用户名: 密码: 验证码:
胰腺癌扩散加权成像与在体磁共振质子波谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:胰腺癌小视野高分辨磁共振扩散加权成像研究
     目的探讨小视野扩散加权成像(RFOV DWI)在胰腺癌诊断中的应用价值。
     方法经术后病理证实的49例胰腺导管腺癌、9例腺鳞癌、6例神经内分泌癌、3例慢性肿块型胰腺炎、1例实性假乳头状瘤患者及36名健康志愿者被纳入研究,行呼吸触发RFOV DWI和常规DWI(Full FOV DWI)扫描,并分别对两者的图像诊断质量和图像伪影进行评分。使用非参数检验比较胰腺肿块组和正常胰腺组的图像RFOVDWI与常规DWI评分;比较胰腺导管腺癌、腺鳞癌、神经内分泌癌、慢性肿块型胰腺炎和正常胰腺的RFOV DWI测量ADC值;绘制ROC曲线判断使用RFOV DWI和常规DWI鉴别胰腺导管腺癌的诊断效能
     结果成功获得了胰腺小视野高分辨扩散加权图像,平面分辨力达到1.25x1.25mm~2。胰腺肿块组与正常胰腺组RFOV DWI图像诊断质量高于常规DWI(P=0.000),图像伪影低于常规DWI(P=0.000)。胰腺导管腺癌、腺鳞癌、神经内分泌癌、慢性肿块型胰腺炎和正常胰腺的RFOV DWI测量平均ADC值分别为(1.54±0.26) x10~(-3)、(1.77±0.12) x10~(-3)、(1.77±0.21) x10~(-3)、(1.27±0.19) x10~(-3)、(2.02±0.28) x10~(-3)mm~2/s,差异有统计学意义(χ~2=51.835,P=0.000),其中导管腺癌(χ~2=45.98,P=0.00)和慢性肿块型胰腺炎(χ~2=13.4,P=0.00)的平均ADC值均低于正常胰腺组。以ADC值≤1.615x10~(-3)mm~2/s作为界值,RFOV DWI从其他胰腺肿块及正常胰腺中鉴别胰腺导管腺癌的灵敏度和特异度分别为65.3%和89.1%;以ADC值≤1.865x10~(-3)mm~2/s为界值,常规DWI从其他胰腺肿块及正常胰腺中鉴别胰腺导管腺癌的敏感性、特异性分别为87.8%和61.8%。
     结论呼吸触发rFOV DWI较常规DWI图像质量和图像分辨力明显提高,其ADC值能较好反映胰腺肿块与正常胰腺的病理生理特征,可能有助于胰腺癌的早期诊断。
     第二部分:胰腺癌多b值磁共振扩散加权成像研究
     目的探讨多b值磁共振扩散加权成像在胰腺癌诊断中的应用价值。
     方法经术后病理证实的23例胰腺导管腺癌、5例腺鳞癌、3例神经内分泌癌、3例慢性肿块型胰腺炎及20名健康志愿者被纳入研究,行呼吸触发多b值扩散加权成像扫描,b值设定为0,20s/mm~2,50s/mm~2,100s/mm~2,200s/mm~2,400s/mm~2,600s/mm~2,800s/mm~2,1000s/mm~2,应用双指数IVIM模型计算感兴趣区的f、D、D~*值并拟合出表观扩散系数ADCtot值。使用非参数检验比较导管腺癌、腺鳞癌、神经内分泌癌、慢性肿块型胰腺炎和正常胰腺的f、D、D~*和ADCtot值;绘制ROC曲线分别判断使用IVIM相关参数鉴别导管腺癌和正常胰腺、导管腺癌和其他胰腺肿块及正常胰腺的诊断效能
     结果胰腺导管腺癌、腺鳞癌、神经内分泌癌、慢性肿块型胰腺炎和正常胰腺的f值分别为(27.67±4.73)%、(28.20±5.35)%、(42.57±4.31)%、(23.83±13.17)%、(43.09±7.88)%,差异有统计学意义(χ2=34.073,P=0.000);D值分别为0.87±0.23、1.05±0.08、0.87±0.08、0.65±0.29、0.87±0.24μm2/ms,差异无统计学意义(χ2=6.212,P=0.184);D*值分别为3.87±1.65、3.50±0.85、5.18±1.60、4.64±1.21、9.12±4.23μm2/ms,差异有统计学意义(χ2=24.993,P=0.000);ADCtot值分别为1.36±0.14、1.49±0.07、1.62±0.04、0.99±0.04、1.66±0.20μm2/ms,差异有统计学意义(χ2=28.092,P=0.000)。两两比较结果显示导管腺癌与正常胰腺、神经内分泌癌与肿块型胰腺炎、肿块型胰腺炎与正常胰腺的ADCtot值有统计学差异;导管腺癌与正常胰腺、腺鳞癌与正常胰腺的D~*值有统计学差异;导管腺癌与神经内分泌癌、导管腺癌与正常胰腺、腺鳞癌与正常胰腺、肿块型胰腺炎与正常胰腺的f值有统计学差异;各组间D值均无统计学差异。f、D~*和ADCtot鉴别导管腺癌和正常胰腺的ROC曲线下面积(AUC)分别为0.925、0.898和0.854,D值不具诊断效能;f、D~*和ADCtot从其他胰腺肿块及正常胰腺中鉴别胰腺导管腺癌的AUC分别为0.804、0.787和0.775,D值不具诊断效能
     结论灌注分数f在鉴别诊断中的价值最大,能够无创性评估组织微循环的灌注水平,可能有利于胰腺癌的早期诊断与鉴别诊断。
     第三部分:胰腺癌在体磁共振质子波谱研究
     目的分析胰腺癌的~1H MRS代谢特征,初步探讨利用胰腺癌代谢物定量分析对胰腺癌的诊断价值及预测肿瘤增殖活性的可能性。
     方法经术后病理证实的22例胰腺导管腺癌和20名健康志愿者被纳入研究,行在体~1H-MRS扫描。分别对胰腺癌和正常胰腺的脂质相对含量(rLip,脂峰下面积与0-6ppm所有峰下面积之比)、胆碱类代谢物(CCM)和谷氨酸盐复合物(Glx)的比值(CCM/Glx)进行比较分析;对比不同分化程度胰腺癌的rLip、CCM/Glx及Ki67并探讨前两者与反映肿瘤增殖活性Ki67标记指数的相关性;绘制ROC曲线判断使用rLip、CCM/Glx鉴别胰腺导管腺癌和正常胰腺的诊断效能
     结果正常胰腺的rLip(0.600±0.078)、CCM/Glx(0.570±0.065)显著高于胰腺癌(rLip0.393±0.118,CCM/Glx0.444±0.095),P=0.000。中-高分化胰腺癌的Ki67(50.71±10.86)%、CCM/Glx(0.407±0.080)显著低于低分化导管腺癌(Ki6763.37±7.73,CCM/Glx0.497±0.092),P值分别为0.007和0.024;不同分化程度间rLip无显著性差异。直线相关分析表明,胰腺癌CCM/Glx与Ki-67标记指数具有相关关系(P=0.002)。rLip、CCM/Glx鉴别导管腺癌和正常胰腺的ROC曲线下面积(AUC)分别为0.916和0.852。
     结论胰腺癌的胆碱类化合物、脂质相对含量减低,CCM/Glx比值与Ki67标记指数具有相关性,我们认为1H-MRS在预测肿瘤分化程度、增殖活性方面具有潜在价值。
Part I: Pancreatic Adenocarcinoma:high resolution diffusion-weighted magneticresonance imaging using reduced field of view
     Objective: To investigate the value of reduced field-of-view diffusion weighted magneticresonance imaging (RFOV DW-MRI) in the diagnosis of pancreatic adenocarcinoma.
     Methods:36healthy volunteers and49patients with pancreatic ductal adenocarcinoma(PDAC),9patients with pancreatic adenosquamous carcinoma (PASC),6patients withpancreatic neuroendocrine carcinoma (PNC),3patients with mass-forming chronicpancreatitis (MFCP),1patient with solid pseudopapillary tumor (SPT)(all proven bypathological results) underwent respiratory-triggered reduced FOV DWI and full FOVDWI at3.0T. Image quality was assessed for RFOV DWI and full FOV (FFOV) DWIwith diagnostic quality and artifacts. Apparent diffusion coefficient (ADC) values ofnormal pancreas and all types of pancreatic lesions were statistically analyzed andcompared with nonparametric test. ROC curve was used to analyze the diagnostic powerof ADC value.
     Results: Higher resolution (1.25x1.25mm~2for axial images) diffusion weighted imagesof the pancreas were successfully acquired. The image quality scores for RFOV DWI wassignificantly higher than those for FFOV DWI (P=0.000), and the artifacts scores forRFOV DWI was significantly lower than those of FFOV (P=0.000). ADC values ofPDAC, PASC, PNC, MFCP and normal pancreas (NP) were (1.54±0.26) x10~(-3)、(1.77±0.12) x10~(-3)、(1.77±0.21) x10~(-3)、(1.27±0.19) x10~(-3)、(2.02±0.28) x10~(-3)mm~2/s (χ2=51.835,P=0.000). Nemenyi test showed there were significant statistical differences inADC values between PDAC and NP(χ~2=45.98,P=0.00), MFCP and NP(χ~2=13.4,P=0.00). ROC curve disclosed that the sensitivity and specificity were65.3%and89.1%,respectively, when ADC≤1.615x10~(-3)mm~2/s was used as a cut off value for differentialdiagnosis of PDAC from other pancreatic neoplasms in our study and normal pancreaswith RFOV DWI. It also showed that the sensitivity and specificity were87.8%and61.8%, respectively, when ADC≤1.865x10~(-3)mm~2/s was used as a cut off value for differential diagnosis with FFOV DWI.
     Conclusion: The image quality and resolution of respiratory-triggered RFOV DWI wassignificantly higher than normal SS-EPI DWI. The ADC values from RFOV DWI werewell related to pathological features of pancreatic entity, Thus RFOV DWI may behelpful in the early diagnosis of pancreatic adenocarcinoma.
     Part II::Diffusion-weighted magnetic resonance imaging of pancreaticadenocarcinoma using multiple b-values
     Objective: To investigate the value of diffusion weighted magnetic resonance imagingwith multiple b-values in the diagnosis of pancreatic adenocarcinoma.
     Methods:20healthy volunteers and23patients with pancreatic ductal adenocarcinoma(PDAC),5patients with pancreatic adenosquamous carcinoma (PASC),3patients withpancreatic neuroendocrine carcinoma (PNC),3patients with mass-forming chronicpancreatitis (MFCP)(all proven by pathological results) underwent respiratory-triggeredmultipl b-values (0,20s/mm~2,50s/mm~2,100s/mm~2,200s/mm~2,400s/mm~2,600s/mm~2,800s/mm~2,1000s/mm~2) DWI at3.0T. perfusion fraction (f), pseudodiffudion coefficient(D~*), pure diffusion coefficient (D) and Apparent diffusion coefficient (ADC_tot) werecalculated by IVIM-DWI. Parameters derived by IVIM-DWI were compared amongpancreatic lesions and normal pancreas. ROC curve was used to analyze the diagnosticpower of each parameter.
     Results: f of PDAC, PASC, PNC, MFCP and normal pancreas (NP) were (27.67±4.73)%,(28.20±5.35)%,(42.57±4.31)%,(23.83±13.17)%,(43.09±7.88)%,(χ~2=34.073,P=0.000).D~*of PDAC, PASC, PNC, MFCP and NP were3.87±1.65,3.50±0.85,5.18±1.60,4.64±1.21,9.12±4.23μm2/ms,(χ~2=24.993, P=0.000). D of PDAC, PASC, PNC, MFCPand NP were0.87±0.23,1.05±0.08,0.87±0.08,0.65±0.29,0.87±0.24μm~2/ms,(χ~2=6.212,P=0.184). ADC_tot of PDAC, PASC, PNC, MFCP and NP were1.36±0.14,1.49±0.07,1.62±0.04,0.99±0.04,1.66±0.20μm~2/ms,(χ~2=28.092,P=0.000). Nemenyi test showedthere were significant statistical differences in D~*between PDAC and NP, PASC and NP,in f between PDAC and PNC, PDAC and NP, PASC and NP, MFCP and NP, in ADC_tot between PDAC and NP, PNC and MFCP, MFCP and NP. There was no significantdifference berween each of two groups in D. ROC curve disclosed that the area undercurves (AUC) were0.925,0.898,0.854, and0.804,0.787,0.775for differential diagnosisof PDAC from NP, PDAC from other pancreatic neoplasms and normal pancreas with f,D~*and ADCtot, respectively. There was no diagnostic power for D.
     Conclusion: f proved to be the best paremeter for differentiation between PDAC from NP,PDAC from other pancreatic neoplasms cand normal pancreas. It was well related toperfusion status in microcirculation of pancreatic entity, Thus f may be helpful in theearly diagnosis of pancreatic adenocarcinoma.
     Part III:In vivo~1H Magnetic resonance spectroscopy of pancreatic adenocarcinoma
     Objective: To analyze the~1H-MRS features and to explore the value of metabolitequantification in diagnosis of in-vivo pancreatic adenocarcinoma, also to determinewhether there is a correlation of pancreatic metabolism with the Ki-67labling index.
     Methods:20healthy volunteers and22patients with pancreatic ductal adenocarcinoma(PDAC, proven by pathological results) underwent in-vivo~1H-MRS. The relative lipidcontent (rLip, the ratio of lipid peak area divided by peak areas from0to6ppm),choline-containing metabolites (CCM) to glutamate and glutamine complex (Glx) ratio(CCM/Glx) were compared between two groups. CCM, rLip and Ki-67labling index oftumors with varied differentiating grades were compared, and the correlation of CCM,rLip and Ki-67labling index were determined using linear regression analysis. ROCcurve was used to analyze the diagnostic power of CCM and rLip.
     Results: CCM/Glx (0.570±0.065) and rLip (0.600±0.078) of NP were significantlyhigher than those of pancreatic adenocarcinoma (CCM/Glx0.444±0.095, rLip0.393±0.118), P=0.000. The Ki-67labling index [(50.71±10.86)%], CCM/Glx(0.407±0.080) of well-to-moderately differentiated tumors were significantly lower thanthose of poorly differentiated [Ki67(63.37±7.73)%, CCM/Glx0.497±0.092], P=0.007,P=0.024, respectively. There was no significant statistical differences for rLip betweendifferent grade of tumors. There is a significant linear correlation (P=0.002) between CCM/Glx and Ki-67labling index, but no significant correlation between rLip and Ki-67(P=0.069). ROC curve disclosed that the area under curves (AUC) were0.916,0.852,respectively, for differential diagnosis of PDAC from NP with rLip and CCM/Glx.Conclusion: In vivo~1H-MRS, pancreatic adenocarcinoma presented with a decrease ofCCM concentration and relative lipid content, and CCM/Glx was significantly correlatedwith Ki67labling index. Thus,~1H-MRS may have potential value in predicting thedifferentiation degree and proliferation activity of pancreatic adenocarcinoma.
引文
[1] Buck A K, Herrmann K, Eckel F, et al. Pancreatic and hepatobiliary cancers. Methods MolBiol,2011,727:243-264.
    [2] Greatest burden of pancreatic cancer found in developed countries.http://www.wcrf.org/cancer_statistics/cancer_facts/pancreatic_cancer.php.
    [3] American Cancer Society. Cancer Facts&Figures,2013(In Press). Atlanta, GA: American CancerSociety;2013.
    [4]纪元,沈铭昌,金晓龙,等.上海市市区350例胰腺癌病理特征的初步分析.肿瘤,2012,32(3):199-202.
    [5]赵平.我国胰腺癌诊治策略的研究.胰腺病学,2002,2(4):193-195.
    [6]上海市疾病预防控制中心.2008年上海市市区恶性肿瘤发病率.肿瘤,2011,31(10):964.
    [7]纪元,沈铭昌,金晓龙,等.上海市市区350例胰腺癌病理特征的初步分析.肿瘤,2012,32(3):199-202.
    [8] Lowenfels A B, Maisonneuve P, Cavallini G, et al. Pancreatitis and the risk of pancreatic cancer.International Pancreatitis Study Group. N Engl J Med1993,328(20):1433-1437.
    [9]周康荣,严福华,曾蒙苏.腹部CT诊断学.上海:复旦大学出版社,2011,318-319.
    [10]季洪兵,吕光明,钟南保,等.立体定向放射治疗胰腺癌的疗效分析.实用肝脏病杂志,2010,13(6):436-437.
    [11] Burris H R, Moore M J, Andersen J, et al. Improvements in survival and clinical benefit withgemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. JClin Oncol,1997,15(6):2403-2413.
    [12]王春友.胰腺癌分期评估及外科治疗决策的思考.中华外科杂志,2007,45(1):3-5.
    [13] Siegel R, Naishadham D, Jemal A. Cancer Statistics,2013. CA Cancer J Clin,2013,63(1):11–30.
    [14] Bilimoria K Y, Bentrem D J, Ko C Y, et al. Validation of the6th edition AJCC Pancreatic CancerStaging System: report from the National Cancer Database. Cancer,2007,110(4):738-744.
    [15] Hess V, Glilmelius B, Grawe P, et al. CA19-9tumour-marker response to chemotherapy in patientswith advanced pancreatic cancer enrolled in a randomized controlled trial. Lancet oncol,2008,9(2):132-138.
    [16] Safi F, Roscher R, Beger H G. The clinical relevance of the tumor marker CA19-9in thediagnosing and monitoring of pancreatic carcinoma. Bull Cancer,1990,77(1):83-91.
    [17] DelMaschio A, Vanzulli A, Sironi S, et al. Pancreatic cancer versus chronic pancreatitis: diagnos iswith CA19-9assessment, US, CT, and CTguided fine-needle biopsy. Radiology,1991,178(1):95–99.
    [18] Tempero M A, Uchida E, Takasaki H, et al. Relationship of carbohydrate antigen19-9and Lewisantigens in pancreatic cancer. Cancer Res,1987,47(20):5501-5503.
    [19] Hirooka Y, Goto H, Ito A, et al. Recent advances in US diagnosis of pancreatic cancer.Hepatogastroenterology,2001,48(40):916-922.
    [20] Shandra B, Saffire P, Otto D, et al. Ultrasonography, Computed Tomography and MagneticResonance Imaging for Diagnosis and Determining Resectability of Pancreatic Adenocarcinoma. JComput Assist Tomogr,2005,29(4):438–445.
    [21] Chang K J, Nguyen P, Erickson R A, et al. The clinical utility of endoscopic ultrasound-guidedfine-needle aspiration in the diagnosis and staging of pancreatic carcinoma. GastrointestEndosc,1997,45(5):387-393.
    [22] Legmann P, Vignaux O, Dousset B, et al. Pancreatic tumors: comparison of dual-phase helical CTand endoscopic sonography. AJR Am J Roentgenol,1998,170(5):1315–1322.
    [23] Brugge W R, Lee M J, Kelsey P B, et al. The use of EUS to diagnose malignant portal venoussystem invasion by pancreatic cancer. Gastrointest Endosc,1996,43(6):561–567.
    [24] Aslanian H, Salem R, Lee J, et al. EUS diagnosis of vascular invasion in pancreatic cancer:surgical and histologic correlates. Am J Gastroenterol,2005,100(6):1381–1385.
    [25] Galasso D, Carnuccio A, Larghi A. Pancreatic cancer: diagnosis and endoscopic staging. Eur RevMed Pharmacol Sci,2010,14(4):375-385.
    [26] Diehl S J, Lehmann K J, Sadick M, et al. Pancreatic cancer: value of dual-phase helical CT inassessing resectability. Radiology,1998,206(2):373-378.
    [27] Nishiharu T, Yamashita Y, Abe Y, et al. Local extension of pancreatic carcinoma: assessment withthin-section helical CT versus with breath-hold fast MR imaging--ROC analysis.Radiology,1999,212(2):445-452.
    [28] Fukukura Y, Takumi K, Kamimura K, et al. Pancreatic adenocarcinoma: variability ofdiffusion-weighted MR imaging findings. Radiology,2012,263(3):732-740.
    [29] Park H S, Lee J M, Choi H K, et al. Preoperative evaluation of pancreatic cancer: comparison ofgadolinium-enhanced dynamic MRI with MR cholangiopancreatography versus MDCT. J MagnReson Imaging,2009,30(3):586-595..
    [30] Holzapfel K, Reiser-Erkan C, Fingerle A A, et al. Comparison of diffusion-weighted MR imagingand multidetector-row CT in the detection of liver metastases in patients operated for pancreaticcancer. Abdom Imaging,2011,36(2):179-184.
    [31] Satoi S, Yanagimoto H, Toyokawa H, et al. Pre-operative patient selection of pancreatic cancerpatients by multi-detector row CT. Hepatogastroenterology,2009,56(90):529-534.
    [32] Akisik M F, Sandrasegaran K, Bu G, et al. Pancreatic cancer: utility of dynamic contrast-enhancedMR imaging in assessment of antiangiogenic therapy. Radiology,2010,256(2):441-449.
    [33] Bipat S, Phoa S S, van Delden O M, et al. Ultrasonography, computed tomography and magneticresonance imaging for diagnos is and determining resectability of pancreatic adenocarcinoma: ameta-analys is. J Comput Assist Tomogr,2005,29(4):438-445.
    [34] Yoon S H, Lee J M, Cho J Y, et al. Small (    [35] Sahni V A, Mortele K J. Magnetic resonance cholangiopancreatography: current use and futureapplications. Clin Gastroenterol Hepatol,2008,6(9):967-977.
    [36] Irie H, Honda H, Kaneko K, et al. Comparison of helical CT and MR imaging in detecting andstaging small pancreatic adenocarcinoma. Abdom Imaging,1997,22(4):429-433.
    [37] Koelblinger C, Ba-Ssalamah A, Goetzinger P, et al. Gadobenate dimeglumine-enhanced3.0-T MRimaging versus multiphasic64-detector row CT: prospective evaluation in patients suspected ofhaving pancreatic cancer. Radiology,2011,259(3):757-766.
    [38] Sheridan M B, Ward J, Guthrie J A, et al. Dynamic contrast-enhanced MR imaging and dual-phasehelical CT in the preoperative assessment of suspected pancreatic cancer: a comparative study withreceiver operating characteristic analysis. AJR Am J Roentgenol,1999,173(3):583-590.
    [39] Romijn M G, Stoker J, van Eijck C H, et al. MRI with mangafodipir trisodium in the detection andstaging of pancreatic cancer. J Magn Reson Imaging,2000,12(2):261-268.
    [40] Tapper E B, Martin D, Adsay N V, et al. An MRI-driven practice: a new perspective on MRI for theevaluation of adenocarcinoma of the head of the pancreas. J GastrointestSurg,2010,14(8):1292-1297.
    [41] Kartalis N, Lindholm T L, Aspelin P, et al. Diffusion-weighted magnetic resonance imaging ofpancreas tumours. Eur Radiol,2009,19(8):1981-1990.
    [42] Klauss M, Lemke A, Grunberg K, et al. Intravoxel incoherent motion MRI for the differentiationbetween mass forming chronic pancreatitis and pancreatic carcinoma. InvestRadiol,2011,46(1):57-63.
    [43] Shinya S, Sasaki T, Nakagawa Y, et al. The efficacy of diffusion-weighted imaging for thedetection of colorectal cancer. Hepatogastroenterology,2009,56(89):128-132.
    [44] Fornasa F, Nesoti M V, Bovo C, et al. Diffusion-weighted magnetic resonance imaging in thecharacterization of axillary lymph nodes in patients with breast cancer. J Magn ResonImaging,2012,36(4):858-864.
    [45] Dagnelie P C, Leij-Halfwerk S. Magnetic resonance spectroscopy to study hepatic metabolism indiffuse liver diseases, diabetes and cancer. World J Gastroenterol,2010,16(13):1577-1586.
    [46] Dittrich R, Kurth J, Decelle E A, et al. Assessing prostate cancer growth with citrate measured byintact tissue proton magnetic resonance spectroscopy. Prostate Cancer ProstaticDis,2012,15(3):278-282.
    [47] Katz-Brull R, Lavin P T, Lenkinski R E. Clinical utility of proton magnetic resonance spectroscopyin characterizing breast lesions. J Natl Cancer Inst,2002,94(16):1197-1203.
    [48]杨正汉,冯逢,王霄英.磁共振成像技术指南-检查规范、临床策略及新技术应用.北京:人民军医出版社,2010:263-264.
    [49] Wang Y, Miller F H, Chen Z E, et al. Diffusion-weighted MR imaging of solid and cystic lesions ofthe pancreas. Radiographics,2011,31(3):E47-E64.
    [50] Ichikawa T, Erturk S M, Motosugi U, et al. High-b value diffusion-weighted MRI for detectingpancreatic adenocarcinoma: preliminary results. AJR Am J Roentgenol,2007,188(2):409-414.
    [51]杨正汉,冯逢,王霄英.磁共振成像技术指南-检查规范、临床策略及新技术应用.北京:人民军医出版社,2010:333-338.
    [52] Tesiram Y A, Lerner M, Stewart C, et al. Utility of nuclear magnetic resonance spectroscopy forpancreatic cancer studies. Pancreas,2012,41(3):474-480.
    [53] Ma X, Zhao X, Ouyang H, et al. The metabolic features of normal pancreas and pancreaticadenocarcinoma: preliminary result of in vivo proton magnetic resonance spectroscopy at3.0T. JComput Assist Tomogr,2011,35(5):539-543.
    [1] Li D, Xie K, Wolff R, et al. Pancreatic cancer. Lancet,2004,363(9414):1049-1057.
    [2] Brunberg J A, Chenevert T L, Mckeever P E, et al. In vivo MR determination of water diffusioncoefficients and diffusion anisotropy: correlation with structural alteration in gliomas of thecerebral hemispheres. AJNR Am J Neuroradiol,1995,16(2):361-371.
    [3] Le Bihan D, Breton E, Lallemand D, et al. Separation of diffusion and perfusion in intravoxelincoherent motion MR imaging. Radiology,1988,168(2):497-505.
    [4] Gass A, Niendorf T, Hirsch J G. Acute and chronic changes of the apparent diffusion coefficient inneurological disorders--biophysical mechanisms and possible underlying histopathology. J NeurolSci,2001,186Suppl1:S15-S23.
    [5] Squillaci E, Manenti G, Cova M, et al. Correlation of diffusion-weighted MR imaging withcellularity of renal tumours. Anticancer Res,2004,24(6):4175-4179.
    [6] Moffat B A, Chenevert T L, Lawrence T S, et al. Functional diffusion map: a noninvasive MRIbiomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci U SA,2005,102(15):5524-5529.
    [7] Ichikawa T, Haradome H, Hachiya J, et al. Diffusion-weighted MR imaging with a single-shotechoplanar sequence: detection and characterization of focal hepatic les ions. AJR Am JRoentgenol,1998,170(2):397-402.
    [8] Ichikawa T, Erturk S M, Motosugi U, et al. High-B-value diffusion-weighted MRI in colorectalcancer. AJR Am J Roentgenol,2006,187(1):181-184.
    [9] Verswijvel G, Vandecaveye V, Gelin G, et al. Diffusion-weighted MR imaging in the evaluationof renal infection: preliminary results. JBR-BTR,2002,85(2):100-103.
    [10] Yamashita Y, Namimoto T, Mitsuzaki K, et al. Mucin-producing tumor of the pancreas: diagnosticvalue of diffusion-weighted echo-planar MR imaging. Radiology,1998,208(3):605-609.
    [11] Matsuoka A, Minato M, Harada M, et al. Comparison of3.0-and1.5-tesla diffusion-weightedimaging in the vis ibility of breast cancer. Radiat Med,2008,26(1):15-20.
    [12] Shinya S, Sasaki T, Nakagawa Y, et al. The efficacy of diffusion-weighted imaging for thedetection and evaluation of acute pancreatitis. Hepatogastroenterology,2009,56(94-95):1407-1410.
    [13] Akisik M F, Aisen A M, Sandrasegaran K, et al. Assessment of chronic pancreatitis: utility ofdiffusion-weighted MR imaging with secretin enhancement. Radiology,2009,250(1):103-109.
    [14] Ichikawa T, Erturk S M, Motosugi U, et al. High-b value diffusion-weighted MRI for detectingpancreatic adenocarcinoma: preliminary results. AJR Am J Roentgenol,2007,188(2):409-414.
    [15] Wang Y, Miller F H, Chen Z E, et al. Diffusion-weighted MR imaging of solid and cystic lesionsof the pancreas. Radiographics,2011,31(3):E47-E64.
    [16] Hayano K, Miura F, Amano H, et al. Correlation of apparent diffusion coefficient measured bydiffusion-weighted MRI and clinicopathologic features in pancreatic cancer patients. JHepatobiliary Pancreat Sci,2013,20(2):243-248.
    [17] Schraibman V, Goldman S M, Ardengh J C, et al. New trends in diffusion-weighted magneticresonance imaging as a tool in differentiation of serous cystadenoma and mucinous cystic tumor: aprospective study. Pancreatology,2011,11(1):43-51.
    [18] Saritas E U, Cunningham C H, Lee J H, et al. DWI of the spinal cord with reduced FOVsingle-shot EPI. Magn Reson Med,2008,60(2):468-473.
    [19] Kim S E, Jeong E K, Kholmovsiki E G, et al. High Resolution Diffusion Weighted Imaging ofHuman Carotid Artery using2D ss-rFOV-DWEPI at3Tesla[Z]. Proc. Intl. Soc. Mag. Reson. Med.14(2006).
    [20]顾雅佳,冯晓源,唐峰,等.乳腺肿瘤的MRI扩散特征及参数选定.中华放射学杂志,2007,41(5):451-456.
    [21] Koh D M, Scurr E, Collins D J, et al. Colorectal hepatic metastases: quantitative measurementsusing single-shot echo-planar diffusion-weighted MR imaging. Eur Radiol,2006,16(9):1898-1905.
    [22] Le Bihan D, Poupon C, Amadon A, et al. Artifacts and pitfalls in diffusion MRI. J Magn ResonImaging,2006,24(3):478-488.
    [23] Bernstein M A, Huston J R, Ward H A. Imaging artifacts at3.0T. J Magn ResonImaging,2006,24(4):735-746.
    [24] Notohamiprodjo M, Dietrich O, Horger W, et al. Diffusion tensor imaging (DTI) of the kidney at3tesla-feasibility, protocol evaluation and comparison to1.5Tesla. InvestRadiol,2010,45(5):245-254.
    [25] Merkle E M, Dale B M. Abdominal MRI at3.0T: the basics revisited. AJR Am JRoentgenol,2006,186(6):1524-1532.
    [26]刘伟,林汉生. SPSS在完全随机设计多个样本间多重比较Nemenyi秩和检验中的应用.中国卫生统计,2009(2):214.
    [27] Padhani A R, Liu G, Koh D M, et al. Diffusion-weighted magnetic resonance imaging as a cancerbiomarker: consensus and recommendations. Neoplasia,2009,11(2):102-125.
    [28] Chen P E, Simon J E, Hill M D, et al. Acute ischemic stroke: accuracy of diffusion-weighted MRimaging--effects of b value and cerebrospinal fluid suppression. Radiology,2006,238(1):232-239.
    [29] Muhi A, Ichikawa T, Motosugi U, et al. Mass-forming autoimmune pancreatitis and pancreaticcarcinoma: differential diagnos is on the basis of computed tomography and magnetic resonancecholangiopancreatography, and diffusion-weighted imaging findings. J Magn ResonImaging,2012,35(4):827-836.
    [30] Shinya S, Sasaki T, Nakagawa Y, et al. Usefulness of diffusion-weighted imaging (DWI) for thedetection of pancreatic cancer:4case reports. Hepatogastroenterology,2008,55(81):282-285.
    [31]陈士跃,马超,李子文,等.正常胰腺小视野高分辨DWI研究.放射学实践,2012,27(2):151-154.
    [32] Jang K M, Kim S H, Lee S J, et al. Differentiation of an intrapancreatic accessory spleen from asmall (<3-cm) solid pancreatic tumor: value of diffusion-weighted MR imaging.Radiology,2013,266(1):159-167.
    [33] Akis ik M F, Sandrasegaran K, Jennings S G, et al. Diagnosis of chronic pancreatitis by usingapparent diffusion coefficient measurements at3.0-T MR following secretin stimulation.Radiology,2009,252(2):418-425.
    [34] Bakir B, Salmaslioglu A, Poyanli A, et al. Diffusion weighted MR imaging of pancreatic islet celltumors. Eur J Radiol,2010,74(1):214-220.
    [35] Boraschi P, Donati F, Gigoni R, et al. Diffusion-weighted MRI in the characterization of cysticpancreatic lesions: usefulness of ADC values. Magn Reson Imaging,2010,28(10):1447-1455.
    [36] Wu L M, Xu J R, Hua J, et al. Value of diffusion-weighted imaging for the discrimination ofpancreatic lesions: a meta-analys is. Eur J Gastroenterol Hepatol,2012,24(2):134-142.
    [37] Wheeler-Kingshott C A, Hickman S J, Parker G J, et al. Investigating cervical spinal cord structureusing axial diffusion tensor imaging. Neuroimage,2002,16(1):93-102.
    [38] Jeong E K, Kim S E, Guo J, et al. High-resolution DTI with2D interleaved multislice reducedFOV single-shot diffusion-weighted EPI (2D ss-rFOV-DWEPI). Magn ResonMed,2005,54(6):1575-1579.
    [39]姚秀忠,曾蒙苏,饶圣祥,等.3.0TMR灌注成像和扩散加权成像在胰腺肿块诊断中的应用.中华放射学杂志,2011,45(7):646-652.
    [40] Federau C, Maeder P, O'Brien K, et al. Quantitative measurement of brain perfusion withintravoxel incoherent motion MR imaging. Radiology,2012,265(3):874-881.
    [41] Luciani A, Vignaud A, Cavet M, et al. Liver cirrhosis: intravoxel incoherent motion MRimaging--pilot study. Radiology,2008,249(3):891-899.
    [42] Patel J, Sigmund E E, Rusinek H, et al. Diagnosis of cirrhosis with intravoxel incoherent motiondiffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminaryexperience. J Magn Reson Imaging,2010,31(3):589-600.
    [43] Erkan M, Reiser-Erkan C, Michalski C W, et al. Cancer-stellate cell interactions perpetuate thehypoxia-fibrosis cycle in pancreatic ductal adenocarcinoma. Neoplasia,2009,11(5):497-508.
    [44] Muraoka N, Uematsu H, Kimura H, et al. Apparent diffusion coefficient in pancreatic cancer:characterization and histopathological correlations. J Magn Reson Imaging,2008,27(6):1302-1308.
    [45] Klauss M, Lemke A, Grunberg K, et al. Intravoxel incoherent motion MRI for the differentiationbetween mass forming chronic pancreatitis and pancreatic carcinoma. InvestRadiol,2011,46(1):57-63.
    [46] Kartalis N, Lindholm T L, Aspelin P, et al. Diffusion-weighted magnetic resonance imaging ofpancreas tumours. Eur Radiol,2009,19(8):1981-1990.
    [1] American Cancer Society. Cancer Facts&Figures,2013(In Press). Atlanta, GA: AmericanCancer Society,2013.
    [2] Siegel R, Naishadham D, Jemal A. Cancer statistics,2013. CA Cancer J Clin,2013,63(1):11-30.
    [3] Bilimoria K Y, Bentrem D J, Ko C Y, et al. Validation of the6th edition AJCC Pancreatic CancerStaging System: report from the National Cancer Database. Cancer,2007,110(4):738-744.
    [4] Lee S S, Byun J H, Park B J, et al. Quantitative analysis of diffusion-weighted magnetic resonanceimaging of the pancreas: usefulness in characterizing solid pancreatic masses. J Magn ResonImaging,2008,28(4):928-936.
    [5] Fattahi R, Balci N C, Perman W H, et al. Pancreatic diffusion-weighted imaging (DWI):comparison between mass-forming focal pancreatitis (FP), pancreatic cancer (PC), and normalpancreas. J Magn Reson Imaging,2009,29(2):350-356.
    [6] Kamisawa T, Takuma K, Anjiki H, et al. Differentiation of autoimmune pancreatitis frompancreatic cancer by diffusion-weighted MRI. Am J Gastroenterol,2010,105(8):1870-1875.
    [7] Wang Y, Chen Z E, Nikolaidis P, et al. Diffusion-weighted magnetic resonance imaging ofpancreatic adenocarcinomas: association with histopathology and tumor grade. J Magn ResonImaging,2011,33(1):136-142.
    [8] Kartalis N, Lindholm T L, Aspelin P, et al. Diffusion-weighted magnetic resonance imaging ofpancreas tumours. Eur Radiol,2009,19(8):1981-1990.
    [9] Matsuki M, Inada Y, Nakai G, et al. Diffusion-weighed MR imaging of pancreatic carcinoma.Abdom Imaging,2007,32(4):481-483.
    [10] Chenevert T L, Stegman L D, Taylor J M, et al. Diffusion magnetic resonance imaging: an earlysurrogate marker of therapeutic efficacy in brain tumors. J Natl CancerInst,2000,92(24):2029-2036.
    [11] Ross B D, Moffat B A, Lawrence T S, et al. Evaluation of cancer therapy using diffusion magneticresonance imaging. Mol Cancer Ther,2003,2(6):581-587.
    [12] Ichikawa T, Haradome H, Hachiya J, et al. Diffusion-weighted MR imaging with a single-shotechoplanar sequence: detection and characterization of focal hepatic les ions. AJR Am JRoentgenol,1998,170(2):397-402.
    [13] Matsuoka A, Minato M, Harada M, et al. Comparison of3.0-and1.5-tesla diffusion-weightedimaging in the vis ibility of breast cancer. Radiat Med,2008,26(1):15-20.
    [14] Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions:application to diffusion and perfusion in neurologic disorders. Radiology,1986,161(2):401-407.
    [15] Le Bihan D, Breton E, Lallemand D, et al. Separation of diffusion and perfusion in intravoxelincoherent motion MR imaging. Radiology,1988,168(2):497-505.
    [16] Luciani A, Vignaud A, Cavet M, et al. Liver cirrhosis: intravoxel incoherent motion MRimaging--pilot study. Radiology,2008,249(3):891-899.
    [17] Yamada I, Aung W, Himeno Y, et al. Diffusion coefficients in abdominal organs and hepaticlesions: evaluation with intravoxel incoherent motion echo-planar MR imaging.Radiology,1999,210(3):617-623.
    [18] Yoshikawa T, Kawamitsu H, Mitchell D G, et al. ADC measurement of abdominal organs andlesions using parallel imaging technique. AJR Am J Roentgenol,2006,187(6):1521-1530.
    [19] Lemke A, Laun F B, Klauss M, et al. Differentiation of pancreas carcinoma from healthypancreatic tissue using multiple b-values: comparison of apparent diffusion coefficient andintravoxel incoherent motion derived parameters. Invest Radiol,2009,44(12):769-775.
    [20]刘伟,林汉生. SPSS在完全随机设计多个样本间多重比较Nemenyi秩和检验中的应用.中国卫生统计,2009(2):214.
    [21] Akisik M F, Aisen A M, Sandrasegaran K, et al. Assessment of chronic pancreatitis: utility ofdiffusion-weighted MR imaging with secretin enhancement. Radiology,2009,250(1):103-109.
    [22] Turner R, Le Bihan D, Maier J, et al. Echo-planar imaging of intravoxel incoherent motion.Radiology,1990,177(2):407-414.
    [23] Takeuchi M, Matsuzaki K, Kubo H, et al. High-b-value diffusion-weighted magnetic resonanceimaging of pancreatic cancer and mass-forming chronic pancreatitis: preliminary results. ActaRadiol,2008,49(4):383-386.
    [24] Muraoka N, Uematsu H, Kimura H, et al. Apparent diffusion coefficient in pancreatic cancer:characterization and histopathological correlations. J Magn Reson Imaging,2008,27(6):1302-1308.
    [25] Rzepko R, Jaskiewicz K, Klimkowska M, et al. Microvascular density in chronic pancreatitis andpancreatic ductal adenocarcinoma. Folia Histochem Cytobiol,2003,41(4):237-239.
    [26] Klauss M, Lemke A, Grunberg K, et al. Intravoxel incoherent motion MRI for the differentiationbetween mass forming chronic pancreatitis and pancreatic carcinoma. InvestRadiol,2011,46(1):57-63.
    [27] Le Bihan D, Turner R. The capillary network: a link between IVIM and classical perfusion. MagnReson Med,1992,27(1):171-178.
    [28] Patel J, Sigmund E E, Rusinek H, et al. Diagnosis of cirrhosis with intravoxel incoherent motiondiffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminaryexperience. J Magn Reson Imaging,2010,31(3):589-600.
    [29] Bali M A, Metens T, Denolin V, et al. Pancreatic perfusion: noninvasive quantitative assessmentwith dynamic contrast-enhanced MR imaging without and with secretin stimulation in healthyvolunteers--initial results. Radiology,2008,247(1):115-121.
    [1] Begley J K, Redpath T W, Bolan P J, et al. In vivo proton magnetic resonance spectroscopy ofbreast cancer: a review of the literature. Breast Cancer Res,2012,14(2):207.
    [2] Bourne R, Katelaris P, Danieletto S, et al. Detection of prostate cancer by magnetic resonanceimaging and spectroscopy in vivo. ANZ J Surg,2003,73(8):666-668.
    [3] Rudkin T M, Arnold D L. Proton magnetic resonance spectroscopy for the diagnosis andmanagement of cerebral disorders. Arch Neurol,1999,56(8):919-926.
    [4] Star-Lack J, Spielman D, Adalsteinsson E, et al. In vivo lactate editing with simultaneousdetection of choline, creatine, NAA, and lipid singlets at1.5T using PRESS excitation withapplications to the study of brain and head and neck tumors. J Magn Reson,1998,133(2):243-254.
    [5] Preul M C, Caramanos Z, Collins D L, et al. Accurate, noninvasive diagnos is of human braintumors by using proton magnetic resonance spectroscopy. Nat Med,1996,2(3):323-325.
    [6] Videen J S, Michaelis T, Pinto P, et al. Human cerebral osmolytes during chronic hyponatremia. Aproton magnetic resonance spectroscopy study. J Clin Invest,1995,95(2):788-793.
    [7] Viala K, Stievenart J L, Cabanis E A, et al.[Magnetic resonance spectroscopy in multiplesclerosis]. Rev Neurol (Paris),2000,156(12):1078-1086.
    [8] Danishad K K, Sharma U, Sah R G, et al. Assessment of therapeutic response of locally advancedbreast cancer (LABC) patients undergoing neoadjuvant chemotherapy (NACT) monitored usingsequential magnetic resonance spectroscopic imaging (MRSI). NMR Biomed,2010,23(3):233-241.
    [9] Roebuck J R, Cecil K M, Schnall M D, et al. Human breast lesions: characterization with protonMR spectroscopy. Radiology,1998,209(1):269-275.
    [10] Su M Y, Baik H M, Yu H J, et al. Comparison of choline and pharmacokinetic parameters in breastcancer measured by MR spectroscopic imaging and dynamic contrast enhanced MRI. TechnolCancer Res Treat,2006,5(4):401-410.
    [11] Fischbach F, Schirmer T, Thormann M, et al. Quantitative proton magnetic resonance spectroscopyof the normal liver and malignant hepatic lesions at3.0Tesla. Eur Radiol,2008,18(11):2549-2558.
    [12] Li C W, Kuo Y C, Chen C Y, et al. Quantification of choline compounds in human hepatic tumorsby proton MR spectroscopy at3T. Magn Reson Med,2005,53(4):770-776.
    [13] Kobus T, Vos P C, Hambrock T, et al. Prostate cancer aggressiveness: in vivo assessment of MRspectroscopy and diffusion-weighted imaging at3T. Radiology,2012,265(2):457-467.
    [14] Rajesh A, Coakley F V. MR imaging and MR spectroscopic imaging of prostate cancer. MagnReson Imaging Clin N Am,2004,12(3):557-579.
    [15] Sciarra A, Salciccia S, Panebianco V. Proton spectroscopic and dynamic contrast-enhancedmagnetic resonance: a modern approach in prostate cancer imaging. Eur Urol,2008,54(3):485-488.
    [16] Shimizu H, Kumabe T, Shirane R, et al. Correlation between choline level measured by proton MRspectroscopy and Ki-67labeling index in gliomas. AJNR Am J Neuroradiol,2000,21(4):659-665.
    [17] Mountford C E, Schuster C, Baltzer P A, et al. MR spectroscopy in the breast clinic is improving.Eur J Radiol,2012,81Suppl1:S104-S106
    [18] Kozic D, Ostojic J, Bjelan M, et al. The role of MR spectroscopy in neurooncology.Prilozi,2012,33(1):425-433.
    [19] Gupta R K, Cloughesy T F, Sinha U, et al. Relationships between choline magnetic resonancespectroscopy, apparent diffusion coefficient and quantitative histopathology in human glioma. JNeurooncol,2000,50(3):215-226.
    [20] Bullwinkel J, Baron-Luhr B, Ludemann A, et al. Ki-67protein is associated with ribosomal RNAtranscription in quiescent and proliferating cells. J Cell Physiol,2006,206(3):624-635.
    [21] Scholzen T, Gerdes J. The Ki-67protein: from the known and the unknown. J CellPhysiol,2000,182(3):311-322.
    [22] Rahmanzadeh R, Huttmann G, Gerdes J, et al. Chromophore-assisted light inactivation of pKi-67leads to inhibition of ribosomal RNA synthesis. Cell Prolif,2007,40(3):422-430.
    [23]刘安安,胡先贵,张怡杰,等. Ki67在胰腺癌淋巴结转移中的临床意义.现代预防医学,2010,37(20):3963-3965.
    [24] Fang F, He X, Deng H, et al. Discrimination of metabolic profiles of pancreatic cancer fromchronic pancreatitis by high-resolution magic angle spinning1H nuclear magnetic resonance andprincipal components analysis. Cancer Sci,2007,98(11):1678-1682.
    [25] Cho S G, Lee D H, Lee K Y, et al. Differentiation of chronic focal pancreatitis from pancreaticcarcinoma by in vivo proton magnetic resonance spectroscopy. J Comput AssistTomogr,2005,29(2):163-169.
    [26] Ma X, Zhao X, Ouyang H, et al. The metabolic features of normal pancreas and pancreaticadenocarcinoma: preliminary result of in vivo proton magnetic resonance spectroscopy at3.0T. JComput Assist Tomogr,2011,35(5):539-543.
    [27] Hurd R, Sailasuta N, Srinivasan R, et al. Measurement of brain glutamate using TE-averagedPRESS at3T. Magn Reson Med,2004,51(3):435-440.
    [28]杨正汉,冯逢,王霄英.磁共振成像技术指南-检查规范、临床策略及新技术应用.北京:人民军医出版社,2010:333-334.
    [29] Hancu I, Zimmerman E A, Sailasuta N, et al.1H MR spectroscopy using TE averaged PRESS: amore sensitive technique to detect neurodegeneration associated with Alzheimer's disease. MagnReson Med,2005,53(4):777-782.
    [30]马跃,任莹,石喻,等.在体1.5T氢质子波谱鉴别慢性肿块型胰腺炎与胰腺癌.中国医学影像技术,2010(5):881-884.
    [31] Cho S G, Kim M Y, Kim H J, et al. Chronic hepatitis: in vivo proton MR spectroscopic evaluationof the liver and correlation with histopathologic findings. Radiology,2001,221(3):740-746.
    [32] Bates T E, Williams S R, Gadian D G. Phosphodiesters in the liver: the effect of field strength onthe31P signal. Magn Reson Med,1989,12(1):145-150.
    [33] Maris J M, Evans A E, Mclaughlin A C, et al.31P nuclear magnetic resonance spectroscopicinvestigation of human neuroblastoma in situ. N Engl J Med,1985,312(23):1500-1505.
    [34] Kuo Y T, Li C W, Chen C Y, et al. In vivo proton magnetic resonance spectroscopy of large focalhepatic lesions and metabolite change of hepatocellular carcinoma before and after transcatheterarterial chemoembolization using3.0-T MR scanner. J Magn Reson Imaging,2004,19(5):598-604.
    [35]何新红.胰腺癌及慢性胰腺炎代谢特征比较分析[D].第二军医大学,2007.
    [36] Terada T, Ohta T, Kitamura Y, et al. Cell proliferative activity in intraductal papillary-mucinousneoplasms and invasive ductal adenocarcinomas of the pancreas: an immunohistochemical study.Arch Pathol Lab Med,1998,122(1):42-46.
    [1] Li D, Xie K, Wolff R, et al. Pancreatic cancer. Lancet,2004,363(9414):1049-1057.
    [2] Le Bihan D, Breton E, Lallemand D, et al. Separation of diffusion and perfusion in intravoxelincoherent motion MR imaging. Radiology,1988,168(2):497-505.
    [3] Gass A, Niendorf T, Hirsch J G. Acute and chronic changes of the apparent diffusion coefficient inneurological disorders--biophysical mechanisms and possible underlying histopathology. J NeurolSci,2001,186Suppl1:S15-S23.
    [4] Squillaci E, Manenti G, Cova M, et al. Correlation of diffusion-weighted MR imaging withcellularity of renal tumours. Anticancer Res,2004,24(6):4175-4179.
    [5] Moffat B A, Chenevert T L, Lawrence T S, et al. Functional diffusion map: a noninvasive MRIbiomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci U SA,2005,102(15):5524-5529.
    [6] Thoeny H C, De Keyzer F, Chen F, et al. Diffusion-weighted MR imaging in monitoring the effectof a vascular targeting agent on rhabdomyosarcoma in rats. Radiology,2005,234(3):756-764.
    [7] Chen P E, Simon J E, Hill M D, et al. Acute ischemic stroke: accuracy of diffusion-weighted MRimaging--effects of b value and cerebrospinal fluid suppression. Radiology,2006,238(1):232-239.
    [8] Ichikawa T, Haradome H, Hachiya J, et al. Diffusion-weighted MR imaging with a single-shotechoplanar sequence: detection and characterization of focal hepatic les ions. AJR Am JRoentgenol,1998,170(2):397-402.
    [9] Ichikawa T, Erturk S M, Motosugi U, et al. High-B-value diffusion-weighted MRI in colorectalcancer. AJR Am J Roentgenol,2006,187(1):181-184.
    [10] Verswijvel G, Vandecaveye V, Gelin G, et al. Diffusion-weighted MR imaging in the evaluation ofrenal infection: preliminary results. JBR-BTR,2002,85(2):100-103.
    [11] Yamashita Y, Namimoto T, Mitsuzaki K, et al. Mucin-producing tumor of the pancreas: diagnosticvalue of diffusion-weighted echo-planar MR imaging. Radiology,1998,208(3):605-609.
    [12] Fu C Y, Yeh C N, Hsu J T, et al. Timing of mortality in severe acute pancreatitis: experience from643patients. World J Gastroenterol,2007,13(13):1966-1969.
    [13] Shinya S, Sasaki T, Nakagawa Y, et al. The efficacy of diffusion-weighted imaging for thedetection and evaluation of acute pancreatitis. Hepatogastroenterology,2009,56(94-95):1407-1410.
    [14] Akisik M F, Aisen A M, Sandrasegaran K, et al. Assessment of chronic pancreatitis: utility ofdiffusion-weighted MR imaging with secretin enhancement. Radiology,2009,250(1):103-109.
    [15] Monill J, Pernas J, Clavero J, et al. Pancreatic duct after pancreatoduodenectomy: morphologic andfunctional evaluation with secretin-stimulated MR pancreatography. AJR Am JRoentgenol,2004,183(5):1267-1274.
    [16] Akis ik M F, Sandrasegaran K, Jennings S G, et al. Diagnosis of chronic pancreatitis by usingapparent diffusion coefficient measurements at3.0-T MR following secretin stimulation.Radiology,2009,252(2):418-425.
    [17] Balci N C, Alkaade S, Magas L, et al. Suspected chronic pancreatitis with normal MRCP: findingson MRI in correlation with secretin MRCP. J Magn Reson Imaging,2008,27(1):125-131.
    [18] Fattahi R, Balci N C, Perman W H, et al. Pancreatic diffusion-weighted imaging (DWI):comparison between mass-forming focal pancreatitis (FP), pancreatic cancer (PC), and normalpancreas. J Magn Reson Imaging,2009,29(2):350-356.
    [19] Klau M, Gaida M M, Lemke A, et al. Fibrosis and pancreatic lesions: counterintuitive behavior ofthe diffusion imaging-derived structural diffusion coefficient d. Invest Radiol,2013,48(3):129-133.
    [20] Raina A, Yadav D, Krasinskas A M, et al. Evaluation and management of autoimmune pancreatitis:experience at a large US center. Am J Gastroenterol,2009,104(9):2295-2306.
    [21] Kamisawa T, Okamoto A. Autoimmune pancreatitis: proposal of IgG4-related sclerosing disease. JGastroenterol,2006,41(7):613-625.
    [22] Okazaki K, Kawa S, Kamisawa T, et al. Japanese clinical guidelines for autoimmune pancreatitis.Pancreas,2009,38(8):849-866.
    [23] Taniguchi T, Kobayashi H, Nishikawa K, et al. Diffusion-weighted magnetic resonance imaging inautoimmune pancreatitis. Jpn J Radiol,2009,27(3):138-142.
    [24] Muhi A, Ichikawa T, Motosugi U, et al. Mass-forming autoimmune pancreatitis and pancreaticcarcinoma: differential diagnos is on the basis of computed tomography and magnetic resonancecholangiopancreatography, and diffusion-weighted imaging findings. J Magn ResonImaging,2012,35(4):827-836.
    [25] Kamisawa T, Takuma K, Anjiki H, et al. Differentiation of autoimmune pancreatitis frompancreatic cancer by diffusion-weighted MRI. Am J Gastroenterol,2010,105(8):1870-1875.
    [26] Taniguchi T, Kobayashi H, Nishikawa K, et al. Diffusion-weighted magnetic resonance imaging inautoimmune pancreatitis. Jpn J Radiol,2009,27(3):138-142.
    [27] Klimstra D S, Pitman M B, Hruban R H. An algorithmic approach to the diagnosis of pancreaticneoplasms. Arch Pathol Lab Med,2009,133(3):454-464.
    [28] Siegel R, Naishadham D, Jemal A. Cancer statistics,2013. CA Cancer J Clin,2013,63(1):11-30.
    [29] American Cancer Society. Cancer Facts&Figures,2013(In Press)[Z].:Atlanta, GA: AmericanCancer Society;2013..
    [30] Park H S, Lee J M, Choi H K, et al. Preoperative evaluation of pancreatic cancer: comparison ofgadolinium-enhanced dynamic MRI with MR cholangiopancreatography versus MDCT. J MagnReson Imaging,2009,30(3):586-595.
    [31] Kartalis N, Lindholm T L, Aspelin P, et al. Diffusion-weighted magnetic resonance imaging ofpancreas tumours. Eur Radiol,2009,19(8):1981-1990.
    [32] Wang Y, Miller F H, Chen Z E, et al. Diffusion-weighted MR imaging of solid and cystic lesionsof the pancreas. Radiographics,2011,31(3):E47-E64.
    [33] Ichikawa T, Erturk S M, Motosugi U, et al. High-B-value diffusion-weighted MRI in colorectalcancer. AJR Am J Roentgenol,2006,187(1):181-184.
    [34] Ichikawa T, Erturk S M, Motosugi U, et al. High-b value diffusion-weighted MRI for detectingpancreatic adenocarcinoma: preliminary results. AJR Am J Roentgenol,2007,188(2):409-414.
    [35] Klauss M, Lemke A, Grunberg K, et al. Intravoxel incoherent motion MRI for the differentiationbetween mass forming chronic pancreatitis and pancreatic carcinoma. InvestRadiol,2011,46(1):57-63.
    [36] Lemke A, Laun F B, Klauss M, et al. Differentiation of pancreas carcinoma from healthypancreatic tissue using multiple b-values: comparison of apparent diffusion coefficient andintravoxel incoherent motion derived parameters. Invest Radiol,2009,44(12):769-775.
    [37] Ehehalt F, Saeger H D, Schmidt C M, et al. Neuroendocrine tumors of the pancreas.Oncologist,2009,14(5):456-467.
    [38] Turaga K K, Kvols L K. Recent progress in the understanding, diagnosis, and treatment ofgastroenteropancreatic neuroendocrine tumors. CA Cancer J Clin,2011,61(2):113-132.
    [39] Caramella C, Dromain C, De Baere T, et al. Endocrine pancreatic tumours: which are the mostuseful MRI sequences? Eur Radiol,2010,20(11):2618-2627.
    [40] Dromain C, de Baere T, Baudin E, et al. MR imaging of hepatic metastases caused byneuroendocrine tumors: comparing four techniques. AJR Am J Roentgenol,2003,180(1):121-128.
    [41] Semelka R C, Custodio C M, Cem B N, et al. Neuroendocrine tumors of the pancreas: spectrum ofappearances on MRI. J Magn Reson Imaging,2000,11(2):141-148.
    [42] Bakir B, Salmaslioglu A, Poyanli A, et al. Diffusion weighted MR imaging of pancreatic islet celltumors. Eur J Radiol,2010,74(1):214-220.
    [43] Montemarano H, Lonergan G J, Bulas D I, et al. Pancreatoblastoma: imaging findings in10patients and review of the literature. Radiology,2000,214(2):476-482.
    [44] Roebuck D J, Yuen M K, Wong Y C, et al. Imaging features of pancreatoblastoma. PediatrRadiol,2001,31(7):501-506.
    [45] Cantisani V, Mortele K J, Levy A, et al. MR imaging features of solid pseudopapillary tumor of thepancreas in adult and pediatric patients. AJR Am J Roentgenol,2003,181(2):395-401.
    [46] Nakatani K, Watanabe Y, Okumura A, et al. MR imaging features of solid-pseudopapillary tumorof the pancreas. Magn Reson Med Sci,2007,6(2):121-126.
    [47] Choi J Y, Kim M J, Lee J Y, et al. Typical and atypical manifestations of serous cystadenoma ofthe pancreas: imaging findings with pathologic correlation. AJR Am JRoentgenol,2009,193(1):136-142.
    [48] Basturk O, Coban I, Adsay N V. Pancreatic cysts: pathologic classification, differential diagnosis,and clinical implications. Arch Pathol Lab Med,2009,133(3):423-438.
    [49] Adsay N V. Cystic neoplasia of the pancreas: pathology and biology. J GastrointestSurg,2008,12(3):401-404.
    [50] Fatima Z, Ichikawa T, Motosugi U, et al. Magnetic resonance diffusion-weighted imaging in thecharacterization of pancreatic mucinous cystic lesions. Clin Radiol,2011,66(2):108-111.
    [51] Inan N, Arslan A, Akansel G, et al. Diffusion-weighted imaging in the differential diagnos is ofcystic lesions of the pancreas. AJR Am J Roentgenol,2008,191(4):1115-1121.
    [52] Boraschi P, Donati F, Gigoni R, et al. Diffusion-weighted MRI in the characterization of cysticpancreatic lesions: usefulness of ADC values. Magn Reson Imaging,2010,28(10):1447-1455.
    [53] Sandrasegaran K, Akis ik F M, Patel A A, et al. Diffusion-weighted imaging in characterization ofcystic pancreatic lesions. Clin Radiol,2011,66(9):808-814.
    [1] Begley J K, Redpath T W, Bolan P J, et al. In vivo proton magnetic resonance spectroscopy ofbreast cancer: a review of the literature. Breast Cancer Res,2012,14(2):207.
    [2] Bourne R, Katelaris P, Danieletto S, et al. Detection of prostate cancer by magnetic resonanceimaging and spectroscopy in vivo. ANZ J Surg,2003,73(8):666-668.
    [3]杨正汉,冯逢,王霄英.磁共振成像技术指南-检查规范、临床策略及新技术应用.北京:人民军医出版社,2010:333-336.
    [4] Preul M C, Caramanos Z, Collins D L, et al. Accurate, noninvasive diagnos is of human braintumors by using proton magnetic resonance spectroscopy. Nat Med,1996,2(3):323-325.
    [5] Star-Lack J, Spielman D, Adalsteinsson E, et al. In vivo lactate editing with simultaneousdetection of choline, creatine, NAA, and lipid singlets at1.5T using PRESS excitation withapplications to the study of brain and head and neck tumors. J Magn Reson,1998,133(2):243-254.
    [6] Bruhn H, Frahm J, Gyngell M L, et al. Noninvas ive differentiation of tumors with use of localizedH-1MR spectroscopy in vivo: initial experience in patients with cerebral tumors.Radiology,1989,172(2):541-548.
    [7] Videen J S, Michaelis T, Pinto P, et al. Human cerebral osmolytes during chronic hyponatremia. Aproton magnetic resonance spectroscopy study. J Clin Invest,1995,95(2):788-793.
    [8] Kreis R, Salvisberg C, Lutz T, et al. Visibility of vascular phenylalanine in dynamic uptake studiesin humans using magnetic resonance spectroscopy. Magn Reson Med,2005,54(2):435-438.
    [9] Del S A, Falini A, Ravasi L, et al. Anatomical and biochemical investigation of primary braintumours. Eur J Nucl Med,2001,28(12):1851-1872.
    [10] Danishad K K, Sharma U, Sah R G, et al. Assessment of therapeutic response of locally advancedbreast cancer (LABC) patients undergoing neoadjuvant chemotherapy (NACT) monitored usingsequential magnetic resonance spectroscopic imaging (MRSI). NMR Biomed,2010,23(3):233-241.
    [11] Su M Y, Baik H M, Yu H J, et al. Comparison of choline and pharmacokinetic parameters in breastcancer measured by MR spectroscopic imaging and dynamic contrast enhanced MRI. TechnolCancer Res Treat,2006,5(4):401-410.
    [12] Jacobs M A, Barker P B, Argani P, et al. Combined dynamic contrast enhanced breast MR andproton spectroscopic imaging: a feasibility study. J Magn Reson Imaging,2005,21(1):23-28.
    [13] Roebuck J R, Cecil K M, Schnall M D, et al. Human breast lesions: characterization with protonMR spectroscopy. Radiology,1998,209(1):269-275.
    [14] Li C W, Kuo Y C, Chen C Y, et al. Quantification of choline compounds in human hepatic tumorsby proton MR spectroscopy at3T. Magn Reson Med,2005,53(4):770-776.
    [15] Fischbach F, Schirmer T, Thormann M, et al. Quantitative proton magnetic resonance spectroscopyof the normal liver and malignant hepatic lesions at3.0Tesla. Eur Radiol,2008,18(11):2549-2558.
    [16] Kuo Y T, Li C W, Chen C Y, et al. In vivo proton magnetic resonance spectroscopy of large focalhepatic lesions and metabolite change of hepatocellular carcinoma before and after transcatheterarterial chemoembolization using3.0-T MR scanner. J Magn Reson Imaging,2004,19(5):598-604.
    [17] Yao X, Zeng M, Wang H, et al. Metabolite detection of pancreatic carcinoma by in vivo protonMR spectroscopy at3T: initial results. Radiol Med,2012,117(5):780-788.
    [18] Perman W H, Balc i N C, Akduman I. Review of magnetic resonance spectroscopy in the liver andthe pancreas[J]. Top Magn Reson Imaging,2009,20(2):89-97.
    [19] Ma X, Zhao X, Ouyang H, et al. The metabolic features of normal pancreas and pancreaticadenocarcinoma: preliminary result of in vivo proton magnetic resonance spectroscopy at3.0T. JComput Assist Tomogr,2011,35(5):539-543.
    [20] Allen J R, Prost R W, Griffith O W, et al. In vivo proton (H1) magnetic resonance spectroscopy forcervical carcinoma[J]. Am J Clin Oncol,2001,24(5):522-529.
    [21] Mocarska A, Staroslawska E, Kieszko D, et al. Usefulness of magnetic resonance in evaluation ofcervical cancer progression[J]. Ginekol Pol,2012,83(2):122-127.
    [22] Mahon M M, Desouza N M, Dina R, et al. Preinvas ive and invasive cervical cancer: an ex vivoproton magic angle spinning magnetic resonance spectroscopy study[J]. NMRBiomed,2004,17(3):144-153.
    [23] Kobus T, Vos P C, Hambrock T, et al. Prostate cancer aggressiveness: in vivo assessment of MRspectroscopy and diffusion-weighted imaging at3T. Radiology,2012,265(2):457-467.
    [24] Sciarra A, Panebianco V, Salciccia S, et al. Role of dynamic contrast-enhanced magnetic resonance(MR) imaging and proton MR spectroscopic imaging in the detection of local recurrence afterradical prostatectomy for prostate cancer. Eur Urol,2008,54(3):589-600.
    [25] Sciarra A, Salciccia S, Panebianco V. Proton spectroscopic and dynamic contrast-enhancedmagnetic resonance: a modern approach in prostate cancer imaging. Eur Urol,2008,54(3):485-488.
    [26] Rajesh A, Coakley F V. MR imaging and MR spectroscopic imaging of prostate cancer. MagnReson Imaging Clin N Am,2004,12(3):557-579.
    [27] Doran S T, Falk G L, Somorjai R L, et al. Pathology of Barrett's esophagus by proton magneticresonance spectroscopy and a statistical classification strategy. Am J Surg,2003,185(3):232-238.
    [28] Yakoub D, Keun H C, Goldin R, et al. Metabolic profiling detects field effects in nondysplastictissue from esophageal cancer patients. Cancer Res,2010,70(22):9129-9136.
    [29] Dzik-Jurasz A S, Murphy P S, George M, et al. Human rectal adenocarcinoma: demonstration of1H-MR spectra in vivo at1.5T. Magn Reson Med,2002,47(4):809-811.
    [30] Kim M J, Lee S J, Lee J H, et al. Detection of rectal cancer and response to concurrentchemoradiotherapy by proton magnetic resonance spectroscopy. Magn ResonImaging,2012,30(6):848-853.
    [31] Kwock L, Smith J K, Castillo M, et al. Clinical role of proton magnetic resonance spectroscopy inoncology: brain, breast, and prostate cancer. Lancet Oncol,2006,7(10):859-868.
    [32] Katz-Brull R, Rofsky N M, Lenkinski R E. Breathhold abdominal and thoracic proton MRspectroscopy at3T. Magn Reson Med,2003,50(3):461-467.
    [33] Jacobs M A, Ouwerkerk R, Wolff A C, et al. Multiparametric and multinuclear magnetic resonanceimaging of human breast cancer: current applications. Technol Cancer ResTreat,2004,3(6):543-550.
    [34] Orel S G, Schnall M D. MR imaging of the breast for the detection, diagnosis, and staging of breastcancer. Radiology,2001,220(1):13-30.
    [35] Sitter B, Sonnewald U, Spraul M, et al. High-resolution magic angle spinning MRS of breastcancer tissue. NMR Biomed,2002,15(5):327-337.
    [36] Podo F. Tumour phospholipid metabolism. NMR Biomed,1999,12(7):413-439.
    [37] Katz-Brull R, Lavin P T, Lenkinski R E. Clinical utility of proton magnetic resonance spectroscopyin characterizing breast lesions. J Natl Cancer Inst,2002,94(16):1197-1203.
    [38] Mountford C E, Somorjai R L, Malycha P, et al. Diagnosis and prognosis of breast cancer bymagnetic resonance spectroscopy of fine-needle aspirates analysed using a statistical classificationstrategy. Br J Surg,2001,88(9):1234-1240.
    [39] Tozaki M, Sakamoto M, Oyama Y, et al. Predicting pathological response to neoadjuvantchemotherapy in breast cancer with quantitative1H MR spectroscopy using the external standardmethod. J Magn Reson Imaging,2010,31(4):895-902.
    [40] Longo R, Pollesello P, Ricci C, et al. Proton MR spectroscopy in quantitative in vivo determinationof fat content in human liver steatosis. J Magn Reson Imaging,1995,5(3):281-285.
    [41] Soper R, Himmelreich U, Painter D, et al. Pathology of hepatocellular carcinoma and its precursorsusing proton magnetic resonance spectroscopy and a statistical classification strategy.Pathology,2002,34(5):417-422.
    [42] Bates T E, Williams S R, Gadian D G. Phosphodiesters in the liver: the effect of field strength onthe31P signal. Magn Reson Med,1989,12(1):145-150.
    [43] Bell J D, Cox I J, Sargentoni J, et al. A31P and1H-NMR investigation in vitro of normal andabnormal human liver. Biochim Biophys Acta,1993,1225(1):71-77.
    [44] Fang F, He X, Deng H, et al. Discrimination of metabolic profiles of pancreatic cancer fromchronic pancreatitis by high-resolution magic angle spinning1H nuclear magnetic resonance andprincipal components analysis. Cancer Sci,2007,98(11):1678-1682.
    [45] Tesiram Y A, Lerner M, Stewart C, et al. Utility of nuclear magnetic resonance spectroscopy forpancreatic cancer studies. Pancreas,2012,41(3):474-480.
    [46] Kaplan O, Kushnir T, Askenazy N, et al. Role of nuclear magnetic resonance spectroscopy (MRS)in cancer diagnosis and treatment:31P,23Na, and1H MRS studies of three models of pancreaticcancer. Cancer Res,1997,57(8):1452-1459.
    [47] Cheng L L, Burns M A, Taylor J L, et al. Metabolic characterization of human prostate cancer withtissue magnetic resonance spectroscopy. Cancer Res,2005,65(8):3030-3034.
    [48] Sciarra A, Panebianco V, Salciccia S, et al. Modern role of magnetic resonance and spectroscopy inthe imaging of prostate cancer. Urol Oncol,2011,29(1):12-20.
    [49] Heidenreich A, Aus G, Bolla M, et al.[EAU guidelines on prostate cancer]. Actas UrolEsp,2009,33(2):113-126.
    [50] Hom J J, Coakley F V, Simko J P, et al. High-grade prostatic intraepithelial neoplasia in patientswith prostate cancer: MR and MR spectroscopic imaging features--initial experience.Radiology,2007,242(2):483-489.
    [51] Gluch L. Magnetic resonance in surgical oncology: II-literature review. ANZ JSurg,2005,75(6):464-470.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700