用户名: 密码: 验证码:
玻璃粒子在半固态铝合金液中搅拌分散过程模拟的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在日常生活和生产中,玻璃和铝的消费量剧增,随之产生了大量的废铝和废玻璃。传统的再生利用方式主要是回炉重熔,利用价值不高。利用铝的韧性和玻璃的硬度,用半固态机械搅拌法制备废玻璃/铝基复合材料是高附加值利用这两类材料的有效途径。前期实验发现,在搅拌槽结构确定的条件下,搅拌工艺参数对制得材料的性能优劣有很大影响。为了解决前期实验中出现的问题,使以废玻璃和废铝料作为原料制备的复合材料尽可能均质化,本文采用数值模拟和实验验证相结合的方法研究了搅拌工艺参数对废玻璃粒子在半固态废铝液中分散的影响,探索玻璃粒子在半固态铝硅熔体的湍流场中分散、碰撞、团聚的机理,提出优化的搅拌工艺参数。
     主要的研究内容和结论有:
     1.对国内外废铝、废玻璃的回收利用以及颗粒增强复合材料,特别是玻璃/铝基复合材料的研究近况,以及流体力学软件应用于两相体系的研究进展进行了综述;
     2.前期实验利用废玻璃和废铝制备了玻璃/铝基复合材料,实验过程中发现搅拌工艺参数的选取会影响玻璃在半固态铝硅合金液是均匀分散还是团聚上浮;
     3.利用同轴双筒流变仪研究了以废旧铝料为原料的半固态铝硅合金浆料的稳态流变性能,并获得了半固态铝硅合金浆料的流变性的表征方程;
     4.借助CFD流场模拟软件FLUENT,对搅拌槽内单相及两相半固态铝硅合金液的流场进行了数值模拟,模拟计算的研究表明:流场的分布信息以及玻璃颗粒混合的机理可以用来指导和调整搅拌工艺参数,如搅拌桨旋转速度、半固态铝硅熔体温度、玻璃粒子粒度、玻璃粒子掺入速度、搅拌时间等;
     5.将在优化工艺条件下制得的复合材料各个部位取样后,在金相显微镜下观察到玻璃颗粒分布均匀,表明数值模拟对筛选工艺参数是可行和有效的。
     6.通过讨论玻璃颗粒在半固态铝硅液中的受力情况及在半固态铝硅液中的形态,得出了半固态搅融复合机理是浸润和摩擦包裹。当玻璃颗粒加入搅拌中的半固态浆料中,与浆料中的固相颗粒摩擦,在摩擦中表面逐渐得到润湿,玻璃颗粒被浸润后,被固相颗粒捕获、包围,避免了颗粒的团聚;根据搅融复合机理,讨论了颗粒团聚原因主要是由于搅拌槽内温度不均匀,局部过热导致玻璃颗粒表面会出现熔融的液相,玻璃颗粒粒度越小,越容易熔融,熔融后的小粒度玻璃颗粒相互间的吸引力大于斥力,颗粒间容易粘结在一起形成疏松的大颗粒,疏松大颗粒受到大的浮力就会团聚浮到液面;由于半固态浆料中结晶颗粒的固相数一定,因此玻璃颗粒的加入量有个上限,加入的玻璃太多,浆料中的固相粒子不足以包裹玻璃颗粒,多余的玻璃颗粒容易相互粘结在一起浮在液面。根据玻璃团聚上浮的原因,提出了防止颗粒团聚上浮的相应措施。
In daily life and production, it is resulted in a large number of scrap aluminum and waste glass with glass and aluminum consumption surging. Traditional recycling methods are mainly remelting. The use value is not high. Using semi-solid mechanical stirring method in preparation of waste glass/aluminum matrix composites is high added value utilization of the two kinds of materials effectively. In our early experiment, we find that mixing process parameters have a great influence on the material performance under the determined stirrer structure. In the paper, we studied the mixing process parameters'effect on glass particles dispersion in semi-solid slurry using simulation and experiment. We also explored the mechanism of glass particles dispersion、collision and agglomeration in semi-solid slurry. The optimized mixing process parameters are advanced. The main thesis research contents and conclusions are as follows:
     1.In this paper, the author reviewed the domestic and foreign scrap, waste glass recycling conditions, particle-reinforced composite materials, especially glass/aluminum composites research recently, as well as fluid mechanics software used in two-phase system research progress;
     2. Waste glass/aluminum matrix composites were prepared in early experiment. During the process of experiment, we find whether glass particles dispersed in semi-solid of aluminum alloy or particle agglomeration influenced by the selection of mixing process parameters;
     3.The rheological behavior of the semi-solid slurry based on scrap aluminum materials has been measured through a couette-type viscometer. The semi-solid slurry of aluminum-silicon alloy's equation of rheological properties was founded;
     4. With the CFD flow simulation software FLUENT, the semi-solid slurry of aluminum-silicon alloy liquid's flow field in stirrer has been studied. Simulation studies show that the distribution of flow field and mixing mechanism of glass particles can be used to guide and adjust the mixing process parameters,for example, stirrer speed, semi-solid slurry temperature,glass particles granularity, glass particles adding speed,stirrer times etc;
     5. The glass/aluminum matrix composites are made under the optimized mixing process parameters. The metallograph of cross-section of glass/aluminum matrix composites show that glass particles dispersion equably in composites. The simulation is effective in selecting the mixing process parameters;
     6.The semi-solid stirring mechanism is infiltration and friction swallow trap. Adding glass particles in the mixing semi-solid slurry, Aggregation of the particles can follow and scattered, and dispersed glass particles can move with the slurry in the stirrer at the same time. Dispersed glass particles scrub with the slurry particles, and the friction wet the surface gradually. Due to the distribution of a large number of solid-phase particles suspended in semi-solid slurry, glass particles are infiltration, and the solid particles are captured, surrounded. It is like the glass particles are trapped swallow by solid particles, which to avoid agglomeration of the particles. We explored the cause of particle agglomeration:When the surface of the glass particles appears melting liquid phase, the surface energy of glass particles melted and the solid surface can have difference. Its function is to make the glass surface area tends to shrink. During glass particles melting, collision and bonding process, molten particle is captured by more other molten glass particles close to it, which form into large particles of loose bonding. The buoyancy on the loosely bonded particles is far greater than the downward force of stirrer, so less than140particles added into stirrer can float in the liquid level, which can not enter the semi-solid slurry of aluminum-silicon. While the semi-solid slurry has maximum solubility as solvent, when the number of crystalline particles unsufficient to wrap up excess glass particles, resulting in increasing opportunities for glass particle collision, so the excess glass particles can easily reunion and float on liquid surface. The measure of avoiding paticle agglomeration are advanced according as agglomeration causes forementioned.
引文
[1]徐凯.浅谈碎玻璃使用[J].中国玻璃2004,29(4):42-45
    [2]卞致璋.从发达国家的做法看我国废玻璃的回收与利用[J].中国建材,2003,246(6):51-55
    [3]潘慧贤.香港年产12万t废玻璃[J].中国日用玻璃信息,2006,(3、4期合刊):17-18
    [4]徐美君.废玻璃的回收与利用[J].玻璃与搪瓷,2007,35(6):37-42
    [5]徐美君.国际国内磨玻璃的回收与和用(下)[J].建材发展导向,2007(3):54-59
    [6]彭寿.开发碎玻璃应用新技术是玻璃工业走循环经济之路的重要途径[J].玻璃工业,2006,30(3):10-12
    [7]张艺,王达健,孙可伟.废易拉罐再生利用新技术[J].中国自愿再生.1997(10):14-17
    [8]赵文珍Proceeding of ECOM-CONF'95, PartB,中国,西安,1995:618。
    [9]王祝堂.废易拉罐的回收及再生利用厂的建设[J].有色金属加工.2004,33(2):8-11
    [10]王医治.全铝易拉罐新进展与我国制罐工业的发展[J].轻金属,1995,(11):48-50
    [11]王祝堂.中国的再生铝工业[J].中国资源综合利用,2000,(9):30-38
    [12]陈敏.废易拉罐回收铝在建筑用铝材中的应用分析[J].湖南有色冶金,2003,19(3):33-34.
    [13]张国定,赵昌达.金属基复合材料.第1版.上海:上海交通大学出版社,1996年
    [14]樊刚,袁小满,孙可伟.离心铸造制备玻璃——铝复合材料[J].昆明理工大学学报,2000,(03):73-76
    [15]毕刚,孙可伟.液态搅拌铸造玻璃/铝基废弃物复合材料的研究[J].铸造设备研究,1998,(06):23-26
    [16]李红斌,孙可伟,用废弃物制取玻璃/铝复合材料的混合质量相似模型研究[J].铸造设备研究,1998,(06):42-46
    [17]张艺,孙可伟,粉末冶金法制备铝/玻璃复合材料的工艺及机理研究[J].铸造 设备研究,1998,(06):72-75
    [18]郑秀君,孙可伟.用表面合金化玻璃颗粒制备铝基复合材料的研究[J].铸造设备研究,1998,(06):42-45
    [19]蔺成城,孙可伟等.废弃玻璃/铝基废弃物复合材料的组织和性能[J],中国有色金属学报.2001(11):42-45
    [20]张淑英等.颗拉增强金属基复合材料的研究进展.材料导报,1996,(2):66-72
    [21]黄泽文.金属基复合材料的大规模生产和商品化发展.材料导报,1996,增刊:18-25
    [22]欧阳柳章,罗承萍等.外加颗粒增强金属基复合材料的现状与进展.中国铸造装备与技术,2000,(1):3-6
    [23]桑吉梅.B4C颗粒增强铝基复合材料的研究及应用开发.材料导报,2001,15(2):12
    [24]王武孝等.铸造法制备颗粒增强铝基复合材料的研究进展.铸造技术,2001,(2):42-45
    [25]Kaiser KU.Berginmn HW.Mordike BL.Powder Metallurgically Produced Metal-glass Composites [J].Power Metallurgy.1984,22(1):30
    [26]Bose A. Effect of Glass Additions on Some Properties of Self-Lubricating Bronze Bearings [J]. The International Journal of Power Metallurgy.1987,23(2):95
    [27]Z.M.EI-Bradie, A.N.Abd EI-Azim.Ageing behaviour of aluminium alloy-glass particulate composite[J]. Journal of Material Processing Technology.1997(66):73-75
    [28]Y.A. Khalid, S.A. Mutasher, B.B. Sahari, A.M.S. Hamouda. Bending fatigue behavior of hybrid aluminum/composite drive shafts [J]. Materials and Design 28 (2007):329-334
    [29]Sung-Choong Woo,Nak-Sam Choi,Nahmgyoo Cho. Characterization of the fracture process of notched fiber/aluminum hybrid laminates by acoustic emission [J]. Composites Science and Technology.2008(68):1521-1530
    [30]K.H.W. Seah, J. Hemanth. Cryogenic effects during casting on the wear behavior of aluminum-alloy/glass MMCs[J].Science Direct Composites.2007(Part A 38):1395-1402
    [31]S.C. Sharma, M. Krishna, A. Shashishankar, S. Paul Vizhian..Damping behaviour of aluminium/short glass fibre composites [J]. Materials Science and Engineering.2004 (A364):109-116
    [32]E. Bernardo, G. Scarincia, A. Maddalenaa, S. Hreglich. Development and mechanical properties of metal-particulate glass matrix composites from recycled glasses [J].Science Direct.2004 (Composites:Part A35):17-22
    [33]余琨,澄光汝,唯良兵等。金属-玻璃复合材料的研究[J]。粉末冶金技术,1993,11(1):44-47
    [34]余琨,澄光汝.粉末冶金铝-玻璃复合材料的研究[J].机械工程材料,1992,16(3):3-5
    [35]谷春瑞,李国彬,姜延飞等.玻璃-铝复合材料的研究[J].河北冶金,2001,124(4):18-21
    [36]张飞.玻璃/铝基复合材料管材挤压成形数值模拟研究[D].昆明:昆明理工大学,2009
    [37]刘珏荣.玻璃/铝废弃物复合材料中的基体与增强颗粒的浸润性研究[D].昆明:昆明理工大学,1996
    [38]毕刚.液态搅拌铸造玻璃/铝基复合材料的研究[D].昆明:昆明理工大学,1997
    [39]袁小满.搅拌铸造法制备玻璃/铝复合材料泊工艺及性能研究[D].昆明:昆明理工大学,2000
    [40]张艺.粉末冶金法制备铝/玻璃复合材料的工艺及机理研究[D].昆明:昆明理工大学,1998
    [41]孙俊赛.粉末冶金法制备玻璃/铝复合材料的工艺及性能分析[D].昆明:昆明理工大学,1999
    [42]Yao Guini, Sun Kewei.Research on Preparation of Recycled Glass/Aluminum Matrix Composisites with Poeder Metallurgt [CA].2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring:954-958
    [43]赵华杨,姚瑰妮,李如燕等.不同铸造方法下废玻璃/铝基复合材料的组织和性能.[J],热加工工艺,2011,40(4):51-53
    [44]张雷.玻璃/铝基废弃物复合材料的制备及产品开发[D].昆明:昆明理工大学,2005
    [45]王凯.搅拌设备[M].北京:化学工业出版社,2003
    [46]ZwieteringT.N.H. Suspendingof solids Partiele in liquid by agitators[J].Chemical Engineering Science 1958(8):244-253
    [47]RAGHAV R K. JOSHI J B. Liquid-phase mixing and power consumption in mechanically agitated solid-liquid contactors [J]. Chem Eng J,1988,39(2):111-124
    [48]Barresi.A, Baldi.GSolids suspension in an agitated vessel[J].Chemieal Engineering Scienee.1987,42(12):29-45
    [49]KUZMANIC N. LJUBICIC B. Suspension of floating solids with up-pumping pitched blade impellers:mixing time and power characteristics[J].Chem Eng J,2001,84(3):325-333
    [50]Armenante.P.M, Naganure.E.U. Effect of Low off-bottom Impeller Clearance on the Minimum Agitation Speed for Complete Suspension of Solid in Stirred Tanks [J]. Chemical Engineering Seienee.1997,53(9):1757-1775
    [51]KRAUME M. Mixing times in stirred suspensions[J]. Chem Eng Technol,1992, 15(5):313-318
    [52]A.Oyiochieng, M.S.Onyango, A.Kumar, et al. Mixing in a tank by a rushton turbine at a Low clearance [J]. Chemical Engineering and Proeessing.2008(47):842-851
    [53]MICHELETTI M, NIKIFORAKI L, LEE K C, et al. Particle concentration and mixing characteristics of moderate-to-dense solid-liquid suspensions [J]. Ind Eng Chem Res,2003,42(24):6236-6249
    [54]H.YAMAZAKI, KTOJO, K.MIYANAMI. Concentration Profiles of Solids Suspended in a stirred Tank[J].Powder Technology.1986(48):205-216
    [55]Geisler.R.K, Mersmann.A.B. Local velocity distribution and Power dissipation rate of suspension in stirred vessels[R].In:6th European Conference on Mixing, Pavia, Italy 1988:26-72
    [56]BUJALSKIW, TAKENAKAK. PAOUNIS. et al. Suspension and liquid mixing in high solids concentration stirred chemical reactors [J]. Trans Inst Chem Eng,1999;77(Part A):241-247.
    [57]KUZMANIC N, ZANETIC R, AKRAP M. Impact of floating suspended solids on the mixing of the liquid phase in dual-impeller agitated vessel[J]. Chem Eng Process,2008,47(4):663-669
    [58]包雨云.固液搅拌槽中液相速度测量技术开发及搅拌装置在水处理过程中的应用研究[D].北京化工大学,1995
    [59]侯拴弟,张政,施力田,阎旭.稀疏固液搅拌体系流动特性[J].化工学报,2000(6):83-89
    [60]祝铃钰.固液悬浮搅拌器中的局部速度测量[D].北京化工大学,1996
    [61]黄雄斌,施力田,祝铃钮.固液搅拌槽内液相速度的分布[J].化工学报,2002,53(7):717-722.
    [62]王志峰,黄雄斌,施力田.不同桨型的搅拌槽中非稳态温度场分布的研究[J].高校化学工程学报,2002,16(6):609-613
    [63]Joosten E H, Schilder J G M and Janssen. The influence of suspended solid material on the gas-liquid mass transfer in stirred gas-liquid contractor[J]. Chem. Eng. Sci.,1977,32:563-566
    [64]Edwards M F and Ellis D I. The drawdown of floating solids into mechanically agitated vessels. Inst. Chem. Eng. Symp. Ser.89,1984:1-13
    [65]Hemrajani R, Smith D L et al. Suspending floating solids in stirred tanks-mixer design, scale-up and optimization[CA]. Proc 6th European Conference on Mixing, Pavia, Italy, 1988:259-265
    [66]Ellis I, Godrey J C. A study of the influence of impeller speed on the mixing of floating solids in a liquid.[J] Inst. Chem. Eng. Symp. Ser.89,1988:181-194
    [67]Thring and Edwards M F. An experimental investigation into the complete suspension of floating solids in an agitated tank. Ind. Eng. Chem. Res.,1990,29:676-682
    [68]徐世艾,冯连芳,顾雪萍等.搅拌釜中自浮颗粒三相搅拌混合问题[J].化工冶金,1999,20(3):261-265
    [69]Xu Shi'ai, Feng Lianfang, Gu Xueping, et al. Effect of impeller on mixing of floating-particle in stirred tanks[J].He cheng Xiang jiao Gongye,1999,22(2):109
    [70]Xu Shi'ai, Feng Lianfang, Gu Xueping, et al. Effect of baffle on mixing of floating-particle in stirred tanks[J].He cheng Xiang jiao Gongye,1999,22(4):246
    [71]徐世艾,虞乐舜.任万忠.等自浮颗粒三相体系的搅拌混合技术(1)—搅拌桨的影响[J]烟台大学学报(自然科学与工程版),1999.12(3):208-214
    [72]徐世艾,任万忠,韩晓丽等.自浮颗粒三相体系的搅拌混合技术(Ⅳ)—釜内流型.烟台大学学报(自然科学与工程版),2000.13(4):118-125
    [73]徐世艾,冯连芳,顾雪萍,等.通气条件下桨型对自浮颗粒悬浮的影响[J].化学工程,1999,27(5):11
    [74]徐世艾,冯连芳,顾雪萍等.桨型和挡板对自浮颗粒三相体系混合的影响[J].高校化学工程学报,1999,13(4):235
    [75]Xu Shi-ai, Feng Lian-fang, Gu Xue-ping, et al.Gas-liquid-floating particle mixing in an agitated vessel [J]. Chem Eng Tech,2000,(2):103
    [76]包雨云,龙建刚,高正明等.上浮颗粒特性对三相搅拌槽内固-液悬浮及气-液分散的影响.高校化学工程学报.2006,20(1):25-30
    [77]周雪漪.计算水力学.北京:清华大学出版社,1995
    [78]陶文铨.数值传热学(第二版).西安:西安交通大学出版社,2001
    [79]郭鸿志.传输过程数值模拟.北京:冶金工业出版社,1998
    [80]J D Anderson, Computational Fluid Dynamics:The Basics with Applications. McGraw-Hill.1995,清华大学出版社,200
    [81]周光炯,严宗毅等.流体力学(第二版).北京:高等教育出版社,2000
    [82]王福军.计算流体动力学分析-CFD软件原理与应用.北京:清华大学出版社,2004.
    [83]Montante.G, Mieale.G, Magelli.F, Brueanio.A. Experimental and CFD Prediction of Solid Particle distribution in vessel agitated with four Pitched blade turbines[J].Transactions of Chemical Engineers.2001(79A):1005-1010
    [84]Derksen.J.J. Numerical simulation of solids suspension in a stirred tank[J].American Institute of Chemical Engineer.JournaL2003,49(11):2700-2714.
    [85]A.Oehieng, Mauriee.S.Onyango.Drag models, solide concentration and velocity Distribution in a stirred tank[J].Powder Technology.2008(181):1-8
    [86]]Mersmann.A, Werner.F, Maurer.S, Bartoseh.K.Theoretical Prediction of the minimum stirrer speed in mechanically agitated suspensions.Chemical Engineering and Processing.1998,37(6):503-510
    [87]A bid M, Xuereb C,Bertrand J.Hydrodynamics in vessels stirred with anchors and gate agitators:necessity of a 3-D modeling. Trans I Chem Eng,1992,70A:337-384
    [88]Yao W C, Takahashi K, Koyama K and Dai G C. Design of a new type of pin mixing section for a screw extruder based on analysis of flow and distributive mixing performance. Chem Eng Sci,1997,52:13-21
    [89]Ranade V V, Bourne J B, Joshi J B. Fluid mechanics and blending in agitated tanks. Chem Eng Sci,1991,46:1883-1893
    [90]Noorman H, Morud K, Hjertager B H, Tragardh C, Larsson G, Enfors S O. CFD modeling and verification of flow and conversion in a lm3 bioreactor.In:Proc[CA].3rd Int Conf Bioreactor and Bioprocessing Fluid Dynamics,Cambridge,1993:241-258
    [91]Lunden M, Stenberg O,Andersson B.Evaluation of a method of measuring mixing time using numerical simulation and experimental data. Chem Eng C ommun, 1995,139:115-136
    [92]Schmalzriedt S, Reuss M. Application of computational fluid dynamics to simulations of mixing and biotechnical conversion process in stirred tank bioreactors. Proceeding of 9th European Conference on Mixing, Paris,1997:171-178
    [93]Jaworski Z, Bujalski W, Otomo N, Nienow A W. CFD study of mixing with dual Rushton turbines-comparison with experimental results. Trans IChemE,2000,78 A:327-333
    [94]Ng K, Yianneskis M. Observations on the distribution of energy dissipation in stirred vessels. Trans IChemE,2000,78A:334-341
    [95]De-ming Mao, Lian-Fang Feng, Kai Wang and Yu-Ling Li. The mean flow field generated by a pitched blade turbine:changes in the circulation pattern due to impeller geometry. The Canadian Journal of Chemical Engineering, April 1997,75:307-316
    [96]张国娟.搅拌器内混合过程的数值模拟[D].北京化工大学
    [97]周国忠.搅拌器内流动及混合过程的实验研究与数值模拟[D].北京化工大学
    [98]钟丽.搅拌器内固—液悬浮的数值模拟[D].北京化工大学
    [99]洪厚胜,张庆文,万红贵等.CFD用于机械搅拌生化反应器液固两相混合的研究[J].化学反应工程与工艺,2004,20(3):249-254.
    [100]饶麒,樊建华,王运东等.搅拌器内粘性流体流动的DPIV测量与CFD模拟[J].化工学报,2004,55(8):1374-1379.
    [101]侯拴弟.搅拌器内三维流场的实验研究与数值模拟[D].北京:北京化工大学,1997.
    [102]王卫京,毛在砂.用改进的内外迭代法数值模拟Rushton涡轮搅拌器流场[J].过程工程学报,2002,2(3):193-198.
    [103]闵健.搅拌槽内宏观及微观混合的实验研究与数值模拟.北京化工大学,博士学位论文.2005.
    [104]张雷.玻璃/铝基废弃物复合材料的搅拌工艺及流场模拟研究[D].昆明理工大学.2008.
    [105]张被刚.基于数值模拟制备玻璃/铝基废弃物复合材料搅拌器结构的研究[D].昆明理工大学.2010
    [106]赵华杨.基于数值模拟改进制备玻璃/铝基复合材料搅拌设备的研究[D].昆明理工大学.2011
    [107]管仁国,马伟民等.金属半固态成形理论与技术.北京:冶金工业出版社,2005
    [108]Spencer D B, Mehrabian R, Flemings M C. Metall Trans,1972(3):1925
    [109]Joly P A, Mehrabian R. J Mater Sci,1976(11):1393
    [110]戴于策,陈敏恒.化工流体力学.北京:化学工业出版社,1988
    [111]Einenkel W D. Influence of Physical Properties and Equipment Design on the Homogeneity of Suspensions in Agitated Vessels. Ger. Chem. Eng.,1980,3:118
    [112]永田进治(日).混合原理与应用.马继禹等译.北京:化学工业出版社,1984
    [113]Joosten G E H, Schilder J G M, Broere A M. The suspension of floating solids in stirred vessels [J]. Trans Inst Chem Eng,1977,55(3):220
    [114]Hemrajani R R, Smith D L, Koros R M, et al. Suspending floating solids in stirred tanks-mixer design,scale-up and optimization[CA].6 th Eur Conf of Mixing
    [115]冯西桥,陈仁学.化学反应工程与反应器[M].北京,国防工业出版社,1989
    [116]王嘉骏,冯连芳,王凯,顾雪萍,LDv和CFD在流体混合中的应用进展[z].化学工程,2(X)1,29(4):62-65
    [117]Guirand P, Costes J, Bertuand J. Pr. Local Measurements of Liquid and Solid、 Velocities and particle sizes in stirred Suspensions with a Phase Doppler particle Analyser[CA].The 7th European conference on Mixing. Beiglum,1991,443-450
    [118]刘贵苏,刘诗楼,张治国,郭嘉,罗哗.三维粒子动态分析仪的原始数据开发[J]激光技术,1994,18(5):257-261
    [119]Bachalo W.D. Experimental Methods in Multiphase Flows [J]. Int. J. Multiphase Flow. 1994,20:261-295
    [120]黄雄斌,包雨云,施力田.应用电导探针法测定固液两相局部速度[J].高校化学工程学报,1995,9(2):187-190
    [121]张艳菊,毛卫民,赵振铎,刘政.半固态A356铝合金的稳态流变性能[J].金属学报,2006,2(42):163-166
    [122]周志华,毛卫民,刘政等.半固态A1Si6M92铝合金的稳态流变性能[J].金属学报, 2005,7(41):759-762
    [123]周志华,毛卫民,刘政等.半固态AlSi4M92铝合金的稳态流变性能[J].材料研究学报,2006,2(20):5-8
    [124]H.Schilchting. Boundary Layer Theory.8th nd. McGrawHill, New York,1979
    [125]B.E.Lander, D.B.Spalding. Lectures in Mathematical Models of Turbulence. Academic Press, London,1972
    [126]Harvey P S, Greaves M. Turbulent flow in an agitated vessel. Part I:Predictive model[J]. Chem.Eng. Res. Des.,1982,60(4):195-200
    [127]Harvey P S, Greaves M. Turbulent flow in an agitated vessel. part II:Numerical solution and model prediction[J]. Trans. Chem. (J),1982,60(2):201-210
    [128]Middleton J C, Pierce F, Lynch P M. Computations of flow fields and complex reaction yield in turbulent stirred reactors, and comparison with experimental data[J]. Chemical Engineering Research and Design,1986,64(1):18-22
    [129]Kresta S M, Wood P E. Prediction of the three-dimensional turbulent flow in stirred tank[J].Chem.(J).,1991,37:448-460
    [130]张永震,韩振为.计算流体力学在搅拌混合过程模拟中的应用[J].科技通报,2005,21(3):332-336
    [131]张永震.拌釜式生物反应器的计算流体力学模拟[D].天津:天津大学,2005
    [132]王瑞金FLUENT技术基础与应用实例[M].北京:清华大学出版社,2007
    [133]FLUENT 6.0 User's Guide.volume 1-5, FLUENT Inc.
    [134]Gambit2.0 User's Guide. FLUENT Inc.
    [135]蔺成城,张荻.废弃玻璃/铝基复合材料的组织和性能.中国有色金属学报,2001(6):1045-1050

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700