用户名: 密码: 验证码:
物理及酶法改善热压榨花生粕蛋白功能特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热压榨花生粕(或脱脂花生粉)是花生榨油的副产物,其中含有43.7 %的粗蛋白,由于花生蛋白在压榨过程中变性严重,溶解性大幅降低,导致蛋白提取率下降,功能特性缺失,限制了其在食品体系中的应用。本文旨在通过物理或酶解手段,改善花生粕中热变性蛋白的溶解性及其它功能特性,探索适用于热压榨花生粕蛋白资源利用的途径。
     花生仁经历高温干热/湿热处理和常温脱脂后制备花生分离蛋白,研究了加热方式及不同热处理时间对其物化及功能特性的影响。由SDS-PAGE和DSC分析可知,花生球蛋白组分比花生伴球蛋白组分更加耐热;高温处理显著降低了花生脱脂粉中蛋白的回收率(p < 0.05),但所制备的花生分离蛋白在pH7.0左右的溶解性随加热时间延长而升高,其等电点随加热时间的延长向酸性偏移;花生仁经150℃干热处理60 min后,其制备的花生分离蛋白样品的乳化活性显著高于未变性的花生分离蛋白(p < 0.05),105℃湿热处理使花生分离蛋白的乳化特性降低,加热至135min,其起泡能力与未变性分离蛋白无显著差别(p > 0.05)。
     采用碱溶酸沉法从花生粕中提取分离蛋白,探讨了超高压微射流不同的均质压力(80 MPa,100 MPa,120 MPa,140 MPa,160 MPa)对其结构和功能特性的影响。随均质压力的增加,花生分离蛋白的乳化性、起泡性和凝胶性均有不同程度的增加(p < 0.05),微射流均质120 MPa为改善花生分离蛋白功能特性的最优条件,尤其凝胶特性提高显著,与未经微射流处理的空白对照相比,其热诱导凝胶的弹性模量(G′)从5 Pa增加至4700 Pa左右;在此均质压力下,分离蛋白具有较高的自由巯基含量和较低的变性焓值。
     探讨了高温强碱处理对花生粕蛋白提取率及其功能特性的影响。结果表明:高温强碱处理能够改善花生粕蛋白的溶解性,进而提高其蛋白回收率,同时显著改善其分离蛋白的功能特性。通过对高温强碱促提分离蛋白工艺的优化,其提取率由19.9 %增至54.8 %,且蛋白纯度可高达91.2 %,制备的花生粕分离蛋白的功能特性(溶解性、乳化性和起泡性)显著优于未变性花生分离蛋白和大豆分离蛋白(p < 0.05)。
     采用Alcalase、Protamex或Papain对花生粕蛋白限制性酶解处理,再经碱溶酸沉提取制备花生浓缩蛋白,研究了蛋白酶种类及其水解度对花生粕蛋白提取率及其制备的花生浓缩蛋白功能特性的影响。结果表明,蛋白酶优先水解花生粕中不可溶蛋白部分,由SDS-PAGE图谱可知,花生球蛋白的酸性亚基相对于球蛋白碱性亚基更易被酶解;当水解度(DH)为1.0 %时,经Alcalase酶解后制备的浓缩蛋白提取率达到最高值,约44.0 %,并表现出最优的持水性,达6.2 mL/g;当DH 8.0 %时,经Protamex和Papain酶解后制备的花生浓缩蛋白具有最高的乳化活性指数(EAI),分别为140 m2/g和160 m2/g;相对于未经酶解处理的花生浓缩蛋白,三种蛋白酶制备的浓缩蛋白起泡特性均有显著改善(p < 0.05)。
     以Alcalase、Protamex或Papain对花生粕蛋白限制性酶解处理,离心后上清液直接冻干制备花生蛋白粉,其纯度较低,但蛋白利用率高,Alcalase酶解产物的蛋白回收率最高,可达81.1 %;三种蛋白酶制备的花生蛋白粉,乳化活性由高到低分别为:Protamex > Papain > Alcalase;Alcalase和Protamex的酶解产物的起泡特性都有显著改善(P < 0.05)。
In China, most of the defatted peanut flour (DPF), a by-product containing 47–55 % protein, are underutilized in developing countries and only used for animal feed, due to the poor functional properties caused by heat denaturation. The aim of the present study was to modify heat peanut meal protein by enzymatic hydrolysis and physics for improving its functional properties and extending utilization. Physics and hydrolysis modifications were used to modify DPF for improving its functional properties. Main results are as follows:
     Comparison of the dry roasting and moist heat treatments on peanut protein isolate (PPI) the impact of structural and functional properties. The results showed that the proportion of conarachin in PPI was decreased with heat time and arachin was more heat resistant than conarachin. Heat aggregation or breakdown of arachin during roasting after 30min. Roast and moist heat treatments both decreased sharply the quantity of extractable protein in defatted flour but increased significantly protein solubility of PPI in pH 7.0; the isoelectric point of peanut protein isolate shifted to acidic pH compared with control. The emulsifying properties of PPIs decreased toward 15 min and then increased; moist heat treatment from 0min to 75 min resulted in a decrease in EAI and ESI, while an increase was observed after 75 min. All of samples (including control) could not form the strong gells. On the moist heat treatment samples, the value of foaming capability was increased towards 75 min then decreased. However, for foaming stability, the value first showed a decrease, then an increase.
     Optimal conditions of heat and alkali extraction of peanut protein, yield of peanut protein was 54.83 %. Compared functional properties of extracted peanut protein, nature peanut protein and Commercial soy protein isolate, the solubility, emulsifying properties and foaming properties of peanut meal protein are significantly better than the other two proteins.
     The effects of microfluidization on functional properties as well as conformational properties of PPI were investigated by solubility and emulsifying properties, foaming properties, gel properties, DSC, free sulfhydryl and far-UV CD. When the pressure is 120 MPa, the microfluidization led to dissociation of insoluble aggregates, thus improved NSI, EAI and FA of PPI. Free sulfhydryl and far-UV CD spectrum analyses showed that both the tertiary conformation and the secondary structure of the proteins in PPI were nearly unaffected by the microfluidization treatment. DSC analysis indicated the microfluidization-treated PPI samples presented similar Td andΔH, relative to that of untreated PPI.
     Four proteases (alcalase, protamex, pancreatin and papain) were used to hydrolyze heat peanut meal and hydrolytic conditions were optimized. When using protamex to hydrolyze the heat peanut flour, its hydrolysate was modified slightly. The hidrolysate just had a little of low-molecular weight of peptide and most was large-molecular weight of peptide. Compared to the control, the hydrolysates of protamex just had little change of its structure. Hydrolysate of other three enzyme had large change of theirs structure and all had much low-molecular weight peptide. After hydrolyzing, the heat denaturation peanut flour protein which had no sensitive to heat was sensitive to heat. For the function characteristic, some was improved. All the hydrolysates’solubility were over 80 %, and was just little less than the control. Except the hydrolysate of papain, all the hydrolysate had improvement in foamability and the maximum was 140 % which was four times to the control. Although all the hydrolysates’foam stability was over 80 %, it was still little lower than the control. Hydrolysates of protamex whose hydrolysis degree was under 3.4 % and hydrolysates of trypsin whose hydrolysis degree was under 1.76 % had improvement on the emulsibility. But the emulsion stability was worse than the control.
     Peanut protein concentrate (PPC) was extracted from commercial defatted peanut flour (DPF), a severely denatured byproduct, by combined protease pretreatment and alkali solution with isoelectric precipitation. The effect of proteolysis by Alcalase, Papain and Protamex at various degree of hydrolysis (1-8 % DH) on the yield and functional properties of PPC were investigated. Alcalase was the most efficient protease for hydrolyzing of DPF, followed by Protamex and Papain. Proteolysis remarkably increased the nitrogen solubility of DPF in acidic and basic condition. Enzymatic degradation of acidic subunits (AS) of denatured and insoluble arachin was mainly responsible for the increase of nitrogen solubility index (NSI). Compared with the control, the yield of PPC was significantly increased by enzymatic pretreatment. In terms of the functional properties, PPCs prepared by Papain and Protamex at 4 % or 8 % DH were considered good emulsifiers with emulsifying activity index (EAI) larger than 120 m2/g. For all three enzymatic treatments, foaming capacity (FC) and foaming stability (FS) were significantly improved at various DH (p < 0.05). Alcalase treatment at 1 % DH could remarkably enhance water holding capacity (WHC) to 6.2 mL/g. This study demonstrated that the PP-ASIP method could be a highly effective way to obtain PPC with good functional properties from denatured DPF.
引文
[1]管斌,林洪,王广策.食品蛋白质化学[M].化学工业出版社,2005:1.
    [2]王金水.酶解-膜超滤改性小麦面筋蛋白功能特性研究[D].华南理工大学,博士学位论文,2006.
    [3] Adler-Nissen J. Proteases. In: Enzymes in Food Processing-3rd [M].T. Nagodawithana and G. Reed (Ed.) Academic Press, Inc. London. 1993. p159-203.
    [4] Hamaguchi K. The Protein Molecular-Conformation, Stability and Folding [M].Japan Scientific Societies Press. Tokyo. 1992. p252.
    [5] Hoseney R.C. Principles of Cereal Science and Technology-2rd [M].AACC, Inc. St. Paul, Mn. 1994. p378.
    [6] F. Sanger, E. O. P. Thompson, Ruth Kitai. The amide groups of insulin [J].Biochem J. 1955 March; 59(3): 509–518.
    [7] CB Anfinsen. Principles that govern the folding of protein chains [J]. Science, Vol. 181, No. 4096(Jul. 20, 1973), 223-230.
    [8]张毓敏.基于知识的蛋白质结构预测评分函数的研究[D].上海交通大学博士生学位论文.2006.
    [9] Parkin K. General Characteristics of Enzymes. In: Enzymes in Food Processing-3rd [M]. T. Nagodawithana and G. Reed (Ed.) Academic Press, Inc. London. 1993. p7-37.
    [10] W. T. Astbury, S. V. Perry, R. Reed and L. C. Spark. An electron microscope and X-ray study of actin: I. Electron microscope [J].Biochimica et Biophysica Acta. 1947, Volume 1: 379-392.
    [11]常广阳.节节麦的一种y-型高分子量谷蛋白亚基的鉴定、克隆及系统进化[D].河南大学硕士学位论文. 2009.
    [12] Kinsella J.E. Relationship between structure and functional properties of food proteins. In: Food Proteins [M].Fox P.F., Condon J.J. (Ed.) Applied Science Publishers. London. 1982. p51-103.
    [13]李家燕.糖基化对芸豆蛋白功能性质与结构的影响[D].华南理工大学硕士学位论文. 2009.
    [14] Osborne T.B. The proteins of wheat kernel [M].Publication of Washington DC, Carnegie Institution of Washington, 1907.
    [15] Pour-El A. Protein functionality: Classification, definition and methodology. In: Protein Functionality in Foods [M].J.P. Cherry (Ed.). ACS Symposium Series 147. American Chemical Society. Washington D.C. 1981. p1-19.
    [16] H Wu. Studies on denaturation of proteins X. Osmotic pressure of denatured egg albumin and methemoglobin in concentrated urea solutions [J].Chinese journal of physiology, 1930.
    [17] H Wu. Studies on denaturation of proteins IX. Liberation of non-protein substances upon denaturation and coagulation of proteins [J].Chinese journal of physiology, 1929.
    [18] H Wu. Studies on denaturation of proteins V. Factors controlling coagulation of proteins by shaking [J].Chinese journal of physiology, 1927.
    [19] H Wu. Studies on denaturation of proteins III. Denaturation of hemoglobin [J].Chinese journal of physiology, 1927.
    [20] H Wu, Szuc Liu. Studies on denaturation of proteins XII. Effect of denaturation and coagula-tion on titration curve of egg albumin [J].Chinese Physiological Society, 1931.
    [21] H Wu. Nature of heat denaturation of proteins [J].The Journal of Biological Chemistry, June 1, 1925, 64, 369-378.
    [22] H Wu. Studies on denaturation of proteins: XI. Effect of hydrogen ion concentration on rate of denaturation of egg albumin by urea [J].Chinese journal of physiology, 1931.
    [23] H Wu. Study on Denaturation of Proteins. XIII.A Theory of Denaturation [J].Chinese Journal of Physiology,1931,5(4):321-344.
    [24]石行波.动物蛋白类和茶皂素复合型混凝土发泡剂的制备及性能研究[D].西南科技大学硕士学位论文. 2009.
    [25]巴达马其其格.鹿胎盘生物活性多肽的制备及其免疫活性研究[D].内蒙古农业大学硕士学位论文. 2008.
    [26]章金勇.百日咳基因工程亚单位疫苗的实验研究[D].第三军医大学硕士学位论文. 2008.
    [27]史兴旺.新颖表面活性剂对牛血清蛋白(BSA)结构的影响研究[D].山东大学博士生学位论文.2008.
    [28] Kinsella, J. E. Functional properties of food proteins: A review [M].CRC Crit. Rev. Food Sci Nutr. 1976, 7: 219-280.
    [29] Owen R. Fennema著,王璋,许时婴,江波等译[M].食品化学(第三版),中国轻工业出版社,2003:303.
    [30]李品高.可降解改性大豆蛋白凝胶的制备工艺与应用研究. [D].广东工业大学.2007.
    [31] Damodaran, S. Structure-function relationship of food proteins, in Protein Functionality in Food Systems(N. S. Hettiazachchy and G. R. Ziegler, eds. ) [M].Marcel Dekker, New York, 1994, pp, 1-38.
    [32] Namiki, M. Chemistry of Maillar reactions: Recent studies on the browning reaction mechanism and the development of antioxidants and mutagens [J].Adv. Food Res. 1988, 32:115-184.
    [33] Kuntz, I. D. Hydration of macromolecules. III [J].Hydration of polypeptides. J. Am. Chem. Soc. 1971, 93: 514-516.
    [34] Salim-Hanna, M., A. M. Edwards, and E. Silva. Obtention of a photo-incuded adduct between a vitamin and an essential amino acid: Binding of riboflavin to tryptophan [J].Int. J. Vit. Nutr. Res. 1987, 57: 155-159.
    [35] Kinsella, J. E., and P. F. Fox. Water sorption by proteins: Milk and whey protein. CRC Crit. Rev [J].Food Sci. Nutr. 1986, 24: 91-139.
    [36] Kuntz, I. D., and W. Kauanann. Hydration of proteins and polypeptides [J].Adv. Protein Chem. 1974, 28: 239-345.
    [37] Ma C.Y., Liu W.S., Kwok K.C., et al. Isolation and characterization of proteins from soymilk residues (Okara) [J].Food Research Interational. 1996, 29(8): 799-805.
    [38] Szuhaj B.F., Sipos E.F. Food emulsifiers from soybean. In: Food Emulsifiers-Chemistry, Technology, Functional Properties and Applications [M] . G. Charalambous and G. Doxastakis (Ed.). Elsevier Amsterdam. 1989, p113-186.
    [39] Gueguen J., Cerletti P. Proteins of some legume seeds: soybean, pea, fababean. In: New and Developing Sources of Food Proteins [M].B.J.F. Hudson (Ed.). Chapman & Hall. London. 1994, p145-193.
    [40] Hamm R. Changes of muscle proteins during the heating of meat. In: Physical, Chemical and Biological Changes in Food Caused by Thermal Processing [M].T.Toyem and O. Kvale (Ed.). Applied Science Publishers Ltd. London. 1977, p101-134.
    [41]王怡然.超声促酶解面筋蛋白/多糖接枝物结构及功能性的研究[D].华南理工大学硕士学位论文. 2008.
    [42] Mangino M.E. Protein interactions in emulsions: Protein-lipid interactions. In: Protein Functionality in Food Systems [M].N.S. Hettiarachchy and G.R. Ziegler (Ed.). IFT Basic Symposium Series, Chicago IL. 1994, p147-179.
    [43] Kang I.J. Gelation and gel properties of soybean glycicin in a transglutaminase-catalyzed system [J].Journal of Agricultural and Food Chemistry. 1994, 42(1):159-165.
    [44]杨晓泉.花生胰蛋白酶抑制剂的纯化与钝化研究[J].营养学报.1998, 20(3):337-342.
    [45]李汴生等.超高压处理对豆浆凝胶特性的影响[J].食品与发酵工业.1999, 25(1):10-15.
    [46]刘通讯.可食性小麦面筋蛋白膜机械性能的研究[J].广东工业大学学报. 1998, 20(2): 45-51.
    [47]陈新建.可食性小麦面筋蛋白膜的性质及作用研究[D].华南理工大学硕士论文. 1996.
    [48]孙哲浩,赵谋明.蛋白质与多糖类交互作用对食品乳状液稳定性的影响[J].食品与发酵工业. 2000, 16(2):5-9.
    [49]孙哲浩,赵谋明.大豆分离蛋白与卡拉胶共凝胶体流变学特性的研究[J].食品与发酵工业. 2001, 27(1): 46-49.
    [50]魏彦杰,杨斌.食品蛋白质改性研究[J].肉类研究. 2010(5).
    [51]周雪松.花生蛋白改性研究[J].粮食加工. 2005, 3:42-45.
    [52] Yu Fei Hua, Pei De Ni, Wen Ying Gu, et al. Mechanism of Physical Modification of Insoluble Soy Protein Concentrate [J].JAOCS, (73):1067-1070.
    [53]汪菁琴.动态超高压均质对大豆分离蛋白改性的研究[D].南昌大学硕士学位论文. 2007.
    [54]张雪春.超高压微射流技术对花生蛋白改性的研究[D].南昌大学硕士学位论文. 2007.
    [55] Weber. G., and H. G. Drickamer. The effect of high pressure upon proteins and other biomolecules [J].Q. Rev. Biophys. 1983, 16: 89-112.
    [56] Poole. S., S. J. West, and C. L. Walters. Protein-protein, interactions: Their importance in the foaming of heterogeneous protein systems [J].J. Sci. Food Agric. 1984, 35: 701-711.
    [57] Von Hippel, P. H. and T. Schleich. The effects of neutral salts on the structure and conformational stability of macromolecules in solution, in Structure and Stability of Biological Macromolecules(S. N. Timasheff and G. D. Fasman, eds.) [M].Maroel Dekker, New York, 1969, PP, 417-574.
    [58] Lapanje, S. Physicochemical Aspects of Protein Denaturation [M].Wiley-Intercience, New York. 1978.
    [59] Ahren. T. J. and A. M. Klibanov. The mechanism of irreversible enzyme inactivation at 100℃[J].Science 1985, 228:1280-1284.
    [60] Wang. C.–H. and S. Damodaran. Thermal gelation of globular proteins: Weight average molecular weight dependence of gel strength [J].Journal of Agricultural and Food Chemistry, 1990, 38: 1154-1164.
    [61] Fujita. Y., and Y. Noda. The effect of hydration on the thermal stability of ovalbumin as measured by means of differential scanning calorimetry [J].Bull. Chem. Soc. Jpn. 1981, 54:3233-3234.
    [62] Rupley. J. A., P.–H. Yang, and G. Tollin. Thermodynamic and related studies of water interacting with proteins, in Water in Polymers(S. P. Rowland, ed. ) [M].ACS Symp. Ser. 127, American Chemical Society, Washington, DC, 1980, p.91-139.
    [63]程译锋,过世东.膨化参数对饲料淀粉糊化度和蛋白质体外消化率的影响[J].渔业现代化. 2009(6).
    [64] Arakawa, T., and S. N. Timasheff. Stabilization of protein structure by sugars [J].Biochemistry 1982, 21: 6536-6544.
    [65] Harwalkat. V. R. and C.–Y. Ma. Effects of medium composition, prehcating, and chemical modification upon thermal behavior of oat globulin and b-lactoglobulin, in Food Proteins(J. E. Kinsdella, and W. G. Soucie, eds.) [J].American Oil Chemists’Society, Champaign, II., 1989, pp. 210-231.
    [66] Damodaran, S. Refolding of thermally unfolded soy proteins during the cooling regirne of the gelation process: Effect on gelation [J].Journal of Agricultural and Food Chemistry,1988, 36:262-269.
    [67] Damodaran, S. Influence of protein conformation on its adaptability under chaotropic conditions [J].Int. J. Biol. Macromol. 1989, 11: 2-8.
    [68] Adler-Nissen J. Enzymatic hydrolysis of protein for increase solubility [J].Journal of Agricultural and Food Chemistry, 1976, 24:1090-1093.
    [69]班玉凤,朱海峰,关纳新.热处理对大豆蛋白酶解性能的影响[J].现代食品科技. 2005, 21(1):72-77.
    [70] Kinsella J. E. Functional properties of soy proteins [J] . Journal of American Oil Chemist’s Society, 1979, 56:242-258.
    [71]李川,蒋和体,曾凡坤.大豆蛋白改性[J].食品科技. 2000, 3:22-23.
    [72] Laneuville S. I., Paquin P., Turgeon S. L. Effect of preparation conditions on the characteristics of whey protein—xanthan gum complexes [J].Food Hydrocolloids, 2000, 14:305-314.
    [73] Morris, V. J. Science, structure and applications of microbial polysaccharides [M].In G. O. Phillips, P. A. Williams & D. J. Wedlock, Gums and stabilizers for the food industry. Washington, DC: IRL Press, vol.5. 1990, pp.315–328.
    [74] Rahway. N. J. Xanthan gum [M].Merck Co., Inc. Kelco Division, 1988.
    [75] Sutherland. I. W. Biotechnology of microbial exopolysaccharides [M] . Melbourne: Cambridge University Press, 1990.
    [76] Perrier-Cornet J. M., Marie P., Gervais P. Comparison of emulsification efficiency of protein-stabilized oil-in-water emulsions using jet, high pressure and colloid mill homogenization [J].Journal of Food Engineering, 2005, 66:211-217.
    [77] Paquin P., Lebeuf Y., Richard J.P., et al. Microparticulation of milk proteins by high pressure homogenization to produce a fat substitute [M].International Dairy Federation: Brussels, Belgium, 1993, 389-396.
    [78] Iordache M., Jelen P. High pressure microfluidization treatment of heat denatured whey proteins for improved functionality [J] . Innovative Food Science and Emerging Technologies, 2003, 4:367-376.
    [79] Britten. M., Giroux. H. Acid-induced gelation of whey protein polymers:effect of pH and calcium concentration during polymerization [J].Food Hydrocolloids, 2001, 15:609-617.
    [80]尹寿伟.芸豆蛋白的物化修饰及相关构效机理研究[D].华南理工大学,博士学位论文, 2008.
    [81] Thompson L. U. Reves E. S. Modification of heat coagulated whey protein concentrationby succinylation [J].Journal of Dairy Science. 1990, 63(5):715-721.
    [82] Vidal V. Marchesseau S. Influence of chemical agents on casein interaction in dairy products: chemical modification of milk proteins [J] . Colloids and Surfaces B: Biointerfaces. 1998, 12:7-14.
    [83] Franzen K. L., Kinsella J. E. Functional properties of succinylated and acetylated soy protein [J].Journal of Agricultural and Food Chemistry. 1976, 24: 788-795.
    [84] Achouri A., Wang Z., Xu S. Enzymatic hydrolysis of soy protein isolate and effect of succinylation on the functional properties of resulting protein hydrolysates [J].Food Research International, 1998, 31(9): 617-623.
    [85] Kabirullah M. Wills R. B. H. Functional properties of acylated and succinylated sunflower protein isolate [J].Journal of Food Technology. 1982, 17: 235-249.
    [86] Messinger J. K., Rupnow J. H., Zeece M. G., et al. Effect of partial proteolysis and succinylation of corn germ protein isolate [J].Journal of Food Science. 1987, 52: 1620-1624.
    [87] Dua S., Mahajan A., Mahajan A. Improvement of functional properties of rapeseed(Brassica campestris Var. Toria) preparations by chemical modification [J].Journal of Agricultural and Food Chemistry. 1996, 44:706-710.
    [88] Wanasundara P., Shahidi F. Functional properties of acylated flax protein isolates. [J]. Journal of Agricultural and Food Chemistry. 1997, 45:2431-2441.
    [89] Sundar R S, Rao D R. Functional properties of native and acylated peanut proteins prepared by different methods [J].Lebensm-Wiss. Und Technol. 1978, 11: 188-198.
    [90] Johnson E. A., Brekker C. J. Functional properties of acylated pea protein isolates [J].Journal of Food Science. 1983, 48: 722-725.
    [91] Choi Y. R., Lusas E. W., Rhee K. E. Succinylation of cottonseed flour: effect on the functional properties of protein isolates prepared by modified flour [J].Journal of Food Science. 1981, 46: 954-955.
    [92] Matsudomi N. Conformation changes and functional properties of acid-modified soy protein [J].Agricutural and Biological Chemistry. 1985, 49:1251-1256.
    [93] Ma C. Y., Khanzada G. Functional properties of deamidated oat protein isolates [J].Journal of Food Science. 1987, 52: 1583-1587.
    [94] Chan W. M., Ma C. Y. Acid modification of proteins from soymilk residue(okara) [J].Food Research International. 1999, 32: 119-127.
    [95]卢寅泉,肖红媚,郑宗坤.花生蛋白加工功能特性的改善[J].食品科学. 1995, 16(6): 9-13.
    [96]吴向明,雕鸿荪,沈蓓英.大豆蛋白去酰胺改性的研究[J].中国油脂. 1996, 21(5): 13-16.
    [97]吴向明,雕鸿荪.大豆蛋白加工功能特性改善及应用[J].浙江工业大学学报. 28(3): 256-259.
    [98]卢寅泉.磷酸化大豆蛋白功能特性的研究[J].食品与发酵工业. 1993, 1: 17-24.
    [99] Mitchell J. R., Hill S. E. The use and control of chemical reactions to enhance the functionality of macromolecules in heat-produced foods [J].Trends in Food Science and Technology. 1995, 6: 219-224.
    [100] Aoki T., Hiidome Y. Improvement of heat stability and emulsifying activity of ovalbumin by conjugation with glucoronic acid through the maillard reaction [J].Food Research Intrenational. 1999, 32: 129-133.
    [101] Babiker E. E., Hiroyuki A. Effect of polysaccharide conjugation or transglutaminase treatment on the allergenicity and functional properties of soy protein [J].Journal of Agricultural and Food Chemistry. 1998, 46: 866-871.
    [102]麻建国,王璐,许时婴.大豆蛋白-魔芋多糖复合物及乳化性能的初步研究[J].无锡轻工大学学报. 1999, 18(3):12-16.
    [103] Fayle S. E., Gerrard J. A. Crosslinkage of proteins by dehydroascorbic acid and its degradation products [J].Food Chemistry. 2000, 70: 193-198.
    [104] Skanderby M. Protein hydrolysates: their functionality and applications [J].Food Technol European. 1994, 10: 141-148.
    [105] Lee K. A., Kim S. H. SSGE and DEE, new peptides isolated from a soy protein hydrolysate that inhibit platelet aggregation [J].Food Chemistry. 2005, 90: 389-393.
    [106] Molina Ortiz S. E., Wagner J. R. Hydrolysates of native and modified soy protein isolates: structure characteristics, solubility and foaming properties [J].Food Research International. 2002, 35: 511-518.
    [107] Pena-Ramos E. A., Xiong Y. L. L. Whey and soy protein hydrolysates inhibit lipid oxidation in cooked pork patties [J].Meat Science. 2002, 64: 259-263.
    [108] SurówkA K., Zmudziński D., Surówka J. Enzymatic modification of extruded soy protein concentrate as a method of obtaining new functional food components [J].Trends in Food Science and Technollogy. 2004, 15: 153-160.
    [109] Panyam D., Kilara A. Enhancing the functionality of food proteins by enzymatic modification [J].Trends in Food Science and Technology. 1996, 7: 120-125.
    [110] Wu W. U., Hettiarachchy N. S., Qi M. Hydrophobicity, solubility, and emulsifying properties of soy protein peptides prepared by papain modification and ultrafiltration [J].Journal of American Oil Chemist’s Society. 1998, 75: 845-850.
    [111] Vioque J., Sanchez-Vioque R., Clemente A., et al. Partial hydrolysed rapeseed protein isolates with improved functional properties [J].Journal of American Oil Chemist’s Society. 2000, 77: 447-450.
    [112]周雪松.蛋白质酶解物苦昧形成机理及控制研究[J].粮食与油脂. 2004(8):20-24.
    [113] Mahmoud M. I., Malone W., Corolle C. T. Enzymatic hydrolysis of casein: effect of degree of hydrolysis on antigenicity and physical properties [J].Journal of Food Science. 1992, 57(5): 1223-1229.
    [114] William J. L., Steven D. B. Enzymatic production of protein hydrolysates for food use [J].Food Technology. 1994, 48(10): 68-71.
    [115] Diniz F. M., Martin A. M. Effects of the extent of enzymatic hydrolysis on functional properties of shark protein hydrolysate [J].Lebensmittel-Wissenschaft und- Technologie. 1997, 30(3): 266-272.
    [116]柴华.双螺杆挤压对小麦面筋蛋白酶解特性影响的研究[D].华南理工大学硕士学位论文. 2008.
    [117] Jany K D. Studies on the digestive enzymes of the stomachless bonefish Carass- ius auratus gibelio (Bloch) [J].Endopeptidases. Comp Biochem Physiol, 1976, 53: 31-38.
    [118] Rojas G. C. R., Ronnestad I. Assimilation of dietary free amino acids, peptides and protein in post-larval Atlantic halibut (Hippoglossus hippoglossus) [J].Marine Biology. 2003, 142: 4, 801-808.
    [119] Zhao X. T., McCamish M. A. Intestine transit and absorption of soy protein in dogs depend on load and degree of protein hydrolysis [J].Journal of Nutrition. 1997, 12: 2350-2356.
    [120] Antoine H. S. Efficiency of enteral nitrogen support in surgical patients: small peptides v non-degraded proteins [J].Gut, 1990, 31(11): 1277- 1283.
    [121] Fiat A. M., Migliore-Samour D., Jollès P., et al. Biologically active peptides from milk protein with emphasis on two examples concerning antithrombotic and immunomodulating activities [J].Journal of Dairy Science. 1993, 76: 300-310.
    [122] Gill H. S., Dohll F., Rutherfurd K. J., et al. Immunoregulatory peptides in bovine milk [J].British Journal of Nutrition. 2000, 84: 111-117.
    [123] Kayser H., Meisel H. Stimulation of human peripheral blood lymphocytes bybioactive peptides derived from bovine milk proteins [J].FEBS Letter. 1996, 383: 18-20.
    [124] Otani H., Hata I. Inhibition of proliferative responses of mouse spleen lymphocytes and rabbit Peyer's patch cells by bovine milk casein and their digests [J].Journal of Dairy Research. 1995, 62: 339-438.
    [125] Miyoshi S., Ishikawa H., Kaneko T., et al. Structures and activity of angiotensin I-converting enzyme inhibitors in anα-zein hydrolysate [J].Agricultural and Biological Chemistry. 1991, 55(5): 1313-1318.
    [126] Yano S., Suzuki K., Funatsu G. Isolation from a thermolysin peptides with angiotensin I-converting enzyme inhibitory activity [J].Bioscience Biotechnology and Biochemistry. 1996, 60(4): 661-663.
    [127] Kirimural J., Shimizu A., Kimizuka A., et al. The contribution of peptides and amino acids to the taste of food stuffs [J].Journal of Agricultural and Food Chemistry. 1969, 17(4): 689-695.
    [128] Guérard F., DufosséL., Broise D. L., et al. Enzymatic hydrolysis of proteins from yellowfin tuna (Thunnus albacares) wastes using alcalase [J].Journal of Molecular Catalysis B: Enzyme. 2001, 11: 1051-1059.
    [129]潘兆广.酶解鸡肉蛋白制备功能蛋白肽粉的研究[D].华南理工大学硕士学位论文. 2009.
    [130]商连农.花生出口指南[J].农产品市场周刊. 2006(4).
    [131]公共营养与发展中心.花生营养价值与产业前景[J].食品工业. 2005(1).
    [132]邱庆树,李正超,胡文广,陈培军.花生的营养价值[J].中国食物与营养. 2001(3).
    [133]张二全,杜同年.花生的营养价值与合理利用[J].食品工业. 2003(3).
    [134]刘晓军.花生加工副产物的再利用.农业产品加工[J].2006(11).
    [135]周雪松,赵谋明.我国发生食品产业现状与发展趋势[J].食品与发酵工业. 2004年, 30, (6): 84-89.
    [136]周瑞宝,中国花生生产、加工产业现状及发展建议[J].中国油脂, 2005(2):5~9.
    [137]王章存,康艳玲.花生油制取技术研究进展[J].粮油食品科技, 2007(15)6.
    [138]赵志强,万书波,束春德.花生的食品加工与综合利用[M].中国轻工出版社, 1998, 16-18.
    [139]陆恒.国外花生蛋白的利用[J].食品与开发, 1986, 5:32.
    [140]胡晓军,姜延程.花生分离蛋白质基础研究[J].郑州粮食学院学报, 1998, 19:13-18.
    [141]袁道强,梁丽琴,王振锋等.改性植物蛋白的研究及应用[J].食品研究与开发,2005, 26(6):13-15.
    [142] K. Govindaraju, H. Srinivas. Studies on the effects of enzymatic hydrolysis on functional and physico-chemical properties of arachin [J].Food science and Technology, 2006, Vol. 39(l): 54-62.
    [143]杨晓泉,张水华,黎茵等.花生2 S蛋白的提取分离及部分性质研究[J].华南理工大学学报, 1998, 26(4):l-5.
    [144]王蕾.花生种子伴花生球蛋白160.5KDa多肽的cDNA克隆[D].硕士学位论文, 2001:14-15.
    [145] P. Vincent Monteiro, V. Prakash. Effect of Proteases on Arachin, Conarachin I, and Conarachin II from Peanut (Araehis hypogaea L.) [J].Department of Protein Technology, 1994, Vol. 42:268-273.
    [146] S Basha. Identification of cultivar differences in seed polypeptide composition of peanuts (Arachis hypogaea L.) by two-dimensional polyacrylamide gel electrophoresis [J].Plant Physiology February, 1979, vol. 63 no. 2 301-306.
    [147] Rama Sri Sathanoori and Sheikh M. Basha. Methionine Content of the Polypeptides of Methionine-Rich Protein from Peanut [J] . Journal of Agricultural and Food Chemistry, 1996, 44(8), pp 2134-2136.
    [148] Joe H. Cherry. Nucleic Acid, Mitochondria, & Enzyme Changes in Cotyledons of Peanut Seeds during Germination [J].Plant Physiol. 1963 July, 38(4):440-446.
    [149]涂宗财,姜颖,陈钢,刘成梅,张雪春,迟海霞.动态超高压微射流对花生球蛋白结构和功能性质的影响[J].食品工业科技. 2009:12.
    [150]潘秋琴,沈蓓英,程霜.花生蛋白质的磷酸化改性[J].中国油脂, 1997, 22(l):25-27.
    [151] Monieiro, P. V.,& Prakash,V. Effect of proteases on Arachin,conarachin I andeonarachin II from peanut (Arachis hypogaea L.) [J].Joumal of Agricultural and Food Chemistry, 1994, Vol.42:268-273.
    [152] Monteiro. P. V. & Prakash. V. Functional properties of homogeneous protein fractions from peanut (Arachis hyogaea L.) [J].Journal of Agricultural and Food Chemistry, 1994, Vol.42:274-278.
    [1]章胜勇,李崇光.中美大豆和花生生产及贸易的对比分析[J].国际经贸探索, 2005, 21(4):26-29.
    [2]周雪松,赵谋明.我国花生食品产业现状与发展趋势[J].食品与发酵工业, 2004, 30(6):84-89.
    [3] John P. Cherry, Kay H. Mcwatters, Solubility properties of proteins relative to environmental effects and moist heat treatment of full-fat peanuts [J].Journal of Food Science, 1975, (40):1257-1259.
    [4] John P. Cherry, Kay H. Mcwatters, Mac R. Holmes. Effect of Moist Heat on Solubility and Structural Components of Peanut Proteins [J].Journal of Food Science, 1975, (40): 1199-1204.
    [5] G Ramanatham, Leehea Ran, Ln Urs. Emulsification Properties of Groundnut Protein [J].Journal of Food Science, 1978, (43):1270-1273.
    [6]曲刚,唐学燕,何志勇等.从高温粕和低温粕中提取的分离蛋白的性质比较[J].食品工业科技, 2008(11):92-95.
    [7] Laemmli. U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J].Nature, 1970,227:680-685.
    [8] Shepherd. R., Robertson. A., Ofman. D., Dairy. Glycoconjugate Emulsifiers: Casein-maltdextrins [J].Food Hydrocolloids, 2000, 14(4):281-286.
    [9] Meng, G. T., Ma C. Y. Thermal properties of Phaseolus angularis (red bean) globulin [J].Food Chemistry, 2001(23):453-460.
    [10] Shou-Wei Yin, et al. Effects of limited enzymatic hydrolysis with trypsin on the functional properties of hemp (Cannabis sativa L.) protein isolate [J].Food Chemistry, 2008(106):1004-1013.
    [11] Alizadeh-Pasdar N., & Li-Chan E. C, Comparison of Protein Surface Hydrophobicity Measured at various pH values Using Three Different Fluorescent Probes [J].Journal of Agricultural and Food Chemistry, 2000, 48(2):328-334.
    [12] Rao. A., Shallo. H. E., & Ericson. A. P, Characterization of Soy Protein Concentrate Produced by Membrane Ultrafiltration [J].Journal of Food Science, 2002, 67(4):1412-1418.
    [13] Petrucelli S., A?ón M. C. Relationship between the method of obtention and the structural and functional properties of soy protein isolates. 1. Structural and hydration properties [J].Journal of Agricultural and Food Chemistry, 1994, 42:2161-2169.
    [14]吴姣,郑为完等.有限酶解米渣蛋白的乳化功能特性表征[J].食品与发酵工业, 2007, 33(10):23-26.
    [15] Hodate Y. Ultrasonic velocity measurement of crystallization rates of palm oil in oil-water emulsions [J].Colloids and Surfaces A, 1997, 128: 217-224.
    [16] Kevin N. Pearce. & John E. Kinsella. Emulsifying Properties of Proteins: Evaluation of a Turbidimetric Technique [J].Journal of Agricultural and Food Chemistry, 1978, 26(3): 716-722.
    [17] Bernardi Don L. S., Pilosof A. M. R., Bartholomal G. B. Enzymatic modification of soy protein concentrates by fungal and bacterial proteases [J].Journal of the American Oil Chemists Society. 1991, 68: 102-105.
    [18] Jian-Hua Zhu, Xiao-Quan Yang, Ijaz Ahmad, et al. Rheological properties ofκ-carrageenan and soybean glycinin mixed gels [J].Food Research International, 2008, (41): 219- 228.
    [19] P. Vincent Monteiro, V. Prakash, Functional properties of homogeneous protein fractions from peanut (Arachis hypogaea L.) [J].Journal of Agricultural and Food Chemistry, 1994, 42, 274-278.
    [20] Kato. S., Y. Osako, N. Matsudomi, and K. Kobayshi. Changes in emulsifying and foaming properties of proteins during heat denaturation [J].Agricultural Biology and Chemistry.1983.47:33-38.
    [21] Owen R. Fennema. Food Chemistry [M].China Light Industry Press, 2003:319.
    [1]赵志强,万书波,束春德.花生的食品加工与综合利用[M].中国轻工出版社, 1998, 16-18.
    [2] Neucere. N. J, E. J. Conkerton, A. N. Booth, Effect of heat on peanut proteins. II. Variations in nutritional quality of the meals [J].Journal of Agricultural and Food Chemistry, 1972, 20:256.
    [3] Cherry. J. P, Peanut Protein and Product Functionality [J].Journal of American Oil Chemists’Society.1990:293-301.
    [4] Beuchat. L. R. Functional and Electrophoretic Characteristics of Succinylated Peanut Flour [J].Journal of Agricultural and Food Chemistry, 1977, 25 (2):258-261.
    [5] Antonio A. Sekul et al, Some functional properties of peanut proteins partially hydrolyzed with papain [J].Journal of Agricultural and Food Chemistry, 1978, 26 (4):855-858.
    [6] Beuchat. L. R, et al, Physicochemical properties of peanut flour as affected by proteolysis [J].Journal of Agricultural and Food Chemistry, 1975, 23 (4):616-620.
    [7] ROBIN Y. -YC. H IOU, Effects of heat treatments on peanut arachin and conarachin [J].Journal of Food Biochemistry 14, 1990: 219-232.
    [8]张宇昊,王强.花生蛋白的开发与利用[J].花生学报, 2005, 34(4):12-16.
    [9] H. Wang, T. Wang, L. A. Johnson. Mechanism for Refunctionalizing Heat-Denatured Soy Protein by Alkaline Hydrothermal Cooking [J].J. AOCS, Vol. 83, no. 1 2006:39-45.
    [10] H. Wang, T. Wang, L. A. Johnson. Effect of Alkali on the Refunctionalization of Soy Protein by Hydrothermal Cooking [J].J. AOCS, Vol. 82, no. 6 2005:451-456.
    [11] N Diftis, V Kiosseoglou. Physicochemical properties of dry-heated soy protein isolate-dextran mixtures [J].Food Chemistry, 2006, 96:228-233.
    [12] Petrucelli S., A?ón M. C. Relationship between the method of obtention and the structural and functional properties of soy protein isolates.1.Structural and hydration properties [J].Journal of Agricultural and Food Chemistry, 1994, 42:2161-2169.
    [13] Kevin N. Pearce. & John E. Kinsella. Emulsifying Properties of Proteins: Evaluation of a Turbidimetric Technique [J].Journal of Agricultural and Food Chemistry, 1978, 26(3): 716-722.
    [14] Bernardi Don L. S., Pilosof A. M. R., Bartholomal G. B. Enzymatic modification of soy protein concentrates by fungal and bacterial proteases [J].Journal of the American Oil Chemists Society. 1991, 68:102-105.
    [15] Vázques O. F., Caire G., Higuera I., et al. High performance liquid chromatographic determination of free amino acids in shrimp [J].Journal of Chromatography. 1995, 18: 2059-2068.
    [16]尹寿伟.芸豆蛋白的物化修饰及相关构效机理研究[D].博士学位论文.华南理工大学. 2009, 48.
    [17] Arrese E. L., Sorgentini D. A., Wagner J. R., et al. Electrophoretic, Solubility, and Functional Properties of Commercial Soy Protein Isolates [J].Journal of Agricultural and Food Chemistry, 1991, 39: 1029-1032.
    [18]管斌,林洪,王广策.食品蛋白化学[M].北京,化学工业出版社:315.
    [19] Garcra M C. Composition and characterization of soybean protein and related products [J].Critical reviews in food science and nutrition, 1997, VOI.37(4):361-391.
    [20]朱建华,杨晓泉,邹文中等.超声处理对大豆分离蛋白功能特性的影响[J].食品科学, 2004, 25(7):56-58.
    [1]潘家祯,田肃岩.超细粉碎技术概述[J].化工设备与防腐蚀, 2000, 1:19-21.
    [2] M.lordache, P. Jelen, High pressure microfluidization treatment of heat denatured whey proteins for improved functionality [J] . Innovative Food Science and Emerging Technologies, 2003, Vol.(4):367-376.
    [3]刘成梅,刘伟, Roger Ruan等.瞬时高压作用对E.coli存活率的影响[J].食品科学, 2005, (2):87-90.
    [4]刘成梅,刘伟,高荫榆.微射流均质机的流体动力学行为分析[J].食品科学, 2004, Vol.25, No.4:58-62.
    [5]张志森,唐书泽,汪勇.微射流高压均质过程动量及流场结构分析[J].包装与食品机械, 2005, 23(1):5-7.
    [6]涂宗财,陈剑兵.带肉胡萝卜汁的流变特性研究[J].食品科学, 2006, 27(3):52-55.
    [7]涂宗财,陈剑兵.带肉芹菜汁的流变特性研究[J].食品工业科技, 2006(2):102-104.
    [8]刘成梅,刘伟等. Microflidizer对膳食纤维溶液物理性质的影响[J].食品科学, 2004(2):72-75.
    [9]刘成梅,刘伟等. Microflidizer对膳食纤维的微粒粒度分布的影响[J].食品科学, 2004(1):52-55.
    [10]涂宗财,任维等.超高压技术对大米淀粉物性影响初探[J].食品工业科技, 2006, 27(5):103-105.
    [11] Michael H. Tunick, Diane L. Van Hekken, Peter H. Cooke. Effect of High Pressure Microfluidization on Microstructure of Mozzarella Cheese [J] . Lebensmittel-Wissenschaft und-Technologie, 2000, Vol.33, (8):538-544.
    [12] N. Lagoueyte, P. Paquin. Effects of microfluidization on the functional properties of xanthan gum [J].Food Hydrocolloids, 1998, Vol.12(3):365-371.
    [13] Dalgleish. D. G, Tosh. S. M. & West. S. Beyond homogenization: The formation of very small emulsion droplets during the processing of milk by a microfluidizer [J].Netherlands Milk and Dairy Journal, 1996, Vol.50(2):135-148.
    [14] Diane L. Van Hekken et al. Rheology and melt characterization of low-fat and full fat Mozzarella cheese made from microfluidized milk [J] . LWT-Food Science and Technology, 2007, Vol.40(1):89-98.
    [15] Mohammad R. Kasaai, Gerard Charlet, Paul Paquin et al. Fragmentation of chitosan by microfluidization proeess [J].Innovative Food Science and Emerging Technologies, 2003, Vol.4: 403-413.
    [16] Paul Paquin. Technological properties of high pressure homogenizers: the effect of fat globules, milk proteins, and polysaccharides [J].International Dairy Journal, 1999, Vol.9(3):329-335.
    [17] Ramon Barnadas-Rodri’guez, Manuel Sabe’s. Factors involved in the production of liposomes with a high-pressure homogenizer [J].International Journal of Pharmaceutics, 2001, Vol.213(1-2):175-186.
    [18]曲刚等.从高温粕和低温粕中提取的分离蛋白的性质比较[J].食品工业科技, 2008, 11:92-95.
    [19] N Diftis, V Kiosseoglou. Physicochemical properties of dry-heated soy protein isolate-dextran mixtures [J].Food Chemistry, 2006, 96: 228-233.
    [20] Petrucelli S., A?ón M. C. Relationship between the method of obtention and the structural and functional properties of soy protein isolates.1.Structural and hydration properties [J].Journal of Agricultural and Food Chemistry, 1994, 42: 2161-2169.
    [21] Kevin N. Pearce. & John E. Kinsella. Emulsifying Properties of Proteins: Evaluation of a Turbidimetric Technique [J].Journal of Agricultural and Food Chemistry, 1978, 26(3): 716-722.
    [22] Hodate Y. Ultrasonic velocity measurement of crystallization rates of palm oil in oil-water emulsions [J].Colloids and Surfaces A, 1997, 128: 217-224.
    [23]赵强忠.搅打稀奶油的搅打性能和品质的变化规律及其机理研究[D].博士研究生学位论文,华南理工大学, 2006:118.
    [24] Goff H. D. Instability and partial coalescence in whippable dairy emulsions [J].Journal of Dairy Science. 1997, 80:2620-2630.
    [25] Bernardi Don L. S., Pilosof A. M. R., Bartholomal G.B. Enzymatic modification of soy protein concentrates by fungal and bacterial proteases [J].Journal of the American Oil Chemists Society. 1991, 68:102-105.
    [26] Jian-Hua Zhu, Xiao-Quan Yang, Ijaz Ahmad, et al. Rheological properties ofκ-carrageenan and soybean glycinin mixed gels [J].Food Research International, 2008, (41): 219- 228.
    [27] Laemmli. U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J].Nature, 1970, 227: 680-685.
    [28] Meng. G. T., Ma C. Y. Thermal properties of Phaseolus angularis (red bean) globulin [J].Food Chemistry, 2001, 23:453-460.
    [29]涂宗财,姜颖,陈钢,刘成梅,张雪春,迟海霞.动态超高压微射流对花生球蛋白结构和功能性质的影响[J].食品工业科技, 2009, 12:73-75.
    [30]管斌,林洪,王广策.食品蛋白化学[M].北京,化学工业出版社:315.
    [31] Garcra M C. ComPosition and characterization of soybean protein and related products [J].Critical reviews in food science and nutrition, 1997, VOI.37(4):361-391.
    [32] Li-Chan E., Nakai S., Wood D.F. Hydrophobicity and solubility of meat proteins and their relationship to emulsifying properties [J].Journal of Food Science, 1984, 49:345-350.
    [33]涂宗财,汪菁琴,李金林.大豆蛋白动态超高压微射流均质中机械力化学效应[J].高等学校化学学报. 2007, 11(28):2225- 2228.
    [34] Juliane Floury, Anne Desrumaux. Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions [J].Innovative Food Science & Emerging Technologies, 2000, 1:127-134.
    [35]朱建华,杨晓泉,邹文中等.超声处理对大豆分离蛋白功能特性的影响[J].食品科学, 2004, 25(7):56-59.
    [36]王璋,许时婴,汤坚.食品化学[M].北京,中国轻工业出版社, 1997.
    [37] Wolfw J. Soybean as a food source [J].CRC CriticalRefiews in Food Technology, 1971:81-158.
    [38] Kieffer R, Schurer F, K?hler P, et al. Effect of Hydrostatic Pressure and Temperature on the Chemical and Functional Properties of Wheat Gluten: Studies on Gluten, Gliadin andGlutenin [J].Journal of Cereal Science, 2007, 45(3):285-292.
    [39] Kieffer R, Wieser H. Effect of High Pressure and Temperature on the Functional and Chemical Properties of Gluten [J].The Royal Society of Chemistry, 2004, 235-238.
    [40] Adrienne R, Federico H. Disruption and Sedimentation of Casein Micelles and Casein Micelle Isolates Under High-pressure Homogenization [J].Innovative Food Science & Emerging Technologies, 2008, 9(1):1-8.
    [41]王金水.酶解-膜超滤改性小麦面筋蛋白功能特性研究[D].华南理工大学,博士学位论文, 2006.
    [42] Yin S. W., Tang C. H., Wen Q. B., et al. Functional and Conformational Properties of Phaseolin (Phaseolus vulgris L.) and Kidney Bean Protein Isolate:A Comparative Study [J].Journal of the Science of Food and Agriculture. 2010, Volume 90:599-607.
    [43] Kinsella J. E. Relationship between structure and functional properties of food proteins [M].In:P. F. Fox and J. J. Cowden, Editors, Food proteins, Applied Science Publisher, London 1982:51-103.
    [44]沈星灿,梁宏,何锡文,王新省.圆二光谱分析蛋白质构象的方法及研究进展[J].分析化学, 2004, 32(3):388-394.
    [45]闫洁,马晓军.不同干燥方式对大豆蛋白二级结构的影响[J].食品工业科技, Vol29, No05, 2008.
    [46] Navin J Neucere, Thomas J Jacks, Gene Sumrell Interactions of Globular Protein with Simple Polyphenols [J]. American Chemical Society, 1978.
    [1] J. L. Ayres, L. L. Branscomb, and G. M. Rogers, Processing of edible peanut flour and grits [J].Journal of the american oil chemists' society, Vo. 51, 1974, Number 4, 133-136.
    [2] J. P. Cherry, K. H. McWatters, M. R. Holmes. Effect of moist heat on solubility and structural components of peanut proteins [J] . Journal of Food Science, Vo. 40 (November 1975), Issue 6, 1199-1204.
    [3] Pancholy. S. K., Basha. S. M. M., Guy. A. I. , Gorbet. D. W. Effect of foliar and soil application of urea on yield and biochemical composition of seed of three peanut(Arachis hypogaea L.) cultivars [J].Proceedings - American Peanut Research and Education Association, 1982, v. 14(1) p. 17-28.
    [4] B. P. LAMSAL, S. Jung, P. A. Murphy, and L. A. Johnson, Rheological properties of soy protein hydrolysates [R] . 2005 IFT Annual Meeting, July 15-20 - New Orleans, Louisiana.
    [5] Surówka, K., ?mudziński, D., Fik, M., Macura, R., & Lasocha, W. (2004). New protein preparations from soy flour obtained by limited enzymic hydrolysis of extrudates [J].Innovative Food Science and Emerging Technologies, 5, 225-234.
    [6] Vioque, J., Sánchez-Vioque, R., Clemente, A., Pedroche, J., and Millán, F. (2000). Partially hydrolyzed rapeseed protein isolates with improved functional properties [J].Journal of the American Oil Chemists’Society , 77, 447-450.
    [7]徐英操,刘春红.蛋白质水解度测定方法综述[J].食品研究与开发, 2007, Vol.28, No.07.
    [8] Adler-Nissen J. Enzymic hydrolysis of food Proteins [M]. Backing, UK: Elsevier Applied Science Publishers. 1986. p9-56, 110-169.
    [9] Laemmli. U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J].Nature, 1970, 227: 680-685.
    [10] Petrucelli S., A?ón M. C. Relationship between the method of obtention and the structural and functional properties of soy protein isolates.1.Structural and hydration properties [J].Journal of Agricultural and Food Chemistry, 1994, 42: 2161-2169.
    [11]赵强忠.搅打稀奶油的搅打性能和品质的变化规律及其机理研究[D].博士研究生学位论文,华南理工大学, 2006:118.
    [12] Bernardi Don L. S., Pilosof A. M. R., Bartholomal G. B. Enzymatic modification of soy protein concentrates by fungal and bacterial proteases [J].Journal of the American Oil Chemists Society, 1991, 68:102-105.
    [13] Yin, S. W., Tang, C. H., Cao, J. S., Hu, E. K., Wen, Q. B. and Yang, X. Q. Effects of limited enzymatic hydrolysis with trypsin on the functional properties of hemp (Cannabis sativa L.) protein isolate [J].Food chemistry, 2008, 106:1004-1013.
    [14] Quist. E. E., Phillips. R. D. and Saalia. F. K. The effect of enzyme systems and processing on the hydrolysis of peanut (Arachis hypogaea L.) protein [J].LWT-Food Sci Technol, 2009, 42:1717-1721.
    [15] Hodate Y. Ultrasonic velocity measurement of crystallization rates of palm oil in oil-water emulsions [J].Colloids and Surfaces A, 1997, 128: 217-224.
    [16] Liaset B. L., Julshamn K., Espe M. Chemical composition and theoretical nutritional evaluation of the produced fractions from enzymatic hydrolysis of salmon frames with Protamx [J].Processing Biochmistry, 2003, 38:1747-1759.
    [17] Berjakul S., Morrissey M. T. Protein hydrolysates from Pacific Whiting solid wastes [J].Journal of Agricultural and Food Chemistry, 1997, 45:3422-3430.
    [18]相孝亮著,黄文涛,胡学智译.酶应用手册[M].上海科学技术出版社, 1993:107-112.
    [19] Sikorski. Z. E. Functional properties of proteins in food systems. Chemical and functional properties of food proteins [M].Technomic Publishing Company: Lancaster, 2001, 113-136.
    [20] Comas. D. I., Wagner. J. R., Toma′s. M. C. Creaming stability of oil in water (O/W) emulsions: Influence of pH on soybean protein–lecithin interaction [J] . Food Hydrocolloids, 2006, 20:990-996.
    [21]齐军茹,彭志英.蛋白乳化活性与分子结构的关系[J].中国食品添加剂, 2004, No.2.
    [22]苏国万,罗立新,赵强忠,赵谋明.均质压力对大豆分离蛋白乳浊液为定性的影响[J].中国乳品工业, Vol.36, No.11, 2008.
    [23]沈钟,王果庭.胶体表面化学[M].(第二版)化学工业出版社, 1997:383-384.
    [24]汪立君,李里特,张晓峰.利用DSC对大豆蛋白质热变性的研究[J].中国农业大学学报, 2001, 6(6):93-96.
    [25]易薇,胡一桥.差示扫描量热法在蛋白质热变性研究中的应用[J].中国药学杂志, 2004, 39(6).
    [26]王金水.酶解-膜超滤改性小麦面筋蛋白功能特性研究[D].博士研究生学位论文,华南理工大学, 179-180.
    [27] Boye J. I., Ma C.-Y., Harwalkar V. R. Thermal denaturation and coagulation of proteins [M].In Damadarm S. and Paraf A. eds. Food protein and their applications. Marcel Dekker Inc., New York, 1997.
    [1] Jamdar. S. N., Rajalakshmi. V., Pednekar. M. D., Juan. F., Yardi. V. and Sharma. A. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate [J].Food Chemistry, 2010, 121:178-184.
    [2] Damodaran. S. Protein-stabilized foams and emulsions. In Food Proteins and Their Applications [M].Marcel Dekker, New York, 1997, p7-110.
    [3] Sorgentini. D. A., Wagner. J. R. and A?ón. M. C. Effects of thermal treatment of soy protein isolate on the characteristics and structure-function relationship of soluble and insoluble fractions [J].Journal of Agricultural and Food Chemistry, 1995, 43, 2471-2479.
    [4] Wang. H., Wang. T. and Johnson. L. A. Mechanism for refunctionalizing heat-denatured soy protein by alkaline hydrothermal cooking [J].Journal of the American Oil Chemists Society, 2006, 83, 39-45.
    [5] Prinyawiwatkul. W., Beuchat. L. R., Mcwatters. K. H. and Phillips. R. D. Functional properties of cowpea (Vigna unguiculata) flour as affected by soaking, boiling and fungal fermentation [J].Journal of Agricultural and Food Chemistry, 1997, 45, 480-486.
    [6] Yu. J. M., Ahmedna. M. and Goktepe. I. Peanut protein concentrate: Production and functional properties as affected by processing [J].Food Chemistry, 2007, 103, 121-129.
    [7] Mannheim. A. and Cheryan, M. Enzyme-modified proteins from corn gluten meal: preparation and functional properties [J].Journal of the American Oil Chemists Society, 1992, 69, 1163-1169.
    [8] Jung. S., Murphy. P. A. and Johnson. L. A. Physicochemical and functional properties of soy protein substrates modified by low levels of protease hydrolysis [J].J. Food Sci, 2005, 70, c180-c186.
    [9] Lamsal. B. P., Reitmeier. C., Murphy. P. A. and Johnson. L. A. Enzymatic hydrolysis of extruded-expelled soy flour and resulting functional properties [J] . Journal of the American Oil Chemists Society, 2006, 83, 731-737.
    [10] Radha. C., Kumar. P. R. and Prakash. V. Enzymatic modification as a tool to improve the functional properties of heat-processed soy flour [J].J. Sci Food Agr, 2008, 88, 336-343.
    [11] Vioque. J., Sánchez-Vioque. R., Clemente. A., Pedroche. J., and Millán. F. Partially hydrolyzed rapeseed protein isolates with improved functional properties [J].Journal of the American Oil Chemists Society , 2000, 77, 447-450.
    [12] Ee. K. Y., Rehman. A., Agboola. S. and Zhao. J. Influence of heat processing on functional properties of Australian wattle seed (Acacia victoriae Bentham) extracts [J].Food Hydrocolloid, 2009, 23, 116-124.
    [13] Monteiro. P. V. and Prakash. V. Functional properties of homogeneous protein fractions from peanut (Arachis hypogaea L.) [J].Journal of Agricultural and Food Chemistry, 1994, 42, 274-278.
    [14] Govindaraju. K. and srinivas. H. Studies on the effects of enzymatic hydrolysis on functional and physico-chemical properties of arachin [J].Lwt-Food Sci Technol, 2006,39, 54-62.
    [15] Adler-Nissen J. Enzymic hydrolysis of food Proteins [M] . Backing, UK: Elsevier Applied Science Publishers, 1986, p9-56, 110-169.
    [16] Laemmli. U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J].Nature, 1970, 227:680-685.
    [17] Yang J., Powers J., Clark S., et al. Hydrophobic probe binding ofβ-lactoglobulin in the native and molten globule state induced by high pressure as affected by pH, KLO3 and N-ethylmaleimide [J].Journal of Agricultural and Food Chemistry, 2002, 50:5207-5214.
    [18] Puppo M. C., Speroni F., Chapleau N., et al. Effect of high-pressure treatment on emulsifying properties of soybean proteins [J].Food Hydrocolloids, 2005, 19:289-296.
    [19] Kevin N. Pearce. & John E. Kinsella. Emulsifying Properties of Proteins: Evaluation of a Turbidimetric Technique [J] . Journal of Agricultural and Food Chemistry, 1978, 26(3):716-722.
    [20] Bernardi Don L. S., Pilosof A. M. R., Bartholomal G. B. Enzymatic modification of soy protein concentrates by fungal and bacterial proteases [J].Journal of the American Oil Chemists Society, 1991, 68:102-105.
    [21] Bryant f. Cobb III, Kamaluddin Hyder. Development of a process for preparing a fish protein concentrate with rehydration and emulsifying capacities [J].Journal of Food Science, Volume 37(September 1972), Issue 5, pages 743-750.
    [22] Zahur U. Haque, Zahid Mozaffar. Casein hydrolysate. II. Functional properties of peptides [J].Food Hydrocolloids, Volume 5, Issue 6, February 1992, Pages 559-571.
    [23] Yin. S. W., Tang. C. H., Cao. J. S., Hu. E. K., Wen. Q. B. and Yang. X. Q. Effects of limited enzymatic hydrolysis with trypsin on the functional properties of hemp (Cannabis sativa L.) protein isolate [J].Food chemistry, 2008, 106, 1004-1013.
    [24] Quist. E. E., Phillips. R. D. and Saalia. F. K. The effect of enzyme systems and processing on the hydrolysis of peanut (Arachis hypogaea L.) protein [J].LWT-Food Sci Technol, 2009, 42, 1717-1721.
    [25] Beuchat. L. R., Cherry. J. P. & Quinn. M. R. Physicochemical properties of peanut flour as affected by proteolysis [J].Journal of Agricultural and Food Chemistry, 1975, 23, 616-620.
    [26] Chiou. R. Y.-Y. Effects of heat treatments on peanut arachin and conarachin [J].J. Food Biochem, 1990, 14, 219-232.
    [27] Patil. U. G., Chavan. J. K., Kadam. S. S. and Salunkhe. D. K. Effects of dry heattreatments to peanut kernels on the functional properties of the defatted meal [J]. Plant Food Hum Nutr, 1993, 43, 157-162.
    [28] Yu. J. M., Ahmedna. M. and Goktepe. I. Peanut protein concentrate: Production and functional properties as affected by processing [J].Food Chemistry, 2007, 103, 121-129.
    [29] Henn. R. L. and Netto. F. M. Biochemical characterization and enzymatic hydrolysis of different commercial soybean protein isolates [J].Journal of Agricultural and Food Chemistry, 1998, 46, 3009-3015.
    [30] Jung. S., Murphy. P. A. and Johnson. L. A. Physicochemical and functional properties of soy protein substrates modified by low levels of protease hydrolysis [J].J. Food Sci, 2005, 70, c180-c186.
    [31] Bianchi-Hall. C. M., Keys. R. D., Stalker. H. T. and Murphy. J. P. Diversity of seed storage protein patterns in wild peanuts (Arachis, Fabaceae) species [J].Plant Syst Evol. 1993, 186, 1-15.
    [32] Plietz. P., Zirwer. D., Schlesier. B., Gast. K. and Damaschun. G. Shape, symmetry, hydration and secondary structure of the leguminfrom Vicia faba in solution [J].BBA- Protein Struct Mol Enzymol, 1984, 784, 140-146.
    [33] Wu. W. U., Hettiarachchy. N. S. and Qi. M. Hydrophobicity, solubility, and emulsifying properties of soy protein peptides prepared by papain modification and ultrafiltration [J].J. Am Oil Chem Soc, 1998, 75(7), 845-850.
    [34] Achouri. A., Zhang. W. and Xu. S. Enzymatic hydrolysis of soy protein and effect of succinylation on the functional properties of resulting protein hydrolysates [J].Food Res Int, 1998, 31, 617-623.
    [35] Mahmoud. M. I. Physicochemical and functional properties of protein hydrolysates in nutritional products [J].Food Technol-Chicago, 1994, 48, 89-95.
    [36] Surówka. K., ?mudziński. D., Fik. M., Macura. R. and Lasocha. W. New protein preparations from soy flour obtained by limited enzymic hydrolysis of extrudates [J].Innov Food Sci Emerg, 2004, 5, 225-234.
    [37] Ipsen. R., Otte. J., Sharma. R., Nielsen. A., Gram Hansen. L. and Qvist. K. Effect of limited hydrolysis on the interfacial rheology and foaming properties ofβ-lactoglobulin A [J].Colloid. Surface B, 2001, 21, 173-178.
    [38] Min?ones Conde. J. M. and Rodríguez Patino. J. M. The effect of enzymatic treatment of a sunflower protein isolate on the rate of adsorption at the air-water interface [J].J. Food Eng, 2006, 78, 1001-1009.
    [39] Bombara. N., A?ón. M. C. & Pilosof. A. M. R. Functional properties of protease modified wheat flours [J].Lebensmittel-Wissenschaft und-Technologie, 1997, 30, 441-447.
    [40] Ahmedna. M., Prinyawiwatkul. W., and Rao. R. M. Solubilized wheat protein isolate: functional properties and potential food applications [J].Ibid, 1999, 47, 1340-1345.
    [41] Guan. X., Yao. H. Y., Chen. Z. X., Shan. L. & Zhang. M. D. Some functional properties of oat bran protein concentrate modified by trypsin [J].Food Chemistry, 2007, 101, 163-170.
    [42] Ma. C. Y. Functional properties of oat concentrate treated with linoleate or trypsin [J].Canadian Institute of Food Science and Technology Journal, 1985, 18, 79-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700