X. Enzymatic preparation of L-α-glycerylphosphorylcholine inan aqueous medium [J]. European Journal of Lipid Science and Technology,2012,114:1254–1260.
    [81] Jaekel T., Ternes W. Changes in rheological behavior and functional properties of hen’segg yolk induced by processing and fermentation with phospholipases [J]. InternationalJournal of Food Science and Technology,2009,44:567–573.
    [82] Topinka J.B., Prager S.A., Gass P.V., et al. Process and formulation for making an eggproduct with increased functionality and flavor [P]. US:0246319A1,2009.
    [83] Wang Y., Zhao M., Ou S., et al. Preparation of diacylglycerol-enriched palm olein byphospholipase A1-catalyzed partial hydrolysis [J]. European Journal of Lipid Science andTechnology,2009,111:652–662.
    [84] Wang Y., Zhao M., Song K., et al. Partial hydrolysis of soybean oil by phospholipase A1(Lecitase Ultra)[J]. Food Chemistry,2010,121:1066–1072.
    [85] Wang Y., Zhao M., Ou S., et al. Preparation of diacylglycerol-enriched soybean oil byphospholipase A1-catalyzed hydrolysis [J]. Journal of Molecular Catalysis B: Enzymatic,2009,56:165–172.
    [86]王丽丽.磷脂酶A1催化脂肪酸酯化法合成甘油二酯的研究[D].暨南大学硕士学位论文,2011.
    [87]曹茜.利用大豆油和葵花籽油合成混合单甘酯及磷脂酶A1固定化研究[D].暨南大学硕士学位论文,2012.
    [88]肖伊莎.利用植物油脂肪酸合成低聚甘油酯的研究[D].暨南大学硕士学位论文,2012.
    [89] Cabrera Z., Fernandez-Lorente G., Palomo J.M., et al. Asymmetric hydrolysis ofdimethyl3-phenylglutarate catalyzed by Lecitase Ultra Effect of the immobilizationprotocol on its catalytic properties [J]. Enzyme and Microbial Technology,2008,43:531–536.
    [90] Fernandez-Lorente G., Filice M., Terreni M., et al. Lecitase ultra as regioselectivebiocatalyst in the hydrolysis of fully protected carbohydrates Strong modulation by usingdifferent immobilization protocols [J]. Journal of Molecular Catalysis B: Enzymatic,2008,51:110–117.
    [91] Gumel A.M., Annuar M.S.M., Chisti Y. Lipase catalyzed ultrasonic synthesis ofpoly-4-hydroxybutyrate-co-6-hydroxyhexanoate [J]. Ultrasonics Sonochemistry,2013,20:937–947.
    [92]彭志英.食品酶学导论[M].北京:中国轻工业出版社,2002.
    [93]李斌,于国萍.食品酶工程[M].北京:中国农业大学出版社,2010.
    [94] Mateo C., Palomo J.M., Fernandez-Lorente G., et al. Improvement of enzyme activity,stability and selectivity via immobilization techniques [J]. Enzyme and MicrobialTechnology,2007,40:1451–1463.
    [95] Gurdas S., Gulec H.A., Mutlu M. Immobilization of Aspergillus oryzae β-galactosidaseonto duolite A568resin via simple adsorption mechanism [J]. Food and BioprocessTechnology,2012,5:904–911.
    [96] Yon J.O., Lee J.S., Kim B.G., et al. Immobilization of Strptomyces phospholipase D on adowex macroporous resin [J]. Biotechnology and Bioprocess Engineering,2008,13:102–107.
    [97] Kharrat N., Ali Y.B., Marzouk S., et al. Immobilization of Rhizopus oryzae lipase onsilica aerogels by adsorption: Comparison with the free enzyme [J]. ProcessBiochemistry,2011,46:1083–1089.
    [98] Ghiaci M., Aghaei H., Soleimanian S., et al. Enzyme immobilization Part1. Modifiedbentonite as a new and efficient support for immobilization of Candida rugosa lipase [J].Applied Clay Science,2009,43:289–295.
    [99] Bornscheuer U.T. Immobilizing enzymes: How to create more suitable biocatalysts [J].Angewandte Chemie International Edition,2003,42:3336–3337.
    [100] Cheirsilp B., Jeamjounkhaw P., H-Kittikun A. Optimizing an alginate immobilizedlipase for monoacylglycerol production by the glycerolysis reaction [J]. Journal ofMolecular Catalysis B: Enzymatic,2009,59:206–211.
    [101]鲁玉侠,蔡妙颜,郭祀远,等.海藻酸钠包埋法制备固定化脂肪酶研究[J].现代食品科技,2007,22:30–32.
    [102] Nawani N., Singh R., Kaur J. Immobilization and stability studies of a lipase fromthermophilic Bacillus sp: The effect of process parameters on immobilization ofenzyme [J]. Electronic Journal of Biotechnology,2006,9:559–565.
    [103] Adeloju S.B., Lawal A.T. Fabrication of a bilayer potentiometric phosphate biosensorby cross-link immobilization with bovine serum albumin and glutaraldehyde [J].Analytica Chimica Acta,2011,691:89–94.
    [104]王慧玲,赵燕,李建科.戊二醛交联法固定扩展青霉脂肪酶的研究[J].食品科技,2012,37:27–31.
    [105] Hu Z., Xu L., Wen X. Mesoporous silicas synthsis and application for lignin peroxidaseimmobilization by covalent binding method [J]. Journal of Environmental Sciences,2013,25:181–187.
    [106] Chang S.-W., Shaw J.-F., Yang K.-H., et al. Studies of optimum conditions for covalentimmobilization of Candida rugosa lipase on poly (γ-glutamic acid) by RSM [J].Bioresource Technology,2008,99:2800–2805.
    [107] Ju H.-Y., Kuo C.-H., Too J.-R., et al. Optimal covalent immobilization ofα-chymotrypsin on Fe3O4-chitosan nanoparticles [J]. Journal of Molecular Catalysis B:Enzymatic,2012,78:9–15.
    [108] Hoshino K., Taniguchi M., Katagiri M., et al. Properties of amylase immobilized on anew reversibly soluble-insoluble polymer and its application to repeated hydrolysis ofsoluble starch [J]. Journal of Chemical Engineering of Japan,1992,25:569–574.
    [109] Sedaghat M.E., Ghiaci M., Aghaei H., et al. Enzyme immobilization Part3.Immobilization of α-amylase on Na-bentonite and modified bentonite [J]. Applied ClayScience,2009,46:125–130.
    [110]陶明,张丽霞,单良.有机改性凹凸棒土交联吸附法固定化磷脂酶A1研究[J].粮食与油脂,2009,11:12–15.
    [111]朱珊珊,李铁,王永华,等.磷脂酶A1的固定化及应用研究[J].中国油脂,2010,35:33–37.
    [112]孙万成,宋龄瑛,蒋笃孝,等.微胶囊法和交联法固定化磷脂酶A1的比较[J].暨南大学学报(自然科学版),2004,25:638–642.
    [113]于殿宇,罗淑年,王瑾,等.海藻酸钠-明胶固定化磷脂酶的研究[J].食品工业,2008,3:9–11.
    [114]张智,王瑾,王腾宇,等.磷脂酶固定化方法的研究[J].中国油脂,2009,34:35–41.
    [115] Garcia H.S., Kim I.-H., Lopez-Hernandez A., et al. Enrichment of lecithin with n-3fattyacids by acidolysis using immobilized phospholipase A1[J]. Grasas Aceites,2008,59:368–374.
    [116] Mishra M.K., Kumaraguru T., Sheelu G., et al. Lipase activity of Lecitase Ultra:Characterization and applications in enantioselective reactions [J]. Tetrahedron:Asymmetry,2009,20:2854–2560.
    [117] Yu D., Jiang L., Li Z., et al. Immobilization of phospholipase A1and its application insoybean oil degumming [J]. Journal of the American Oil Chemists’ Society,2012,89:649–656.
    [118] Tarhan M.O.著.催化反应器设计[M].阚道悠,刘虹,唐文生,等译.北京:烃加工出版社,1989.
    [119]张濂,许志美.化学反应器分析[M].上海:华东理工大学出版社,2005.
    [120]刘承先,文艺.化学反应器操作实训[M].北京:化学工业出版社,2006.
    [121]李斌,于国萍.食品酶工程[M].北京:中国农业大学出版社,2010.
    [122] Esteban L., Munio M.M., Robles A., et al. Synthesis of2-monoacylglycerols (2-MAG)by enzymatic alcoholysis of fish oils using different reactor types [J]. BiochemicalEngineering Journal,2009,44:271–279.
    [123] Freitas L., Santos J.C., Zanin G.M., et al. Packed-bed reactor running on babassu oil andgycerol to produce monoglycerides by enzymatic route using immobilizedBurkholderia cepacia lipase [J]. Applied Biochemistry and Biotechnology,2010,161:372–381.
    [124] Damnjanovic J.J., Zuza M.G., Savanovic J.K., et al. Covalently immobilized lipasecatalyzing high-yielding optimized geranyl butyrate synthesis in a batch and fluidizedbed reactor [J]. Journal of Molecular Catalysis B: Enzymatic,2012,75:50–59.
    [125] Pugazhenthi G., Kumar A. Enzyme membrane reactor for hydrolysis for olive oil usinglipase immobilized on modified PMMAcomposite membrane [J]. Journal of MembraneScience,2004,228:187–197.
    [126] Tan T., Wang F., Zhang H. Preparation of PVA/chitosan lipase membrane reactor and itsapplication in synthesis of monoglyceride [J]. Journal of Molecular Catalysis B:Enzymatic,2002,18:325–311.
    [127] Hilterhaus L., Thum O., Liese A. Reactor concept for lipase-catalyzed solvent-freeconversion of highly viscous reactants forming two-phase systems [J]. Organic ProcessResearch&Development,2008,12:618–625.
    [128] http://food.39.net/a/201057/1268819.html
    [129] http://www.zsnews.cn/news/2010/11/12/1563802.shtml
    [1] Fureby A.M., Tian L., Adlercreutz P., et al. Preparation of diglycerides by lipase-catalyzed alcoholysis of triglycerides [J]. Enzyme and Microbial Technology,1997,20:198–206.
    [2] Taguchi H., Watanabe H., Onizawa K., et al. Double-blind controlled study on the effectsof dietary diacylglycerol on postprandial serum and chylomicron triacylglycerol responsesin healthy humans [J]. Journal of the American College of Nutrition,2000,19:789–796.
    [3] Nagao T., Watanabe H., Goto N., et al. Dietary diacylglycerol suppresses accumulation ofbody fat compared to triacylglycerol in men in a double-blind controlled trial [J]. Journalof Nutrition,2000,130:792–797.
    [4] Murase T., Mizuno T., Omachi T., et al. Dietary diacylglycerol suppresses high fat andhigh sucrose diet-induced body fat accumulation in C57BL/6J mice [J]. Journal of LipidResearch,2001,42:372–378.
    [5] Blasi F., Cossignani L., Simonetti M.S., et al. Biocatalysed synthesis ofsn-1,3-diacylglycerol oil from extra virgin olive oil [J]. Enzyme and MicrobialTechnology,2007,41:727–732.
    [6] Cheong L.Z., Tan C.P., Long K., et al. Production of a diacylglycerol-enriched palm oleinusing lipase-catalyzed partial hydrolysis: Optimization using response surfacemethodology [J]. Food Chemistry,2007,105:1614–1622.
    [7] Rosu R., Yasui M., Iwasaki Y., et al. Enzymatic synthesis of symmetrical1,3-diacylglycerols by direct esterification of glycerol in solvent-free system [J]. Journalof the American Oil Chemists’ Society,1999,76:839–843.
    [8] Yang T., Zhang H., Mu H., et al. Diacylglycerols from butterfat: production byglycerolysis and short-path distillation and analysis of physical properties [J]. Journal ofthe American Oil Chemists’ Society,2004,81:979–987.
    [9] Yesiloglu Y., Kilic I. Lipase-catalyzed esterification of glycerol and oleic acid [J]. Journalof the American Oil Chemists’ Society,2004,81:281–284.
    [10] Kwon S.J., Han J.J., Rhee J.S. Production and in situ separation of mono-ordiacylglycerol catalyzed by lipases in n-hexane [J]. Enzyme and Microbial Technology,1995,17:700–704.
    [11] Duan Z.Q., Du W., Liu D.H. Novozym435-catalyzed1,3-diacylglycerol preparation viaesterification in t-butanol system [J]. Process Biochemistry,2010,45:1923–1927.
    [12] Weber N., Mukherjee K.D. Solvent-free lipase-catalyzed preparation of diacylglycerols[J]. Journal of Agricultural and Food Chemistry,2004,52:5347–5353.
    [13] Fregolente P.B.L., Fregolente L.V., Pinto G.M.F., et al. Monoglycerides and diglyceridessynthesis in a solvent-free system by lipase-catalyzed glycerolysis [J]. AppliedBiochemistry and Biotechnology,2008,146:165–172.
    [14] Mishra M.K., Kumaraguru T., Sheelu G., et al. Lipase activity of Lecitase Ultra:characterization and applications in enantioselective reactions [J]. Tetrahedron:Asymmetry,2009,20:2854–2560.
    [15] Laemmli U.K. Cleavage of structural proteins during the assembly of the head ofbacteriophage T4[J]. Nature,1970,227:680–685.
    [16] Kuo S.J., Parkin K.L. Solvent polarity influences product selectivity of lipase-mediatedesterification reactions in microaqueous media [J]. Journal of the American OilChemists’ Society,1996,73:1427–1433.
    [17] Monot F., Borzeix F., Bardin M., et al. Enzymatic esterification in organic media: Roleof water and organic solvent in kinetics and yield of butyl butyrate synthesis [J]. AppliedMicrobiology and Biotechnology,1991,35:759–765.
    [18] Wang Y., Zhao M., Song K., et al. Partial hydrolysis of soybean oil by phospholipase A1(Lecitase Ultra)[J]. Food Chemistry,2010,121:1066–1072.
    [19] Xu X.B., Jacobsen C., Nielsen N.S., et al. Purification and deodorization of structuredlipids by short path distillation [J]. European Journal of Lipid Science and Technology,2002,104:745–755.
    [20] Wu W.L., Wang C., Zheng J.X. Optimization of deacidification of low-calorie cocoabutter by molecular distillation [J]. LWT-Food Science and Technology,2012,46:563–570.
    [1]陈陶声.固定化酶理论与应用[M].北京:轻工业出版社,1987.
    [2]彭志英.食品酶学导论[M].北京:中国轻工业出版社,2002.
    [3] Iyer P.V., Ananthanarayan L. Enzyme stability and stabilization—Aqueous andnon-aqueous environment [J]. Process Biochemistry,2008,43:1019–1032.
    [4] Gao Y., Tan T.W., Nie K.L., et al. Immobilization of lipase on macroporous resin and itsapplication in synthesis of biodiesel in low aqueous media [J]. Chinese Journal ofBiotechnology,2006,22:114–118.
    [5] Cheirsilp B., Jeamjounkhaw P., H-Kittikun A. Optimizing an alginate immobilized lipasefor monoacylglycerol production by the glycerolysis reaction [J]. Journal of MolecularCatalysis B: Enzymatic,2009,59:206–211.
    [6] Byler D.M., Susi H. Examination of the secondary structure of proteins by deconvolvedFTIR spectra [J]. Biopolymers,1986,25:469–487.
    [7]施荣富.吸附分离树脂在医药工业中的应用[M].北京:化学工业出版社,2005.
    [8] Hernandez K., Garcia-Galan C., Fernandez-Lafuente R. Simple and efficientimmobilization of lipase B from Candida antarctica on porous styrene-divinylbenzenebeads [J]. Enzyme and Microbial Technology,2011,49:72–78.
    [9] Liu T., Liu Y., Wang X., et al. Improving catalytic performance of Burkholderia cepacialipase immobilizedon macroporous resin NKA [J]. Journal of Molecular Catalysis B:Enzymatic,2011,71:45–50.
    [10]周晓云,酶学原理与酶工程[M].北京:中国轻工业出版社,2005.
    [11] Wilson L., Palomo J.M., Fernandez-Lorente G., et al. Effect of lipase-lipase interactionsin the activity, stability and specificity of a lipase from Alcaligenes sp.[J]. Enzyme andMicrobial Technology,2006,39:259–264.
    [12] Al-Duri B., Yong Y.P. Characterisation of the equilibrium behaviour of lipase PS (fromPseudomonas) and lipolase100L (from Humicola) onto Accurel EP100[J]. Journal ofMolecular Catalysis B: Enzymatic,1997,3:177–188.
    [13] Hoshino K., Taniguchi M., Katagiri M., et al. Properties of amylase immobilized on anew reversibly soluble-insoluble polymer and its application to repeated hydrolysis ofsoluble starch [J]. Journal of Chemical Engineering of Japan,1992,25:569–574.
    [14] Ghiaci M., Aghaei H., Soleimanian S., et al. Enzyme immobilization Part1. Modifiedbentonite as a new and efficient support for immobilization of Candida rugosa lipase [J].Applied Clay Science,2009,43:289–295.
    [15] Sedaghat M.E., Ghiaci M., Aghaei H., et al. Enzyme immobilization Part3.Immobilization of α-amylase on Na-bentonite and modified bentonite [J]. Applied ClayScience,2009,46:125–130.
    [16] Gurdas S., Gulec H.A., Mutlu M. Immobilization of Aspergillus oryzae β-galactosidaseonto duolite A568resin via simple adsorption mechanism [J]. Food and BioprocessTechnology,2012,5:904–911.
    [17]谢晶曦.红外光谱在有机化学和药物化学中的应用[M].北京:科学出版社,2001.
    [18] Serefoglou E., Litina K., Gournis D., et al. Smectite clays as solid supports forimmobilization of glucosidase: synthesis, characterization, and biochemical properties[J]. Chemistry of Materials,2000,28:4106–4115.
    [19] Bayramoglu G., Yalcin E., Arica M.Y. Immobilization of urease via adsorption ontoL-histidine-Ni (Ⅱ) complexed poly (HEMA-MAH) microspheres: Preparation andcharacterization [J]. Process Biochemistry,2005,40:3505–3513.
    [20] Kharrat N., Ali Y.B., Marzouk, S., et al. Immobilization of Rhizopus oryzae lipase onsilica aerogels by adsorption: Comparison with the free enzyme [J]. ProcessBiochemistry,2011,46:1083–1089.
    [21] Peng R., Lin J., Wei D. Purification and characterization of an organic solvent-tolerantlipase from Pseudomonas aeruginosa CS-2[J]. Applied Biochemistry and Biotechnology,2010,162:733–743.
    [22] Rahman R.N.Z.R.A., Bahrum S.N., Salleh A.B., et al. S5lipase: An organic solventtolerant enzyme [J]. Journal of Microbiology,2006,44:583–590.
    [1]王卫飞.酶法甘油解合成甘油二酯工艺的研究[D].华南理工大学博士学位论文,2012.
    [2]钟南京.有机溶剂相中碱催化甘油醇解甘油三酯反应的研究[D].华南理工大学博士学位论文,2010.
    [3] Damstrup M.L., Jensen T., Sparso F.V., et al. Solvent optimization for efficient enzymaticmonoacylglycerol production based on a glycerolysis reaction [J]. Journal of the AmericanOil Chemists’Society,2005,82:559–564.
    [4] Kristensen J-B., Xu X., Mu H. Diacylglycerol synthesis by enzymatic glycerolysis:Screening of commercially available lipases [J]. Journal of the American Oil Chemists’Society,2005,82:329–334.
    [5] Kruger R.L., Valerio A., Balen M., et al. Improvement of mono and diacylglycerolproduction via enzymatic glycerolysis in tert-butanol system [J]. European Journal ofLipid Science and Technology,2010,112:921–927.
    [6] Wang W., Li T., Ning Z., et al. Production of extremely pure diacylglycerol from soybeanoil by lipase-catalyzed glycerolysis [J]. Enzyme and Microbial Technology,2011,49:192–196.
    [7] Tuter M., Aksoy H.A. Solvent-free glycerolysis of palm and palm kernel oils catalyzed bycommercial1,3-specific lipase from Humicola lanuginose and composition ofglycerolysis products [J]. Biotechnology Letters,2000,22:31–34.
    [8] Zhong N.J., Li L., Xu X.B., et al. An efficient binary solvent mixture formonoacylglycerol synthesis by enzymatic glycerolysis [J]. Journal of the American OilChemists’ Society,2009,86:783–789.
    [9] Wang Y., Zhao M.M., Ou S.Y., et al. Preparation of diacylglycerol-enriched palm olein byphospholipase A1-catalyzed partial hydrolysis [J]. European Journal of Lipid Science andTechnology,2009,111:652–662.
    [10] Kuo S.J., Parkin K.L. Solvent polarity influences product selectivity of lipase-mediatedesterification reactions in microaqueous media [J]. Journal of the American OilChemists’ Society,1996,73:1427–1433.
    [11] Kaewthong W., H-Kittikun A. Glycerolysis of palm olein by immobilized lipase PS inorganic solvent [J]. Enzyme and Microbial Technology,2004,35:218–222.
    [12] Fregolente P.B.L., Fregolente L.V., Pinto G.M.F., et al. Monoglycerides and diglyceridessynthesis in a solvent-free system by lipase-catalyzed glycerolysis [J]. AppliedBiochemistry and Biotechnology,2008,146:165–172.
    [13] Yang T.K., Zhang H., Mu H.L., et al. Diacylglycerols from butterfat: Production byglycerolysis and short-path distillation and analysis of physical properties [J]. Journal ofthe American Oil Chemists’ Society,2004,81:979–987.
    [14] Kharrat N., Ali Y.B., Marzouk S., et al. Immobilization of Rhizopus oryzae lipase onsilica aerogles by adsorption: Comparison with the free enzyme [J]. ProcessBiochemistry,2011,46:1083–1089.
    [15] De Oliveira P.C., Alves G.M., De Castro H.F. Immobilisation studies and catalyticproperties of microbial lipase onto styrene-divinylbenzene copolymer [J]. BiochemicalEngineering Journal,2000,5:63–71.
    [16] Duan Z.Q., Du W., Liu D.H. Novozym435-catalyzed1,3-diacylglycerol preparation viaesterification in t-butanol system [J]. Process Biochemistry,2010,45:1923–1927.
    [17] Fernandez-Lorente G., Filice M., Terreni M., et al. Lecitase ultra as regioselectivebiocatalyst in the hydrolysis of fully protected carbohydrates strong modulation by usingdifferent immobilization protocols [J]. Journal of Molecular Catalysis B: Enzymatic,2008,51:110–117.
    [18] Zhang H., Smith P., Adler-Nissen J. Effects of degree of enzymatic interesterification onthe physical properties of margarine fats: Solid fat content, crystallization behavior,crystal morphology, and crystal network [J]. Journal of Agricultural and Food Chemistry,2004,52:4423–4431.
    [19] Wang Y., Zhao M., Song K., et al. Partial hydrolysis of soybean oil by phospholipase A1(Lecitase Ultra)[J]. Food Chemistry,2010,121:1066–1072.
    [20] Wang Y., Zhao M., Ou S., et al. Preparation of diacylglycerol-enriched soybean oil byphospholipase A1catalyzed hydrolysis [J]. Journal of Molecular Catalysis B: Enzymatic,2009,56:165–172.
    [1] Tarhan M.O.著.催化反应器设计[M].阚道悠,刘虹,唐文生,等译.北京:烃加工出版社,1989.
    [2]张濂,许志美.化学反应器分析[M].上海:华东理工大学出版社,2005.
    [3]刘承先,文艺.化学反应器操作实训[M].北京:化学工业出版社,2006.
    [4]李斌,于国萍.食品酶工程[M].北京:中国农业大学出版社,2010.
    [5] Tornvall U., Orellana-Coca C., Hatti-Kaul R., et al. Stability of immobilized Candidaantarctica lipase B during chemo-enzymatic epoxidation of fatty acids [J].Enzyme andMicrobial Technology,2007,40:447–451.
    [6] Mollenhauer T., Klemm W., Lauterbach M., et al. Process engineering study of thehomogenously catalyzed biodiesel synthesis in a bubble column reactor [J]. Industrial&Engineering Chemistry Research,2010,49:12390–12398.
    [7] Hilterhaus L., Thum O., Liese A. Reactor concept for lipase-catalyzed solvent-freeconversion of highly viscous reactants forming two-phase systems [J]. Organic ProcessResearch&Development,2008,12:618–625.
    [8] Buwa V.V., Ranade V.V. Dynamics of gas-liquid flow in a rectangular bubble column:experiments and single/multi-group CFD simulations [J]. Chemical Engineering Science,2002,57:4715–4736.
    [9] Hosseini M., Shojaosadati S.A., Towfighi J. Application of a bubble-column reactor forthe poduction of asingle-cell protein from cheese whey [J]. Industrial&EngineeringChemistry Research,2003,42:764–766.
    [10] Haverkamp V., Hessel V., Liauw M. A., et al. Reactor model for fast reactions in themicro-bubble column and validation [J]. Industrial&Engineering Chemistry Research,2007,46:8558–8565.
    [11] Joelianingsih, Maeda H., Hagiwara S., et al. Biodiesel fuels from palm oil via thenon-catalytic transesterification in a bubble column reactor at atmospheric pressure: Akinetic study [J]. Renewable Energy,2008,33:1629–1636.
    [12] Dhaouadi H., Poncin S., Hornut J.M., et al. Gas–liquid mass transfer in bubble columnreactor: Analytical solution and experimental confirmation [J]. Chemical Engineeringand Processing,2008,47:548–556.
    [13] Kulkarni A.V. Design of a pipe/ring type of sparger for a bubble column reactor [J].Chemical Engineering and Technology,2010,33:1015–1022.
    [14] Zhang L., Li T., Ying W., et al. Experimental study on bubble rising and descendingvelocity distribution in a slurry bubble column reactor [J]. Chemical Engineering andTechnology,2008,31:1362–1368.
    [15] Zhang L., Li T., Ying W., et al. Rising and descending bubble size distributions ingas-liquid and gas-liquid-solid slurry bubble column reactor [J]. Chemical EngineeringResearch and Design,2008,86:1143–1154.
    [16] Jung H., Yang J.-I., Yang J.H., et al. Investigation of Fischer-Tropsch synthesisperformance and its intrinsic reaction behavior in a bench scale slurry bubble columnreactor [J]. Fuel Processing Technology,2010,91:1839–1844.
    [17] Liu D., Hua X., Fang D. Mathematical simulation and design of three-phase bubblecolumn reactor for direct synthesis of dimethyl ether from dyngas [J]. Journal of NaturalGas Chemistry,2007,16:193–199.
    [18] Liang L.-Y., Zheng Y.-G., Shen Y.-C. Optimization of β-alanine production fromβ-aminopropionitrile by resting cells of Rhodococcus sp. G20in a bubble column reactorusing response surface methodology [J]. Process Biochemistry,2008,43:758–764.
    [19] Yesiloglu Y., Kilic I. Lipase-catalyzed esterification of glycerol and oleic acid [J].Journal of the American Oil Chemists’ Society,2004,81:281–284.
    [20] Rosu R., Yasui M., Iwasaki Y., et al. Enzymatic synthesis of symmetrical1,3-diacylglycerols by direct esterification of glycerol in solvent-free system [J]. Journalof the American Oil Chemists’ Society,1999,76:839–843.
    [21] Watanabe T., Shimizu M., Sugiura M., et al. Optimization of reaction conditions for theproduction of DAG using immobilized1,3-regiospecific lipase Lipozyme RM IM [J].Journal of the American Oil Chemists’ Society,2003,80:1201–1207.
    [1] Zhao Q., Zhao M., Wang J., et al. Effects of sodium caseinate and whey proteins onwhipping properties and texture characteristics of whipped cream [J]. Journal of FoodProcess Engineering,2008,31:671–683.
    [2] Dalgleish D.G. Food emulsions-their structures and structures-forming properties [J]. FoodHydrocolloids,2006,20:415–422.
    [3] Goff H.D. Instability and partial coalescence in whippable dairy emulsions [J]. Journal ofDairy Science,1997,80:2620–2630.
    [4] Hotrum N.E., Cohen S.M.A., van Vliet T., et al. Influence of crystalline fat onoilspreading at clean and protein covered air/water interfaces [J]. Colloids and surfaces A,2004,240:83–92.
    [5] Darling D.F. Recent advances in the destabilization of dairy emulsions [J]. Journal ofDairy Research,1982,49:695–712.
    [6] Brooker B.E. The adsorption of crystalline fat to the air-water interface of whipped cream[J]. Food Structure,1990,9:223.
    [7]张万福.食品乳化剂[M].中国轻工业出版社,1993.
    [8] Maki K.C., Davidson M.H., Tsushima R., et al. Consumption of diacylglycerol oil as partof a reducedenergy diet enhances loss of body weight and fat in comparison withconsumption of a triacylglycerol control oil [J]. American Journal Clinical Nutrition,2002,76:1230–1236.
    [9] Nagao T., Watanabe H., Goto N., et al. Dietary diacylglycerol suppresses accumulation ofbody fat compared to triacylglycerol in men in a double-blind controlled trial [J]. Journalof Nutrition,2000,130:792–797.
    [10] Taguchi H., Watanabe H., Onizawa K., et al. Double-blinded controlled study on theeffects of dietary diacylglycerol on postprandial serum and chylomicron triacylglycerolresponses in healthy humans [J]. Journal of the American College of Nutrition,2000,19:789–796.
    [11] Tada N., Watanabe H., Matsuo N., et al. Dynamics of postprandial remnant-likelipoprotein particles in serum after loading of diacylglycerols [J]. Clinica Chimica Acta,2001,311:109–117.
    [12] Yamamoto K., Asakawa H., Tokunaga K., et al. Long-term ingestion of dietarydiacylglycerol lowers serum triacylglycerol in Type II diabetic patients withhypertriglyceridemia [J]. Journal of Nutrition,2001,131:3204–3207.
    [13] Li C.M., Kimura F., Endo1Y., et al. Deterioration of diacylglycerol-andtriacylglycerol-rich oils during frying of potatoes [J]. European Journal of Lipid Scienceand Technology2005,107:173–179.
    [14] Cheong L.-Z., Tan C.-P., Long, K., et al. Physicochemical, textural and viscoelasticproperties of palm diacylglycerol bakery margarine during storage [J]. Journal of theAmerican Oil Chemists’Society,2009,86:723–731.
    [15] Cheong L.-Z.; Tan C.-P.; Long K.; et al. Physicochemical, textural and viscoelasticproperties of palm diacylglycerol bakery shortening during storage [J]. Journal of theScience of Food and Agriculture,2010,90:2310–2317.
    [16] Cheong L.-Z., Tan C.-P., Long, K., et al. Baking performance of palm diacylglycerolbakery fats and sensory evaluation of baked products [J]. European Journal of LipidScience and Technology,2011,113:253–261.
    [17] Amir H.S., Lai O.-M., Mat S.M. Physical properties of palm-based diacylglycerol andpalm-based oils in the preparation of shelf-stable margarine [J]. European Journal ofLipid Science and Technology,2011,113:627–636.
    [18] Awad T., Hamada Y. Effects of addition of diacylglycerols on fat crystallization inoil-in-water emulsion [J]. European Journal of Lipid Science and Technology2001,103:735–741.
    [19] Shimada A., Ohashi K. Interfacial and emulsifying properties of diacylglycerol [J]. FoodScience and Technology Research,2003,9:142–147.
    [20] Sakuno M.M., Matsumoto S., Kawai S., et al. Adsorption and structural change ofβ-lactoglobulin at the diacylglycerol-water interface [J]. Langmuir,2008,24:11483–11488.
    [21] Miklos R., Xu X., Lametsch R. Application of pork fat diacylglycerols in meat emulsions[J]. Meat Science,2011,87:202–205.
    [22]谢黔岭,胡鹏,杨波涛.含有甘油二酯的优质组合物及含有该油脂组合物的奶油、煎炸油及食品[P].200410015401.0.
    [23]赵强忠,赵谋明,崔春,等.一种富含甘油二酯植脂奶油的制备方法[P].201110193037.7.
    [24] Wang Y., Zhao M., Song K., et al. Separation of diacylglycerols from enzymaticallyhydrolyzed soybean oil by molecular distillation [J]. Separation and PurificationTechnology,2010,75:114–120.
    [25]赵强忠.搅打稀奶油的搅打性能和品质的变化规律及其机理研究[D].华南理工大学博士学位论文,2006.
    [26] Palanuwech J., Potineni R., Roberts R.F., et al. A method to determine free fat inemulsions [J]. Food Hydrocolloids,2003,17:55–62.
    [27] Scurlock, P. G. Production of cream from ultrafiltered milk [J]. Journal of Dairy Research,1986,53:431–438.
    [28] Noor Lida H.M.D., Kalyana S., Nor Aini I. Effect of chemical interesterification ontriacylglycerol and solid fat contents of palm stearin, sunflower oil and palm kernel oleinblends [J]. European Journal of Lipid Science and Technology,2007,109:147–156.
    [29] Boode K, Walstra P. Partial coalescence in oil-in-water emulsions.1. Nature of theaggregation [J]. Colloids and Surfaces A,1993,81:121–137.
    [30] George A., Van Aken. Aeration of emulsions by whipping [J]. Colloids and Surfaces A,2001,190:333–354.
    [31]李湘琼,常建国.增加脂肪标准化均质工序稳定牛奶质量[J].中国奶牛,1996,3:49–55.
    [32] Zhao Q., Zhao M., Yang B., et al. Effect of xanthan gum on the physical properties andtextural characteristics [J]. Food Chemistry,2009,116:624–628.
    [33] Goff H.D., Liboff M., Jordan W.K., et al. The effects of polysorbate80on the fatemulsion in ice cream mix: Evidence from transmission electron microscopy studies [J].Food Microstructure,1987,6:193–198.
    [34] Relkin P., Sourdet S. Factors affecting fat droplet aggregation in whipped frozenprotein-stabilized emulsions [J]. Food Hydrocolloids,2005,19:503–511.
    [35] Mackie A.R., Gunning A.P., Wilde P.J., et al. The orogenic displacement of protein fromthe air/water interface by surfactant [J]. Journal of Colloid and Interface Science,1999,210:157–166.
    [36] Stanley D.W., Goff H.D., Smith A.K. Texture-structure relationships in foamed dairyemulsions [J]. Food Research International,1996,29:1–13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700