用户名: 密码: 验证码:
青藏高原及其邻近地区上空平流层—对流层物质交换的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏高原及其邻近地区特殊的大气成分分布和动力过程使得该区域的平流层-对流层物质交换(STE)过程表现出明显的重要性和特殊性。研究高原及其邻近地区的STE不仅对了解全球STE收支和变化特征具有重要的意义,而且可为全面理解人类排放的化学物质对区域乃至全球气候的影响提供更多的信息和理论参考。本文利用MLS、AIRS、CALIPSO和TRMM等各种卫星反演产品及欧洲中心(ECMWF)和NCEP再分析资料,结合NOAA HYSPLIT轨迹模式和大气化学-气候模式,采用诊断分析和数值模拟相结合的方法,研究了青藏高原及其邻近地区上对流层和下平流层(UTLS)区域的水汽分布特征、输送过程及相关机制,探讨了深对流垂直输送对UTLS区域大气成分分布的影响以及在STE过程中的作用,进一步定量化分析了高原及其邻近地区STE的长期变化趋势和形成机制。所得的主要结论如下:
     (1)本文首先利用高分辨率的MLS和AIRS卫星观测资料以及同期的再分析资料,结合NOAA HYSPLIT轨迹模式,讨论了青藏高原上空对流层顶附近的水汽分布和变化特征,以及青藏高原上空平流层与对流层之间的物质交换。研究表明:3-4月青藏高原南侧对流层顶附近100hPa存在一个水汽低值带,而7-8月和9-10月高原南侧对流层顶附近100hPa存在一个明显的水汽高值区。3-4月,亚洲夏季风未发展之前,上对流层受高原大地形抬升和西风气流的影响,高原以南地区存在对流层与平流层的物质交换,而在高原中部地区(80°E-90°E)215hPa则由于空气的下沉运动将上层的干空气向下输送出现一个水汽低值中心。7-8月,受印度夏季风和高原上空反气旋式环流的影响,高原上空有明显的水汽穿过对流层顶向平流层输送的现象,反气旋环流中心的水汽经过2-4天的上升过程可从对流层进入平流层。高原、高原以东和高原以西的水汽在对流层顶附近的季节变化基本一致,在100hPa三个不同区域的水汽在3月份均达到最低。
     (2)本文的分析表明高原及其邻近地区不同区域的STE特征有着显著的差异和季节变化。3-4月高原以北地区(40°N-45°N)上对流层和下平流层区域相比于同纬度周边地区有较高的水汽,主要与来自北方的寒潮、锋面活动以及高原大地形对空气的强迫抬升有关。另一个有趣的发现是,5-9月高原以西地区(30°N-40°N)在200hPa附近存在一个显著的5-7ppmv的水汽低值区,这一低水汽带的形成主要与高原以西地区发展的反气旋有关,反气旋引起平流层的干空气下沉,导致上对流层出现一个水汽低值带。同时,高原以西地区地表为沙漠,沙漠地区本身水汽少,多为浅对流活动,故而高空水汽也较少。
     (3)本文进一步利用13年的TRMM卫星资料以及NCEP资料研究了高原及其邻近地区深对流系统的分布特征。结果表明,夏季风爆发前,20dBZ回波最大高度达到14km的深对流和40dBZ回波最大高度达到10km的深对流系统主要发生在高原南坡的恒河三角洲,范围较小,高原上空的深对流系统较少。夏季风爆发后,20dBZ回波顶高达到14km的深对流系统在高原南坡的发生频数最高,范围广泛,并沿着喜马拉雅山有一深对流系统活跃的带状分布区,高原南部和东南部也存在对流系统的集中分布区;而超过17km的深对流系统仅在高原南坡零散的出现:40dBZ回波顶高大于10km的深对流系统在喜马拉雅山西北部凹陷区内的发生频数达到最高,并与地表降水的分布一致。从1998年到2010年期间,除了高原上空40dBZ回波顶高大于10km的深对流系统在夏季风爆发前是减弱趋势以外,高原和高原南坡20dBZ回波顶高超过14km和17km的深对流系统在夏季风爆发前后以及40dBZ回波顶高大于10km的深对流系统在夏季风期间均呈显著的增加趋势。通过对高原上空一次深对流发生发展过程中的平流层-对流层物质交换进行个例分析后发现,高原东部的强对流活动可将对流层低层具有高水汽、低臭氧和位涡的对流层空气向上输送到对流层顶附近区域,而强对流区域高而冷的对流层顶存在较强的冻干脱水作用,从而影响UTLS区域的水汽分布。
     (4)本文还利用欧洲中心ERA-Interim再分析资料和WACCM3模式数据集,定量化地分析了青藏高原及其邻近地区上空穿越对流层顶的质量通量(CTMF)和平流层-对流层物质交换的长期变化趋势,诊断了影响高原及其邻近地区STE变化趋势的主要气候因子。冬季,高原及其邻近地区净穿越对流层顶的质量通量表现为一个强的空间偶极结构,主要与陡峭的对流层顶气压经向梯度或热力对流层顶的不连续引起的沿着对流层顶的质量水平交换有关。夏季,高原上空净CTMF变弱但均为向上的输送,高原东南部盛行的季风环流产生了显著的上升运动,进而引起向上的穿越对流层顶的质量输送。高原上空的净CTMF在冬季存在最大的向下质量通量,而净向上质量通量在夏季达到最大值。高原上空净穿越对流层顶的质量年交换量占全球净CTMF的2.96%。冬季,高原上空的净穿越对流层顶质量通量在1979年到2009年期间呈现强的减弱趋势,表明过去几十年高原上空向上的质量通量减少,而向下的质量通量增加。造成冬季高原上空净CTMF呈现明显减弱趋势的主要原因是高原上空对流层顶的抬升和高原冬季风的减弱。夏季,净CTMF在高原西部为减弱趋势,在高原东部为增加趋势。气候模式的模拟结果表明,南海地区海温的变化通过改变亚洲季风环流的强度进而对高原上空的对流层顶高度和穿越对流层顶的质量通量产生显著的影响。
The atmospheric constituents and dynamical process of the Tibetan Plateau (TP) and its surroundings make the stratosphere-troposphere exchange (STE) over the TP and its surroundings become a crucial and special research topic. Detailed investigations on the STE over the TP and its surroundings are not only crucial for understanding the characteristics and global budget of the STE, but also important for providing us with more information and theoretical basis to understand the impact of anthropogenic emissions on regional and global climate change. Using the MLS (Microwave Limb Sounder), AIRS (Atmosphere Infrared Sounder), CALIPSO (Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations) and TRMM (Tropical Rainfall Measuring Mission) observations together with the ERA-Interim of ECMWF (European Center for Medium Range Weather Forecasting) reanalysis data and NCEP (National Centers for Environmental Prediction) reanalysis data, a trajectory model (NOAA HYSPLIT) and a climate-chemistry model, characteristics and transport prepoperties of water vapor in the upper troposphere and lower stratosphere (UTLS) over the TP and its surroundings are investigated, and the effect of vertical transport by deep convective activities on the chemical constituents in UTLS over the TP and its surroundings are discussed in this thesis. In addition, the long-term trends of the STE as well as the main mechanisms responsible for STE trends over the TP and its surroundings are also analyzed. The main conclusions are summarized as follows:
     (1) The distributions and sources of atmospheric water vapor near tropopause region over the TP and the associated STE over the TP are investigated using satellite observations, NCEP/NCAR reanalysis data and a trajectory model. The results show that the distributions of water vapor over the TP are characterized by a minimum over the southern TP during March and April, and a maximum over the southern TP from July to October near tropopause region at100hPa. The water vapor mixing ratios have large values in the upper troposphere over the south slope of TP between March and April. The results suggest that transport of air masses from the troposphere to stratosphere occurs over south slope of TP because of the orographic lifting of TP and the westerly circulation. The low water vapor at215hPa over the center of the TP (80°E-90°E) is related to the sinking of dry air from the UTLS region. The water vapor over the TP is the highest in the exuberant monsoon season between July and August and is related to the Indian summer monsoon the associated anticyclonic circulation, which transports water vapor to the TP lower stratosphere by2-4days. The seasonal variation of water vapor mixing ratios near tropopause region (i.e., at100hPa) over the TP, the east and west of TP are consistent with each other, the minimum value of water vapor occurs in March.
     (2) The results show prominent difference and seasonal variation exisit in the STE patters over different regions of the TP. The water vapor in the UTLS adjacent to the northern TP (40°N-45°N) is found to be relatively higher than that in the surrounding regions of the same latitude in March and April. This relatively higher water vapor in the northern TP UTLS is proposed to be associated with approaching cold surges from the north and forced lifting of air by high orography. Another interesting feature detected in this study is the region of low water vapor values on the order of5-7ppmv, which is more pronounced from May to September at around200hPa and located at30°N-40°N western TP. This low water vapor region is found to be related to an anticyclone developed at the western TP which causes sinking of dry air from the stratosphere resulting lower water vapor values in the upper troposphere. In addition, the low water vapor and weak convective activity over the desert at the western TP lead to the lower water vapor in the upper troposphere at the western TP.
     (3) Using13years of TRMM data and NCEP reanalysis fields, the characteristics of deep convection distributions and variations over the TP and its surroundings are investigated. The results show that deep convective activities of radar echo≥20dBZ extending≥14km in height and radar echo≥40dBZ extending≥10km in height form preferentially over the Ganges Delta, the number of deep convection is low over the TP in the premonsoon season. During the monsoon season, the deep convective activities of radar echo≥20dBZ extending≥14km in height are primarily found over the south slope of the TP, along the Himalayan foothills, the southern and southeastern TP. While the deep convection with radar echo≥20dBZ extending≥17km in height occurred over the south slope of the TP is rare. The location of maximum occurrence of the deep convection (radar echo≥40dBZ extending≥10km in height) is the western Himalayan, which is consistent with the surface precipitation. The deep convection ove the TP (radar echo≥40dBZ extending≥10km in height) exhibits a weaker decreasing trend in the premonsoon and the deep convection has an increasing trend during1998-2010. Furthermore, the vertical transport of mass by deep convective activities occurred over the eastern TP shows that the air with high water vapor, low ozone and potential vorticity (PV) in the troposphere is transported to tropopause region by strong vertical motions over the eastern TP, but the higher and colder tropopause over the convective region leads to the stronger dehydration, which has an important impact on the chemical composition in the UTLS region over the TP.
     (4) The cross-tropopause mass flux (CTMF) and long-term trends of the STE over the TP and its surroundings are analyzed, and the main factors responsible for STE trends near the TP are investigated using ECMWF reanalysis data (ERA-Interim) and a general circulation model. The net CTMF shows a strong spatial dipole structure near the TP, which is mainly related to the horizontal exchange of mass along the tropopause associated with the sharp tropopause pressure meridional gradient or discontinuity of the thermal tropopause in winter. In summer, the net CTMF over the TP becomes smaller but overall upward. The prevailing monsoon circulation over the southeastern TP gives rise to significant upward vertical motions and upward cross tropopause transport of air in this region. The STE over the TP shows that the largest downward mass flux occurs in winter, and the net upward mass flux reaches maximum in summer. The net CTMF over the TP accounts for2.96%of the global net. The net CTMF over the TP exhibits a strong decreasing trend in winter during the period1979-2009, suggesting that the upward mass flux decreases and the downward mass flux increases over the TP in the past several decades. The strong decreasing trend of net CTMF in winter over the TP is resulted from the combined effects of the rising tropopause height and weakening winter monsoon. The summer time net CTMF exhibits a decreasing trend over the western TP and an increasing trend over the eastern TP. The sensitivity simulations with a climate model reveal that changes in land-sea surface temperatures over the South Asia can significantly affect the tropopause and the CTMF over the TP via changing the intensity of Asia monsoon.
引文
卞建春,王庚辰,陈洪滨,等.2003年12月青藏高原上空出现微型臭氧洞[J].科学通报,2006,51(5):606-609.
    卞建春.上对流层/下平流层大气垂直结构研究进展[J].地球科学进展,2009,24(3):262-271.
    曾庆存.大气中的适应过程和调整过程.气象学报,1963,33(2):163-174.
    陈斌,徐祥德,卞建春,等.夏季亚洲季风区对流层-平流层不可逆质量交换特征分析[J].地球物理学报,2010,53(5):1050-1059.
    陈斌,徐祥德,施晓晖.2005年夏季亚洲季风区下平流层水汽的对流源区[J].自然科学进展,2009,19(10):1094-1099.
    陈斌,徐祥德,杨帅等.夏季青藏高原地区近地层水汽进入平流层的特征分析[J].地球物理学报,2012,55(2):406-414.
    陈斌.青藏高原及其周边区域夏季上对流层水汽变化和输送特征研究[D].北京:中国气象科学研究院,博士学位论文,2009:1-90.
    陈闯,田文寿,田红瑛,等.青藏高原东北侧臭氧垂直分布与平流层-对流层物质交换[J].高原气象,2012,31(2):295-303.
    陈洪滨,卞建春,吕达仁.2006.上对流层下平流层交换过程研究的进展与展望[J].大气科学,30(5):813-820.
    丛春华,李维亮,周秀骥.青藏高原及其邻近地区上空平流层-对流层之间大气的质量交换[J].科学通报,2001,46(22):1914-1918.
    樊雯璇,王卫国,卞建春,等.青藏高原及其邻近区域穿越对流层顶质量通量的时空演变特征[J].大气科学,2008,32(6):1309-1318.
    郭冬,吕达仁,孙照渤.2007.全球平流层、对流层质量交换的季节变化特征[J].自然科学进展,2007,17(10):1391-1400.
    胡宁,张朝林,仲跻芹,等.大气对流层平流层(STE)研究进展[J].地球科学,2011,26(4):375-385.
    胡永云.关于平流层异常影响对流层天气系统的研究进展[J].地球科学进展,2006,21(7):713-721.
    李崇银,龙振夏.准两年振荡及其对东亚大气环流和气候的影响[J].大气科学,1992,16(2):167-176.
    李勇红,张可苏.急流加速产生的高空锋生和低空锋生[J].大气科学,1992,16(4):452-463.
    梁潇云,刘屹岷,吴国雄.青藏高原隆升对春、夏季亚洲大气环流的影响[J].高原气象,2005,24(6):837-845
    刘晓东.青藏高原隆升对亚洲季风形成和全球气候与环境变化的影响[J].高原气象,1999,18(3):321-332
    吕达仁,卞建春,陈洪滨,等.平流层大气过程研究的前沿与重要性[J].地球科学进展,2009,24(3):221-228.
    吕达仁,陈洪滨.平流层和中层大气研究的进展[J].大气科学,2003,27(4):750-769.
    吕达仁,陈泽宇,卞建春,等.平流层对流层相互作用的多尺度过程特征及其与天气气候关系研究进展[J].大气科学,2008,32(4):782-793.
    苏东玉,李跃清,蒋兴文.南亚高压的研究进展及展望[J].干旱气象,2006,24(3):68-74.
    田文寿,田红瑛,商林,等.2011.热带平流层与对流层之间相互作用的研究进展[J].热带气象学报,201],5:765-774.
    田文寿,张敏,舒建川.2009.中层大气模式的应用及发展前景[J].地球科学进展,2009,24(3):252-261.
    吴爱明,倪允琪.青藏高原对亚洲季风平均环流影响的数值试验[J].高原气象,1997,16(2):153-164
    吴池胜,王安宁.青藏高原隆起对亚洲夏季风形成作用的数值试验[J].高原气象,1995,14(4):425-433
    杨健,吕达仁.平流层-对流层交换研究进展[J].地球科学进展,2003a,18(3):380-385.
    杨健,吕达仁.东亚地区一次切断低压引起的平流层、对流层交换数值模拟研究[J].大气科学,2003b,2(6):1031-1044.
    杨健,吕达仁.2000年北半球平流层、对流层质量交换的季节变化[J].大气科学,2004,28(2):294-300.
    叶笃正,罗四维,朱抱真.西藏高原及其附近的流场结构和对流层大气的热量平衡[J].气象学报,1957,28:108-121.
    易明建,陈月娟,周任君,邓淑梅.2008年中国南方雪灾与平流层极涡异常的等熵位涡分析[J].高原气象,2009,28(4):880-888.
    占瑞芬,李建平.青藏高原和热带西北太平洋大气热源在亚洲地区夏季平流层-对流层水汽交换的年代际变化中的作用[J].地球科学,2008,38(8):1028-1040.
    郑庆林,王三杉,张朝林,等.青藏高原动力和热力作用对热带大气环流影响的数值研究[J].高原气象,2001,20(1):14-2].
    周立波,邹捍,刘宇.北极楚克奇海上空臭氧垂直变化的探测与分析[J].气候与环境变化研究,2002,7(4):409-414.
    周秀骥,罗超,李维亮,等.中国地区臭氧总量变化与青藏高原低值中心[J].科学通报,1995,40(15):1396-1398.
    Alcala, C. M., and A. E. Dessler. Observations of deep convection in the tropics using the tropical rainfall measuring (TRMM) precipitation radar. J. Geophys. Res.,2002,107 (D24),4792, doi: 10.1029/2002JD002457.
    Ancellet G, Pelon J, Beekmann M, et al. Ground-based lidar studies of ozone exchanges between the stratosphere and the troposphere. J. Geophys. Res.,1991,96:22401-22422.
    Andrews D G. Wave, mean-flow interaction in the middle atmosphere. Adv. Geophys.,1985,28A: 249-275.
    Angell J K, Korshover J. Quasi-biennial variations in temperature, total ozone and tropopause height[J]. J Atmos Sci,1964,21(5):479-492.
    Appenzeller C, Hohon J R, Rosenlof K H. Seasonal variation of mass transport across the tropopause. J. Geophys. Res.,1996,101:15071-1507.
    Baldwin M P, Dameris M, Shepherd T G. How Will the Stratosphere Affect Climate Change? Science,2007,316:576-577.
    Baldwin M P, Dunkerton T J. Stratospheric harbingers of anomalous weather regimes. Science, 2001,294:581-584.
    Baldwin M P, Stephenson D B, Thompson D W J, et al. Stratospheric memory and skill of extended-range weather forecasts. Science,2003a,301:636-640.
    Baldwin M P, Thompson D W J, Shuckburgh E F, et al. Weather from the Stratosphere. Science, 2003b,301:317-318.
    Baldwin M P, Dunkerton T J. Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res.,1999,104(D24):30937-30946.
    Baray J-L, Ancellet G, Randriambelo T, Baldy S. Tropical cyclone Marlene and stratosphere-troposphere exchange. J. Geophys. Res.,1999,104(D11):13953-13970.
    Beekmann M, et al. Regional and global tropopause fold occurrence and related ozone flux across the tropopause, J. Atmos. Chem.,1997,28:29-44.
    Berthet G, Esler J G, Haynes P H. A Lagrangian perspective of the tropopause and the ventilation of the lowermost stratosphere. J. Geophys. Res.,2007,112, D18102, doi:10.1029/2006JD008295.
    Bethan S, Vaughan G, Reid S. J. A comparison of ozone and thermal tropopause heights and the impact of tropopause definition on quantifying the ozone content of the troposphere. Q. J. R. Meteorol. Soc,1996,122:929-944.
    Brewer A M. Evidence for a world circulation provides by the measurements of helium and water vapor distribution in the stratosphere. Q. J. R. Meteorol. Soc,1949,75:351-363.
    Browell E V, et al. Ozone and aerosol distributions and air mass characteristics over the South Atlantic Basin during the burning season. J. Geophys. Res.,1996,101:24043-24068.
    Browell E V. Tropopause fold structure determined from airborn lidar and in situ measurements. J. Geophys. Res.,1987,92:2112-2120.
    Butchart N, Scaife A A, Bourqui M, et al. Simulations of anthropogenic change in the strength of the Brewer-Dobson circulation. Clim Dyn,2006,27:727-741.
    Cess R D, Potter G L, Blanchet J P, et al. Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res.,1990,95(D10): 16601-16615.
    Chaboureau J-P, Cammas J-P, Duron J, et al. A numerical study of tropical cross-tropopause transport by convective overshoots. Atmos. Chem. Phys.,2007,7:1731-1740, doi:10.5194/acp-7-1731-2007.
    Charney J G, Drazin P G. Propagation of planetary scale disturbances from the lower into the upper atmosphere. J. Geophys. Res.,1961,66:83-109.
    Chen P.1995. Isentropic cross-tropopause mass exchange in the extratropics. J. Geophys. Res., 100(D8):16661-16673.
    Chen X L, Ma Y M, Su Z, et al. On the behaviors of the tropopause folding events over the Tibetan Plateau. Atmos. Chem. Phys.,2011,11:5113-5122, doi:10.5194/acp-11-5113-2011.
    Chung Y S, Dann T. Observations of stratospheric ozone at the ground level in Regina, Canada. Atmospheric Environment,1985,19:157-162.
    Corti T, Luo B P, Fu Q, et al. The impact of cirrus clouds on tropical troposphere-to-stratosphere transport. Atmos. Chem. Phys.,2006,6:2539-2547, doi:10.5194/acp-6-2539-2006.
    Corti.T, Luo.B.P, Reus.M, et al. Unprecedented evidence for deep convection hydrating the tropical stratosphere [J]. Geophys. Res. Lett.,2008,35, L10810, doi: 10.1029/2008GL033641.
    Cox B D, Bithell M, Gray L J. A general circulation model study of a tropopause-folding event at middle latitudes. Quart. J. Roy. Meteor. Soc,1995,121:883-910.
    Danielsen E F. Stratospheric-tropospheric exchange based on radioactivity, ozone and potential vorticity. J. Atmos. Sci.,1968,25:502-518.
    Danielsen E F. In situ evidence of rapid, vertical, irreversible transport of lower tropospheric air into the lower tropical stratosphere by convective cloud turrets and by larger-scale upwelling in tropical cyclones. J Geophys Res,1993,98(D5):8665-8681.
    Davies T D, Schuepbach E. Episodes of high ozone concentrations at the Earth's surface resulting from transport down from the upper troposphere/lower stratosphere:a review and case studies. Atmospheric Environment,1994,28,53-68.
    Dessler A E, Sherwood S C. The effect of convection on the summertime extratropical lower stratosphere. J. Geophys. Res.,2004,109, D23301, doi:10.1029/2004JD005209.
    Dessler A E. The effect of deep tropical convection on the tropical tropopause layer. J. Geophys. Res.,2002,107(D3),4033, doi:10.1029/2001JD000511.
    Dessler A E. A determination of the cloud feedback from climate variations over the past decade. Science,2010,30:1523-1527.
    Dethof A, O'Neill A, Slingo J. Quantification of the isentropic mass transport across the dynamical tropopause. J. Geophys. Res.,2000,105:12279-12293.
    Dhomse S, Weber M, Burrows J. The relationship between tropospheric wave forcing and tropical lower stratosphere water vapor. Atmos Chem Phys,2008,8(3):471-480.
    Dickerson, R. R., Huffman, G. J., Luke, W. T., Nunnermacker, L. J, et al. Thunderstorms:an important mechanism in the transport of air pollutants, Science,1987,235,460-465.
    Dobson G M B. Origin and distribution of the polyatomic molecules in the atmosphere. Proc. R. Soc. Lond. Ser. A,1956,236:187-193.
    Ebel A, Hass H, Jakobs H J, et al. Simulation of ozone intrusion caused by a tropopause fold and cut-off low. Atmos. Environ.,1991, Part A,25:2131-2144.
    Edmon H J, Hoskins B J, Mcintyre M E. Eliassen-Palm cross sections for the troposphere. J. Atmos. Sci.,1980,37:2600-2616.
    Eguchi N, Shiotani M. Intraseasonal variations of water vapor and cirrus clouds in the tropical upper troposphere. J. Geophys. Res.,2004,109, D12106, doi:10.1029/2003JD004314.
    Eluszkiewicz J, et al. Residual circulation in the stratosphere and lower mesosphere as diagnosed from microwave limb sounder data. J. Atmos. Sci.,1996,53:217-240.
    Evans S J, Toumi R, Harries J E, et al. Trends in stratospheric humidity and the sensitivity of ozone to these trends. J. Geophys. Re s.,1998,103:8715-8725.
    Fetzer E J, Read W G, Waliser D, et al. Comparison of upper tropospheric water vapor observations from the Microwave Limb Sounder and Atmospheric Infrared Sounder. J. Geophys. Res.,2008,113, D22110, doi:10.1029/2008JD010000.
    Flohn H. Large-scale aspects of the summer monsoon in south and east Asia. J Meteor Soc Japan, 1957,75:180-186.
    Folkins I, Martin R V. The vertical structure of tropical convection and its impact on the budgets of water vapor and ozone. J. Atmos. Sci.,2005,62:1560-1573.
    Forster P M deF, Shine K P. Stratospheric water vapour changes as a possible contributor to observed stratospheric cooling. Geophys. Res. Lett.,1999,26,3309-3312.
    Forster P M, Shine K P. Stratospheric water vapour changes as a possible contributor to observed stratospheric cooling. Geophysical Research Letters,1999,26(21):3309-3312.
    Fu R, Hu Y, Wright J S, et al. Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau [J]. Proc Nat Acad Sci,2006, 103:5664-5669.
    Fueglistaler S, Bonazzola M, Haynes P H, et al. Stratospheric water vapor predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics. J. Geophys. Res.,2005,110, D08107, doi:10.1029/2004JD005516.
    Fueglistaler S, Bonazzola M, Haynes P H, Peter T. Stratospheric water vapor predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics. J. Geophys. Res.,2005,110, D08107, doi:10.1029/2004JD005516.
    Fueglistaler S, Dessler A E, Dunkerton T J, et al. The tropical tropopause layer. Reviews of Geophysics,2009,47, RG1004, doi:10.1029/2008RG000267.
    Fueglistaler S, Fu Q. Impact of clouds on radiative heating rates in the tropical lower stratosphere. J. Geophys. Res.,2006,111, D23202, doi:10.1029/2006JD007273.
    Fueglistaler S, Wernli H, Peter T. Tropical troposphere-to-stratosphere transport inferred from trajectory calculations. J. Geophys.Res.,2004,109, doi:10.1029/2003JD004069.
    Fuglestvedt J S, Isaksen I S A, Wang W C. Estimates of indirect global warming potentials for CH4, CO and NOx. Clim. Change,1996,34:405-437.
    Gettelman A, Forster P M de F. A climatology of the tropical tropopause layer. J. Meteor. Soc. Japan,2002a,80(4B):911-924.
    Gettelman A, Kinnison D E, Dunkerton T J, et al. Impact of monsoon circulations on the upper troposphere and low stratosphere. J. Geophys. Res,2004,109, D22101, doi:10.1029/2004JD004878.
    Gettelman A, Randel W J, Massie S, et al. ElNino as a natural experiment for studying the tropical tropopause region. J Climate,2001,14(16):3375-3392.
    Gettelman A, Salby M L, Sassi F. Distribution and influence of convection in the tropical tropopause region. J. Geophys. Res.,2002b,107(D10),4080, doi:10.1029/2001JD001048
    Gray W M, Sheaffer J D, Knaff J A. Influence of the stratospheric QBO on ENSO variability [J]. J Meteor Soc Japan,1992,70(5):975-994.
    Grewe V, Dameris M. Calculating the global mass exchange between stratosphere and troposphere. Ann. Geophys.,1996,14:431-442.
    Hamilton K, Fan S M. Effects of the stratospheric quasi-bienial oscillation on long-lived greenhouse gases in the troposphere [J]. J Geophys Res,2000,105(D16):20581-20587.
    Hartmann D L, Wallace J M, Limpasuvan V, et al. Can Ozone depletion and greenhouse warming interact to produce rapid climate change? Journal of Proceedings of the National Academy Scienies,2000,97:1412-1417.
    Haynes P H, Marks C J, Mclnyrre M E, et al. On the "downward control" of the extratropical diabatic circulations by eddy-induced mean zonal force. Journal of Atmospheric Science, 1991,48:651-678.
    Held I M, Soden B J. Water vapor feedback and global warming. Annu. Rev. Energy Environ., 2000,25:441-475.
    Highwood E J, Hoskins B J. The tropical tropopause. Q. J. R. Meteorol. Soc.,1998,124: 1579-1604.
    Hoerling M P, Schaack T K, Lenzen A J. Global objective tropopuse analysis. Monthly Weather Review,1991,119:1816-1831.
    Hoerling M P, Schaack T K, Lenzen A J. A global analysis of stratospheric-tropospheric exchange during northern winter. Mon. Weather Rev.,1993,121:162-172.
    Holton J R. On the global exchange of mass between the stratosphere and troposphere. J. Atmos. Sci.,1990,47:392-395.
    Holton J R, Haynes P H, Mclntyre M E, et al. Stratosphere-troposphere exchange. Rev. Geophys., 1995,33(4):403-439.
    Holton. J. R., and A. Gettelman. Horizontal transport and the dehydration of the stratosphere. Geophys. Res. Lett.,2001,28:2799-2802.
    Hoskins B J, Mclntyre M E, Robertson A W. On the use and significance of isentropic potential vorticity maps. Quarterly Journal of the Royal Meteorological Society,1985,3:887-946.
    Hoskins B J. Non-Boussinesq effects and further development in a model of upper tropospheric frontogenesis. Q. J. R. Meteorol. Soc,1972,98:532-541.
    Hoskins B J, Rodwell M J. A model of the Asian summer monsoon, I, The global scale. J. Atmos. Sci.,1995,52:1329-1340.
    Hu Y, Tung K K, Liu J. A closer comparison of decadal atmospheric trends between Northern-Hemisphere early and late winter [J]. Journal of Climate,2005,18:2924-2936.
    Hu Y, Tung K K. Possible ozone induced long-term changes in planetary wave activity in late winter [J]. Journal of Climate,2003,16:3027-3038.
    Hurst D F, Oltmans S J. Vomel H, et al. Stratospheric water vapor trends over Boulder, Colorado: Analysis of the 30 year Boulder record. J. Geophys. Res.,2011,116, D02306, doi: 10.1029/2010JD015065.
    IPCC (Intergovernmental Panel on Climate Change).1990.‘Climate change’, The IPCC scientific assessment. WMO/UNEP. Cambridge University Press, Cambridge, UK.
    Jackson D R, Driscoll S J, Highwood E J, et al. Troposphere to stratosphere transport at low latitudes as studied using HALOE observations of water vapour 1992-1997. Q. J. R. Meteorol. Soc,1998,124:169-192
    Jiang Y B, Froidevaux L, Lambert A, et al. Validation of Aura Microwave Limb Sounder ozone by ozonesonde and lidar measurements. J. Geophys. Res.,2007,112, D24S34, doi: 10.1029/2007JD008776.
    Keyser D A, Shapiro M A. A review of the structure and dynamics of upper level frontal zones. Monthly Weather Review,1986,118:1914-1921.
    Khaykin S, Pommereau J-P, Korshunov L, et al. Hydration of the lower stratosphere by ice crystal geysers over land convective systems. Atmos. Chem. Phys.,2009,9:2275-2287, doi:10.5194/acp-9-2275-2009.
    Kiladis G N, Straub K H, Reid G C. et al. Aspects of interannual and intraseasonal variability of the tropopause and lower stratosphere. Quart J Roy Meteor Soc,2001,127(576):1961-1983.
    Kirk-Davidoff, D. B., et al. The effect of climate change on ozone depletion through changes in stratospheric water vapor. Nature,1999,402:399-401.
    Kley D. Tropospheric chemistry and transport. Science,1997,276,1043-1045.
    Kodera K. On the origin and nature of the interannual variability of the winter stratospheric circulation in the northern hemisphere. J. Geophys. Res.,1995,100:14077-14087.
    Krishnamurti T N, Kanamitsu M, Ross W J, et al. Tropical east-west circulations during the northern winter. J. Atmos. Sci.,1973,30:780-787.
    Kritz M S. Air mass origins and troposphere-to-stratosphere exchange associated with midlatitude cyclogenesis and tropopause folding inferred from 7be measurements. J. Geophys. Res.,1991, 96:17405-17414.
    Lamarque J F, Hess P G. Cross-tropopause mass exchange and potential vorticity budget in a simulated tropopause folding. J. Atmos. Sci.,1994,51:2246-2269.
    Lamarque J F, Langford A O, Proffitt M H. Cross-tropopause mixing of ozone through gravity wave breaking:Observation and modeling. J. Geophys. Res.,1996,101:22969-22976.
    Langford A O, Masters C D, Proffitt M H, et al. Ozone measurements in a tropopause fold associated with a cut-off low system. Geophys. Res. Lett.,1996,232501-232504.
    Lelieveld J, Frank J D. What controls tropospheric ozone? J Geophys Res,2000,105:3531-3551.
    Levine J G, Braesicke P, Harris N R P, et al. Pathways and timescales for troposphere-to-stratosphere transport via the tropical tropopause layer and their relevance for very short lived substances. J. Geophys. Res.,2007,112, D04308, doi:10.1029/2005JD006940.
    Lindzen R S, Chou M D, Hou A Y. Does the Earth have an adaptive infrared iris? Bull. Amer. Met. Soc,2001,82:417-432.
    Lindzen R S, Sun D-Z. Water vapor feedback and the ice age snowline record. Ann. Geophysicae, 1993,11:204-215.
    Lindzen R S. Some coolness concerning global warming. Bull. Amer. Meteor. Soc,1990,71(3): 288-299.
    Liu, C, and E. J. Zipser. Global distribution of convection penetrating the tropical tropopause, J. Geophys. Res.,2005,110, D23104, doi:10.1029/2005JD006063.
    Matsuno. Vertical propagation of stationary planetary waves in the winter Northern Hemisphere. J. Atmos. Sci.,1970,27:871-883.
    Moore G W K, Semple J L. A Tibetan Taylor Cap and a halo of stratospheric ozone over the Himalaya, Geophys. Res. Lett.,2005,32, L21810, doi:10.1029/2005GL024186.
    Narayana R T, Uma K N, Narayana R D, et al. Understanding the transportation process of tropospheric air entering the stratosphere from direct vertical air motion measurements over Gadanki and Kototabang. Geophys. Res. Lett.,2008,35, L15805, doi:10.1029/2008GL034220.
    Nedoluha G E, Bevilacqua R M, Gomez R M, et al. An evaluation of trends in middle atmospheric water vapor as measured by HALOE, WVMS, and POAM. J. Geophys. Res.,2003, 108(D13),4391, doi:10.1029/2002JD003332.
    Nedoluha G E, Bevilacqua R M, Michael G R, et al. Increases in middle atmospheric water vapor as observed by the Halogen Occultation Experiment and the ground-based Water Vapor Millimeter-wave Spectrometer from 1991 to 1997. J. Geophys. Res.1998,103(D3): 3531-3543, doi:10.1029/97JD03282.
    Oltmans S J, Hofmann D J. Increase in lower-stratospheric water vapor at a mid-latitude Northern Hemisphere site from 1981 to 1994. Nature,1995,374:146-149.
    Oltmans S J, Vomel H, Hofmann D J, Rosenlof K H, Kley D. The increase in stratospheric water vapor from balloonborne, frostpoint hygrometer measurements at Washington, D.C., and Boulder, Colorado. Geophys. Res. Lett.,2000,27:3453-3456.
    Pan L L, Konopka P, Browell E V. Observations and model simulations of mixing near the extratropical tropopause. J.Geophys. Res.,2006,111, D05106, doi:10.1029/2005JD006480.
    Pan L L, Randel W J, Gary B L, et al. Definitions and sharpness of the extratropical tropopause:A trace gas perspective. J. Geophys. Res.,2004,109. D23103, doi:10.1029/2004JD004982.
    Park M, Randel W, Gettelman A, et al. Transport above the Asian summer monsoon anticyclone inferred from Aura Microwave Limb Sounder tracers. J. Geophys. Res.,2007,112, D16309, doi:10.1029/2006JD008294.
    Park M, Randel W J, Kinnison D E, et al. Seasonal variation of methane, water vapor, and nitrogen oxides near the tropopause:Satellite observations and model simulations. J. Geo phys. Res.,2004,109, D03302, doi:10.1029/2003JD003706.
    Philander S G H. El Nino Southem oscillation phenomena [J]. Nature,1983,302:296-301.
    Poulida O, Dickerson R R, Heymsfield A. Stratosphere-troposphere exchange in a midlatitude mesoscale convective complex:1. Observations. J. Geophys. Res.,1996,101,6823-6836, doi:10.1029/95JD03523.
    Price J D, Vaughan G. Statistical studies of cut-off-low systems. Ann. Geophys.,1992,10: 96-102.
    Price J D, Vaughan G. On the potential for stratosphere-troposphere exchange in cut-off-low systems. Q. J. R. Meteorol. Soc,1993,119:343-365.
    Randel W J, et al. The interannual changes of stratospheric water vapor and correlations with tropical tropopause temperature. J. Atmos. Sci.,2004,61,2133-2148.
    Randel W J, Park M, Emmons L, et al. Asian Monsoon Transport of Pollution to the Stratosphere. Science,2010,328(5978):611-633.
    Randel W J, Park M. Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS). J Geophys Res,2006,111, D12314, doi:10.1029/2005JD006490.
    Randel W J, Wu F, Gaffen D J. Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalyses. J. Geophys. Res.,2000,105:15509-15523.
    Randel W J, Wu F, Voemel H, Nedoluha G E, et al. Decreases in stratospheric water vapor after 2001:links to changes in the tropiccal tropopause and the Brewer-Dobson circulation. J. Geophys. Res.,2006,111, D12312, doi:10.1029/2005JD006744.
    Raval A, Ramanathan V. Observational determination of the greenhouse effect. Nature,1989,342: 758-761.
    Read W G, Lambert A, Bacmeister J, et al. Aura Microwave Limb Sounder upper tropospheric and lower stratospheric H2O and relative humidity with respect to ice validation. J. Geophys. Res.,2007,112, D24S35, doi:10.1029/2007JD008752.
    Reed R J, Danielsen E F. Fronts in the vicinity of the tropopause. Arch. Meteorol. Geophys. Bioklimatol.,1958, Ser A,11(1):1-17.
    Reed R J. A study of a characteristic type of upper-level frontogenesis. J. Atmos. Sci.,1955,12(3): 226-237.
    Reid H J, Vaughan G. Convective mixing in a tropopause fold. Q. J. R. Meteorol. Soc.2004,130, 1195-1212
    Reiter E R, Glasser M E, Mahlman J D. The role of the tropopause in stratospheric-tropospheric exchange process. Pure Appl. Geophys.,1969,75:185-218.
    Ribera P, Pena-Ortiz C, Anel J A, et al. Quasi-biennial modulation of the Northern Hemisphere tropopause height and temperature [J]. J Geophys Res,2008,113, D00B02, doi: 10.1029/2007JD009765
    Rockmann T, Grooss J U, Muller R. The impact of anthro-pogenic chlorine emissions, stratospheric ozone change feedback on stratospheric water. Atmos. Chem. Phys.,2004,4: 693-699
    Rosenlof K H, and Holton J R. Estimates of the stratospheric residual circulation using the downward control principle. J. Geophys. Res.,1993,98:10465-10479.
    Rosenlof K H, Chiou E-W, Chu W P, et al. Stratospheric water vapor increases over the past half-century. Geophys. Res. Lett.,2001,28,1195-1198.
    Rosenlof K H. How water enters the stratosphere. Science,2003,302(5651):1691-1692
    Scaife A A, Butchart N, David R J, et al. Can changes in ENSO activity help to explain increasing stratospheric water vapor? Geophys. Res. Lett.,2003,30(17), doi:10.1029/2003GL017591.
    Schmidt T, Wickert J, Beyerle G, et al. Tropical tropopause parameters derived from GPS radio occultation measurement with CHAMP. J. Geophys. Res.,2004,109, D13105, doi: 10.1029/2004JD004566.
    Schoeberl M R. Extratropical stratosphere-troposphere mass exchange. J. Geophys. Res.,2004, 109, D13303, doi:10.1029/2004JD004525.
    Seidel D J, Ross R J, Angell J K, et al. Climatological characteristics of the tropical tropopause as revealed by Radiosondes. J. Geophys. Res.,2001,106:7857-7878.
    Seo K-H, Bowman K. Climatology of isentropic cross-tropopause exchange. J. Geophys. Res., 2001,106:28159-28172.
    Seo K-H, Bowman K. Lagrangian estimate of global stratosphere-troposphere mass exchange. J. Geophys. Res.,2002,107(D21),4555, doi:10.1029/2002JD002441.
    Shapiro M A. Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and troposphere. J. Atmos. Sci.,1980,37: 994-1004.
    Shapiro M A. Further evidence of the mesoscale and turbulent structure of upper level jet stream-frontal zone systems, Mon. Weather Rev.,1978,106,1100-1110.
    Sherwood S C, Dessler A E. On the control of stratospheric humidity. Geophys. Res, Let.,2000, 27(16):2513-2516.
    Sherwood, S. C., and A. E. Dessler. A model for transport across the tropical tropopause. J. Atmos. Sci.,2001,58:765-779.
    Shindell D T, Faluvegi G, Bell N, et al. An emissions-based view of climate forcing by methane and tropospheric ozone. Geophys. Res. Lett.,2005,32, L04803, doi:10.1029/2004GL021900.
    Siegmund P C, Van Velthoven P F J, Kelder V. Cross-tropopause transport in the extratropical northern winter hemisphere, diagnosed from high-resolution ECMWF data. Q. J. R. Meteorol. Soc,1996,122:1921-1941.
    Sinha A, Harries J E. Water-vapour and greenhouse trapping-the role of far-infrared absorption. Geophysical Research Letters,1995,22(16):2147-2150.
    Smith C A, Haigh J D, Toumi R. Radiative forcing due to trends in stratospheric water vapour. Geophys. Res. Lett.,2001,28,179-182.
    Smith C A, Toumi R, Haigh J D. Seasonal trends in stratospheric water vapor. Geophys. Res. Lett., 2000,129:1687-1690.
    Smith C A, Toumi R, Haigh J D. Seasonal trends in stratospheric water vapor. Geophys. Res. Lett., 2000.27(12):1687-1690.
    Soden B J, Jackson D L, Ramaswamy V. et al. The radiative signature of upper tropospheric moistening. Science,2005,310(5749):841-844.
    Solomon S, Garcia R R, Rowland F S, Wuebles D J. On the depletion of Antarctic ozone. Nature, 1986,321:755-758.
    Solomon S. Rosenlof K H. Portmann R W, et al. Contributions of Stratospheric Water Vapor to Decadal Changes in the Rate of Global Warming. Science,2010,327:1219-1223, doi: 10.1126/science.1182488.
    Solomon S. Stratospheric ozone depletion:A review of concepts and history. Review of Geophysical,1999,37:275-316.
    Spaete P, Johnson D R, Trenberth K E. Stratospheric-tropospheric mass exchange during the President's Day storm. Mon. Weather Rev.,1994,122:424-439
    SPARC.2009. http://www. atmosp. physics, utronto. ca/SPARC.
    Sprenger M, Wernli H, Bourqui M. Stratosphere-troposphere exchange and its relation to potential vorticity streamers and cutoffs near the extratropical tropopause. Journal of the Atmospheric Sciences,2007,64:1587-1602.
    Sprenger, M., Croci Maspoli, M, Wernli, H. Tropopause folds and cross-tropopause exchange:A global investigation based upon ECMWF analyses for the time period March 2000 to February 2001. J. Geophys. Res..2003,108(D12).8518, doi:10.1029/2002JD002587.
    Stohl A, Bonasoni P, Cristofanelli P, et al. Stratosphere-troposphere exchange:A review, and what we have learned from STACCATO. J. Geophys. Res.,2003,108 (D12),8516, doi:10. 1029/2002JD002490.
    Stroh A. Wernli H, James P, et al. A new perspective on stratosphere-troposphere exchange. Bull. Am. Meteorol. Soc.,2003,84:1565-1573.
    Tabazadeh A, Santee M L. Danilin M Y. et al. Quantifying denitrification and its effect on ozone recovery. Science,2000,288,1408-1411.
    Taguchi M, Hartmann D L. Increased occurrence of stratospheric sudden warmings during El Nin o as simulated by WACCM. J Climate,2006,19(3):324-332.
    Thompson D W J, Baldwin M P, Wallace J M. Stratospheric connection to northern hemisphere wintertime weather:Implications for prediction. Journal of Climate,2002a,15:1421-1428.
    Thompson D W J, Lee S, Baldwin M P. Atmospheric Processes Governing the Northern Hemisphere Annular Mode/North Atlantic Oscillation[c]//Hurrell J W, Kushnir Y, Visbeck M, Ottersen G. The AGU Monograph on the NAO,2002b.
    Thompson D W J, Solomon S. Interpretation of recent Southern Hemisphere climate change. Science,2002c,296:895-898.
    Tian W S, Chipperfield M P, Lu D R. Impact of increasing stratospheric water vapor on ozone depletion and temperature change. Adv. Atmos. Sci.,2009,26(3):423-437.
    Tian W, Chipperfield M P. Stratospheric water vapor trends in a coupled chemistry-climate model. Geophys Res. Lett.,2006.33, L06819, doi:10.1029/2005GL024675.
    Tian W. Chipperfield M P, Huang G. Effects of the Tibetan Plateau on total column ozone distribution. Tellus.2008,60B:622-636.
    Traub M, Lelieveld J. Cross-tropopause transport over the eastern Mediterranean. J. Geophys. Res.,2003,108(D23),4712, doi:10.1029/2003 JD003754.
    Tremblay J, Servranckx R.1993. Beryllium-7 as a tracer of stratospheric ozone:A case study. J. Radioanal. Nucl. Chem.,172:49-56.
    Uccellini L W, Keyser D, Brill K F, Wash C H. The President's Day cyclone of 18-19 February 1979:Influence of upstream trough amplification and associated tropopause folding on rapid cyclogenesis. Mon. Weather Rev.,1985,113:962-988.
    Van Velthoven, P. F. J. and Kelder H. Estimates of stratosphere-troposphere exchange:sensitivity to model formulation and horizontal resolution. J. Geophys. Res.,1996,101:1429-1434.
    Vaughan G, Price J D, Howells A. Transport into the troposphere in a tropopause fold. Quarterly Journal of the Royal Meteorological Society,1994,120:1085-1103.
    Vaughan G. Stratosphere-troposphere exchange of ozone, in Tropospheric Ozone, edited by I. S. A. Isaksen, pp.125-135, D. Reidel, Norwell, Mass,1988.
    Vomel H, Barnes J E, Forno R N, et al. Validation of Aura Microwave Limb Sounder water vapor by balloon-borne Cryogenic Frost point Hygrometer measurements. J. Geophys. Res.,2007, 112, D24S37, doi:10.1029/2007JD008698.
    Wakamatsu S, Uno I, Ueda H, et al. Observational study of stratospheric ozone intrusions into the lower troposphere, Atmospheric Environment,1989,23,1815-1826.
    Wallace J M, Thompson D W J. Annular modes and climate prediction. Physics Today,2002,55: 29-33.
    Wang P K. Moisture plumes above thunderstorm anvils and their contributions to cross-tropopause transport of water vapor in midlatitudes. J. Geophys. Res.,2003,108, D6,4194, doi:10.1029/2002JD002581,2003.
    Wang Y, Tao W K, Pickering K E, et al. Mesoscale model simulations of TRACE A and Preliminary Regional Experiment for Strom-scale Operational and Reasearch Meteorology convective systems and associated tracer transport, J. Geophys. Res.,1996,101(D19), 24013-24027.
    Wei M. A new formulation of the exchange of mass and trace constituent between the stratosphere and the troposphere. J. Atmos Sci.,1987,44:3079-3086.
    William J R, Park M, Emmons L, et al. Asian Monsoon Transport of Pollution to the Stratosphere. Science,2010,328:611-613, doi:10.1126/science.1182274
    Wirth V, Egger J. Diagnosing extratropical synoptic-scale stratosphere-troposphere exchange:A case study. Q. J. R. Meteorol. Soc,1999,126:635-656.
    Wirth V. Diabatic heating in an axisymmetric cut-off cyclone and related stratosphere-troposphere exchange. Q. J. R. Meteorol. Soc,1995,121:127-147.
    Wirth V. Thermal versus dynamical tropopause in upper tropospheric balanced flow anomalies. Q. J. R. Meteorol. Soc,2000,126:299-317.
    WMO,1992.‘Scientific assessment of ozone depletion 1991’. Global ozone research and monitoring report, No.25. World Meteorological Organization, Geneva, Switzerland.
    World Meteorological Organization (WMO), Atmospheric ozone 1985, WMO Global Ozone Res. and Monit. Proj. Rep.20, Geneva,1986.
    World Meteorological Organization (WMO). Scientific assessment of ozone depletion:2002. Global Ozone Res. Monit. Proj. Rep.47. Geneva, Switzerland,498,2003.
    Xie F, Tian W, Austion J, Li J, Tian H, Shu J, Chen C. The effect of ENSO activity on lower stratospheric water vapor. Atmos. Chem. Pys. Discuss.,2011,11:4141-4166, DOI: 10.5194/acpd-11-4141-2011.
    Yang K, Koike T, Fujii H, et al. The daytime evolution of the atmospheric boundary layer and convection over the Tibetan Plateau:observations and simulations, J. Meteor. Soc. Jpn.,2004, 82:1777-1792.
    Ye Z, Xu T. Climate characteristics of ozone over Tibetan Plateau. J. Geophys. Res.,2003,108, doi:10.1029/2002jd003139.
    Yeh T C. The circulation of the high troposphere over China in the winter of 1945-1946. Tellus, 1950,2(3):173-183.
    Zhang M, Tian W, Chen L, et al. Cross-tropopause mass exchange associated with a tropopause fold event over the Northeastern Tibetan Plateau. Adv. Atmos. Sci.,2010,27(6):1344-1360.
    Zheng, X., Zhou, X., Tan, J., Qin, Y. and Chan, C. A meteorological analysis on a low tropospheric ozone event over Xining, North Western China on 26-27 July 1996. Atmos. Enviro.,2004,38:261-272.
    Zhou X L, Geller M A, Zhang M. Cooling trend of the tropical cold point tropopause temperature and its implications. J. Geophys. Res.,2001,106:1511-1522.
    Zhou, X. and Zhang, R. Decadal variations of tempera-ture and geopotential height over the Tibetan Plateau and their relations with Tibet ozone depletion. Geophys. Res. Lett.,2005,32, L18705.
    Zou H. Seasonal variation and trends of TOMS ozone over Tibet. Geophys. Res. Lett.,1996,23: 1029-1032.
    李建平,曾庆存.一个新的季风指数及其年际变化和雨量的关系[J].气候与环境研究,2005,10(3):351-365.
    崔晓鹏,孙照渤.东亚冬季风强度指数及其变化的分析[J].南京气象学院学报,1999,22(3):321-324.
    李万莉,王可丽,傅慎明,等.区域西风指数对西北地区水汽输送及收支的指示性[J].冰川冻土,2008,30(1):28-34.
    王绍武.北半球500毫巴月平均环流特征及演变规律的研究:西风指数[J].气象学报,1963,33(3):361-374.
    龚道溢,王绍武.北半球冬季纬向平均环流的结构及对我国气候的影响[J].地理科学,2001,21(2):108-112.
    占瑞芬,李建平.青藏高原地区大气红外探测器(AIRS)资料质量检验及揭示的上对流层水汽特征[J].大气科学,2008,32(2):242-260.
    傅云飞,宇如聪,徐幼平,等.TRMM测雨雷达和微波成像仪对两个中尺度特大暴雨降水结构的观测分析研究[J].气象学报,2003,61:421-431.
    汤懋苍,梁娟,邵明镜,等.高原季风年际变化的初步分析[J].高原气象,1984,3(3):75-82.
    Aumann H H, Chahine M T, Gautier C, et al. AIRS/AMSU/HSB on the Aqua mission:design, science objectives, data products, and processing systems. IEEE Transactions on Geosciences and Remote Sensing,2003,41(2):253-264.
    Bethan S, Vaughan G, Reid S J. A comparison of ozone and thermal tropopause heights and the impact of tropopause denition on quantifying the ozone content of the troposphere. Q. J. R. Meteorol. Soc,1996,122:929-944.
    Bian J, Chen H, Zhao Y, et al. Variation features of total atmospheric ozone in Beijing and Kunming based on Dobson and TOMS data. Adv. Atmos. Sci.,2002,19(2):279-286.
    Collins W D, Rasch P J, Boville B A, et al. Description of the NCAR Community Atmosphere Model (CAM3). Nat. Cent, for Atmos. Res., Boulder, Colo.,2004.
    Considine D B, Douglass A R, Connell P S, et al. A polar stratospheric cloud parameterization for the global modeling initiative three-dimensional model and its response to stratospheric aircraft. J. Geophys. Res.,2000,105:3955-3973.
    Divakarla M G, Barnet C D, Goldberg M D, et al. Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts. J. Geophys. Res.,2006,111, D09S15, doi:10.1029/2005JD006116.
    Marsh D R, Garcia R R, Kinnison D E, et al. Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing. J. Geophys. Res.,2007,112, D23, doi: 10.1029/2006JD008306.
    Lin S-J. A‘vertically lagrangian’finite-volume dynamical core for global atmospheric models. Mon. Weather Rev.,2004,132:2293-2307.
    Brasseur G P, Hauglustaine D A, Walters S, et al. MOZART:A global chemical transport model for ozone and related chemical tracers,1:Model description. J. Geophys. Res.,1998,103: 28265-28289.
    Garcia R R, Marsh D R, Kinnison D E, et al. Simulation of secular trends in the middle atmosphere,1950-2003. J. Geophys. Res.,2007,112. D09301, doi:10.1029/2006JD007485.
    Hauglustaine D A, Brasseur G P, Walters S, et al. MOZART:A global chemical transport model for ozone and related chemical tracers:2. Model results and evaluation. J. Geophys. Res., 1998,103,28291-28335.
    Horowitz L W, et al. A global simulation of tropospheric ozone and related tracers:Description and evaluation of MOZART, version 2. J. Geophys. Res.,2003,108(D24),4784, doi: 10.1029/2002JD002853.
    Sander S P, et al. Chemical kinetics and photochemical data for use in atmospheric studies. Evaluation Number 14, JPL Publ.,02-25,2003.
    Sylla M B, Coppola E, Mariotti L, et al. Multiyear Simulation of the African Climate using a Regional Climate Model (RegCM3) with the High Resolution ERA-Interim Reanalysis. Clim Dyn,2009, doi:10.1007/s00382-009-0613-9.
    Waters J W, Froidevaux L, Harwood R S, et al. The Earth Observing System microwave limb sounder (EOS MLS) on the Aura satellite. IEEE Trans. Geosci. Remote Sens.,2006,44(5): 1075-1092.
    Livesey N J, Read W G, Lambert A, et al. Version 2.2 Level 2 data quality and description document [Z]. California, Jet Propulsion Laboratory,2007,1-99.
    Livesey N J, et al. Data Quality Document for the EOS MLS Version 1.5 Level 2 Data Set. Jet Propul. Lab., Pasadena, Calif..2005 (Avail-able at http://mls.jpl.nasa.gov).
    Fu R, Hu Y, Wright J S, et al. Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau [J]. Proc Nat Acad Sci,2006, 103:5664-5669.
    Randel W J, Wu F, Voemel H, Nedoluha G E, et al. Decreases in stratospheric water vapor after 2001:links to changes in the tropical tropopause and the Brewer-Dobson circulation. J. Geophys. Res.,2006,111, D12312, doi:10.1029/2005JD006744.
    Park M, Randel W, Gettelman A, et al. Transport above the Asian summer monsoon anticyclone inferred from Aura Microwave Limb Sounder tracers. J. Geophys. Res.,2007,112, D16309, doi:10.1029/2006JD008294.
    Jiang Y B. Froidevaux L, Lambert A, et al. Validation of Aura Microwave Limb Sounder ozone by ozonesonde and lidar measurements. J. Geophys. Res.,2007,112, D24S34, doi: 10.1029/2007JD008776.
    Barret B, Ricaud P, Mari C, et al. Transport pathways of CO in the African upper troposphere during the monsoon season:a study based upon the assimilation of spaceborne observations. Atmos. Chem. Phys.,2008,8:3232-3246.
    Froidevaux L, et al. Early validation analyses of atmospheric profiles from EOS MLS on the Aura satellite. IEEE Trans. Geosci. Remote Sens.,2006,44 (5):1106-1121.
    Read W G, Lambert A, Bacmeister J, et al. Aura Microwave Limb Sounder upper tropospheric and lower stratospheric H2O and relative humidity with respect to ice validation. J Geophys Res, 2007,112, D24S35, doi:10.1029/2007JD008752.
    Gettelman A, Weinstock E M, Fetzer E J, et al. Validation of Aqua satellite data in the upper troposphere and lower stratosphere with in situ aircraft instruments. Geophys Res Lett,2004, 31, L22107,doi:10.1029/2004GL020730.
    Randel W and Park M. Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS). J Geophys Res,2006,111, D12314, doi:10.1029/2005JD006490.
    Livesey N J, Snyder W V, Read W G, et al. Retrieval algorithms for the EOS Microwave Limb Sounder (MLS). IEEE Trans. Geosci. Remote Sens.,2006,44(5):1144-1155.
    Jarnot R F, Perun V S, Schwartz M J. Radiometric and spectral performance and calibration of the GHz bands of EOS MLS. IEEE Trans. Geosci. Remote Sens.,2006,44(5):1131-1143.
    Ralph E H. Glossary of meteorology. Boston, American Meteorological Societ.1959.
    Kummerow C, Barnes W, Kozu T, et al. The tropical rainfall measuring mission (TRMM) sensor package. J Atmos Ocean Technol,1998,15:809-817
    Kummerow C, Simpson J, Thiele O, et al. The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteorol.,2000,39:1965-1982.
    Xie F, Tian W, Austion J, et al. The effect of ENSO activity on lower stratospheric water vapor. Atmos. Chem. Phys. Discuss.,2011,11:4141-4166, DOI:10.5194/acpd-11-4141-2011.
    Edmon H J, Hoskins B J, Mcintyre M E. Eliassen-Palm cross sections for the troposphere. J. Atmos. Sci.,1980,37:2600-2616.
    Austin J, Shindell D, Beagley S R, et al. Uncertainties and assessments of chemistry-climate models of the stratosphere. Atmos. Chem. Phys.,2003,3:1-27.
    Li J, Zeng Q. A new monsoon index and the geographical distribution of the global monsoons. Adv. Atmos. Sci.,2003,20 (2):299-302
    Li J, Zeng Q.2002. A unified monsoon index. Geophys. Res. Lett.,2002,29 (8), doi: 10.1029/2001GL013874.
    Liu C T, Zipser E J, Cecil D J, et al. A Cloud and Precipitation Feature Database from Nine Years of TRMM Observations. J. Appl. Meteor. Climatol.,2008,47:2712-2728.
    World Meteorological Organization (WMO), Atmospheric ozone 1985, WMO Global Ozone Res. and Monit. Proj. Rep.20, Geneva.1986.
    Hoerling M P, Schaack T K, Lenzen A J. A global analysis of stratospheric-tropospheric exchange during northern winter. Mon Wea Rev,1993,121:162-172.
    Wei M. A new formulation of the exchange of mass and trace constituent between the stratosphere and the troposphere, J. Atmos Sci.,1987,44:3079-3086.
    Negri A J, Bell T L, Xu L. Sampling of the diurnal cycle of precipitation using TRMM. J. Atmos. Oceanic Technol.,2002,19:1333-1344.
    Xiong X, Barnet C, Maddy E, et al. Characterization and validation of methane products from the Atmospheric Infrared Sounder (AIRS). J. Geophys. Res.,2008,113, G00A01, doi: 10.1029/2007JG000500.
    毕云,陈月娟,周任君,等.青藏高原上空H20和CH4的分布和变化趋势分析[J].高原气象,2008,27(2):249-258.
    卞建春,严仁嫦,陈洪滨.亚洲夏季风是低层污染物进入平流层的重要途径[J].大气科学,2011,35(5):897-902.
    陈斌,徐祥德,施晓晖.2005年夏季亚洲季风区下平流层水汽的对流源区[J].自然科学进展,2009,19(10):1094-1099.
    陈斌,徐祥德,卞建春,等.夏季亚洲季风区对流层-平流层不可逆质量交换特征分析[J].地球物理学报,2010,53(5):1050-1059.
    陈斌,徐祥德,杨帅,等.夏季青藏高原地区近地层水汽进入平流层的特征分析[J].地球物理学报,2012,55(2):406-414.
    陈闯,田文寿,田红瑛,等.青藏高原东北侧臭氧垂直分布与平流层-对流层物质交换[J].高原气象,2012,31(2):295-303.
    陈洪滨,卞建春,吕达仁.上对流层-下平流层交换过程研究的进展与展望[J].大气科学,2006,30(5):813-820.
    丛春华,李维亮,周秀骥.青藏高原及其邻近地区上空平流层-对流层之间大气的质量交换[J].科学通报,2001,46(22):1914-1918.
    樊雯璇,王卫国,卞建春,等.青藏高原及其邻近区域穿越对流层顶质量通量的时空演变特征[J].大气科学,2008,32(6):1309-1318.
    郭冬,吕达仁,孙照渤.全球平流层、对流层质量交换的季节变化特征[J].自然科学进展,2007,17(10):1391-1400.
    李典,白爱娟,黄盛军.利用TRMM卫星资料对高原地区强对流天气特征分析[J].高原气象,2012,31(2):304-311.
    刘式适,柏晶瑜,陈华.青藏高原大地形作用下的Rossby波[J].高原气象,2000,19(3):331-338.
    毛江玉.季节转换期间副高形态变异和季风爆发机制的研究[D].中国科学院大气物理研究所博士论文,2001:1-139.
    王敏仲,魏文寿,何清,等.青藏高原北侧民丰站2011年7月对流层和低平流层大气观测研究[J].高原气象,2012,31(5):1203-1214.
    王卫国,梁俊平,王颢樾,等.青藏高原及附近区域穿越对流层顶的质量和臭氧通量研究[J].高原气象,2010,29(3):554-562.
    吴国雄,张永生.青藏高原的热力强迫和机械强迫作用以及亚洲季风的爆发Ⅰ.爆发地点[J].大气科学,1998,22(6):825-838.
    许建民,郑新江,徐欢,等.GMS-5水汽图像所揭示的青藏高原地区对流层上部水汽分布特征[J].应用气象学报,1996,7(2):247-251.
    徐祥德,周明煜,陈家宜,等.青藏高原地-气过程动力、热力结构综合物理图像[J].中国科学(D辑),2001,31:428-440.
    杨健,吕达仁.平流层-对流层交换研究的进展[J].地球科学进展,2003,18(3):380-385.
    周长艳,李跃清,李微,等.青藏高原东部及邻近地区水汽输送的气候特征[J].高原气象,2005,24(6):880-888.
    周顺武,杨双艳,张人禾,等.近30年青藏高原臭氧总量亏损的可能原因及其与对流层顶高度的联系[J].高原气象,2012,31(6):1471-1478.
    Bao Q, Liu Y, Shi J, et al. Comparisons of soil moisture datasets over Tibetan Plateau and application to the simulation of Asia summer monsoon onset [J]. Adv Atm Sci,2010,27 (2): 303-314.
    Dhomse S, Weber M, Burrows J. The relationship between tropospheric wave forcing and tropical lower stratospheric water vapor [J]. Atmos Chem Phys,2008,8 (3): 471-480.
    Fu R, Hu Y, Wright J S, et al. Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau [J]. Proc Nat Acad Sci,2006, 103:5664-5669.
    Gettelman A, Kinnison D E, Dunkerton T J, et al. Impact of monsoon circulations on the upper troposphere and lower stratosphere [J]. J Geophys Res,2004,109, D22101, doi:10. 1029/2004JD004878.
    Holton J R, Haynes P H, McIntyre M E, et al. Stratosphere-troposphere exchange [J]. Reviews of Geophysics,1995,33:403-439.
    Hwang S H, Kim J, Cho G R. Observation of secondary ozone peaks near the tropopause over the Korean peninsula associated with stratosphere-troposphere exchange [J]. J. Geophys. Res., 2007,112, D16305, doi:10.1029/2006JD007978.
    Liu Y M, Chan J C L, Mao J Y, et al. The Role of Bay of Bengal convection in the onset of the 1998 South China Sea summer monsoon [J]. Mon Wea Rev,2002,130:2731-2744.
    Mao J Y, Duan A, Liu Y, et al. Change in the tilting of the ridgeline surface of the subtropical anticyclone and the predictability of the onset of the Asian summer monsoon [J]. Chinese Science Bulletin,2003,48 (supp. Ⅱ):18-23.
    Panwar V, Jain A R, Goel A, et al. Some features of water vapor mixing ratio in tropical upper troposphere and lower stratosphere:Role of convection [J]. Atmos Res,2012,108:86-103.
    Sinha A, Harries J E. Water vapor and greenhouse trapping:The role of far infrared absorption [J]. Geophys Res Lett,1995,22:2147-2150.
    Vaughan G, Price J D, Howells A. Transport into the troposphere in a tropopause fold [J]. Quarterly Journal of the Royal Meteorological Society,1994,120:1085-1103.
    Zhang M, Tian W, Chen L, Lu D. Cross-tropopause mass exchange associated with a tropopause fold event over the northeastern Tibetan Plateau [J]. Adv Atmos Sci,2010,27(6):1344-1360.
    Chen B, Liu X. Seasonal migration of cirrus clouds over the Asian monsoon regions and the Tibetan Plateau measured from MODIS/Terra [J]. Geophysical Research Letter,2005,32, L01804, doi:10.1029/2004GL020868.
    Dhomse S, Weber M, Burrows J. The relationship between tropospheric wave forcing and tropical lower stratospheric water vapor [J]. Atmospheric Chemistry and Physics,2008,8:471-480.
    Fu R, Hu Y, Wright J S, et al. Short circuit of water vapour and polluted air to the global stratosphere by convective transport over the Tibetan Plateau [J]. PNAS,2006,103: 5664-5669.
    Gao B, Yang P, Guo G, et al. Measurements of water vapor and high clouds over the Tibetan Plateau with the Terra MODIS instrument [J]. IEEE Transactions on Geosciences and Remote Sensing,2003,41(4):895-900.
    Gettelman A, Birner T, Eyring V, et al. The tropical tropopause layer 1960-2100 [J]. Atmospheric Chemistry and Physics,2009,9,1621-1637.
    Gettelman A, Kinnison D E, Dunkerton T J, et al. Impact of monsoon circulations on the upper troposphere and lower stratosphere [J]. J. Geophys. Res.,2004,109, D22101, doi:10.1029/2004JD004878.
    Liu C, Liu Y, Cai Z, et al. A Madden-Julian oscillation-triggered record ozone minimum over the Tibetan Plateau in December 2003 and its association with stratospheric "low-ozone pockets' [J]. Geophysical Research Letter,2009a,36, L15830, doi:10.1029/2009GL039025.
    Liu Y, Wang Y, Liu X, et al. Tibetan middle tropospheric ozone minimum in June discovered from GOME observations [J]. Geophysical Research Letter,2009b,36, L05814, doi:10.1029/2008GL037056.
    McGill M L, Vaughan M A, Trepte C R, et al. Airborne validation of spatial properties measured by the CALIPSO lidar [J]. J. Geophys. Res.,2007,112, D20201, doi:10. 1029/2007JD008768.
    Randel W, Park M. Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS) [J]. J. Geophys. Res.,2006,111, D12314, DOI:10.1029/2005JD006490.
    Randel W J, Park M, Emmons L, et al. Asian monsoon transport of pollution to the stratosphere [J]. Science,2010,328, doi:10.1126/science.1182274.
    Read W G, Lambert A, Bacmeister J, et al. Aura Microwave Limb Sounder upper tropospheric and lower stratospheric H2O and relative humidity with respect to ice validation [J]. J. Geophys. Res.,2007,112, D24S35, doi:10.1029/2007JD008752.
    Ramaswamy V, Chanin M L, Angell J, et al. Stratospheric temperature trends:observations and model simulations [J]. Review Geophysics,2001,39:71-122.
    Tian W S, Chipperfield M P. Stratospheric water vapor trends in a coupled chemistry-climate model [J]. Geophysical Research Letter,2006,33, L06819, doi:10.1029/2005GL024675.
    Tian W, Chipperfield M P, Huang G. Effects of the Tibetan Plateau on total column ozone distribution [J]. Tellus,2008,60B:622-636.
    Vomel H, Barnes J E, Forno R N, et al. Validation of Aura Microwave Limb Sounder water vapor by balloon borne Cryogenic Frost point Hygrometer measurements [J]. J. Geophys. Res., 2007,112, D24S37, doi:10.1029/2007JD008698.
    Ye Z, Xu Y. Climate characteristics of ozone over Tibetan Plateau [J]. J. Geophys. Res.,2003,108, D20,4654, doi:10.1029/2002JD003139.
    Zhou X, Lou C, Li W, et al. Ozone changes over China and low center over Tibetan Plateau [J]. Chinese Science Bulletin,1995,40:1396-1398.
    。丁一汇,章明立,李鸿洲,等.暴雨和强对流天气发生条件的比较分析[J].大气科学,1981,5(4):389-394.
    傅云飞,宇如聪,徐幼平,等TRMM测雨雷达和微波成像仪对两个中尺度特大暴雨降水结构的观测分析研究[J].气象学报,2003,61:421-431.
    李德俊,李跃清,柳草,等.利用(?)TRMM卫星资料对“07.7”川南特大暴雨的诊断研究[J].暴雨灾害,2009,28(3):235-240.
    梁潇云,刘屹岷,吴国雄.青藏高原隆升对春、夏季亚洲大气环流的影响[J].高原气象,2005,24(6):837-845.
    刘晓东.青藏高原隆升对亚洲季风形成和全球气候与环境变化的影响[J].高原气象,1999,18(3):321-332.
    钱正安,张世敏,单扶民.1979年夏季高原地区对流云的分析.青藏高原气象科学实验文集.北京:科学出版社,1984,243-257.
    郄秀书,袁铁,谢毅然,等.青藏高原闪电活动的时空分布特征[J].地球物理学报,2004,47(6):997-1002.
    吴爱明,倪允琪.青藏高原对亚洲季风平均环流影响的数值试验[J].高原气象,1997,16(2):153-164.
    吴池胜,王安宁.青藏高原隆起对亚洲夏季风形成作用的数值试验[J].高原气象,1995,14(4):425-433.
    吴国雄,刘屹岷,刘新,等.青藏高原加热如何影响亚洲夏季的气候格局[J].大气科学,2005,29(1):47-56.
    银燕,曲平,金莲姬,等.热带深对流云对CO、NO、NOx和03的垂直输送作用[J].大气科学,2010,34(5):925-935.
    叶笃正,罗四维,朱抱真.西藏高原及其附近的流场结构和对流层大气的热量平衡[J].气象学报,1957,28:108-121
    郑庆林,干三杉,张朝林,等.青藏高原动力和热力作用对热带大气环流影响的数值研究[J].高原气象,2001,20(1):14-21.
    朱十超,银燕,金莲姬,等.青藏高原一次强对流过程对水汽垂直输送的数值模拟[J].大气科学,2011,35(6):1057-1068
    朱玉祥,丁一汇,刘海文.青藏高原冬季积雪影响我国夏季降水的模拟研究[J].大气科学,2009,33(5):903-915
    Alcala. C. M., and A. E. Dessler. Observations of deep convection in the tropics using the tropical rainfall measuring (TRMM) precipitation radar. J. Geophys. Res.,2002,107 (D24),4792, doi: 10.1029/2002JD002457.
    Barros A P, Kim G, Williams E, et al. Probing orographic controls in the Himalayas during the monsoon using satellite imagery. Nat. Hazards Earth Syst. Sci.,2004,4:29-51.
    Bluestein H B. Synoptic-dynamic meteorology in midlatitudes. Volume II:Observations and theory of weather systems. Oxford University Press:New York..1993.282-290
    Carlson T N, Benjamin S G, Forbes G S. Elevated mixed layers in the regional severe storm environment:conceptual model and case studies. Mon. Weather Rev..1983,111:1453-1473.
    Cifelli E. Peterson W A. Carey L D, et al. Radar observations of the kinematic, microphysical, and precipitation characteristics of two MCSs in TRMM LBA. J. Geophys. Res.,2002,107,8077, doi:10.1029/2000JD000264.
    Dessler A E. The effect of deep tropical convection on the tropical tropopause layer. J. Geophys. Res.,2002.107(D3).4033, doi:10.1029/2001JD000511.
    Dessler A E. The effects of convection on the summertime mid-latitude overworld. Atmos. Chem. Phys. Discuss.,2006,6:8421-8433.
    Fischer H, de Reus M. Traubet M, et al. Deep convective injection of boundary layer air into the lowermost stratosphere at midlatitudes. Atmos. Chem. Phys.,2003,3:739-745.
    Fueglistaler S, Dessler A E, Dunkerton T J, et al. The tropical tropopause layer. Reviews of Geophysics,2009,47, RG1004, doi:10.1029/2008RG000267.
    Fu R, Hu Y, Wright J S, et al. Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau. Proc Natl Acad Sci,2006, 103(15):5664-5669.
    Gettelman A, Salby M L, Sassi F. The distribution and influence of convection in the tropical tropopause region. J. Geophys. Res.,2002,107,4080, doi:10.1029/2001JD001048.
    Grossman R L. Garcia O. The distribution of deep convection over ocean and land during the Asian summer monsoon. J. Clim.,1990.3:1032-1044. doi:10.1175/1520-0442.
    Hahn D G, Manabe S. The role of mountains in the south Asian monsoon circulation [J]. J Atmos Sci,1975,32:1515-1541.
    Hall T J, Vonder Haar T H. The diurnal cycle of west Pacific deep convection and its relation to the spatial and temporal variations of tropical MCSs. J. Atmos. Sci.,1999,56:3401-3415.
    Hegglin M I. Brunner D. Wernliet H, et al. Tracing troposphere-to-stratosphere transport above a mid-latitude deep convective system. Atmos. Chem. Phys.,2004,4:741-756.
    Hess P G. A comparison of two paradigms:The relative global roles of moist convective versus nonconvective transport. J. Geophys. Res.,2005.110, D20302. doi:10.1029/2004JD005456.
    Heymsfield, G. M., R. Fulton. Comparison of high-altitude remote aircraft measurements with the radar struc-ture of an Oklahoma thunderstorm:Implications for precipi-tation estimation from space. Mon. Wea. Rev.,1988,116:1157-1174.
    Heymsfield G M, Shepherd J M, Bidwell S W. et al. Structure of Florida thunder-storms using high-altitude aircraft radiometer and radar observations. J. Appl. Meteor.,1996,35: 1736-1762.
    Heymsfield G M, Geerts B, and Tian L. TRMM precipitation radar reflectivity profiles as compared with high-resolution airborne and ground-based radar measurements. J. Appl. Meteorol..2000,39:2080-2102.
    Hirose M, Nakamura K. Spatial and diurnal variation of precipitation systems over Asia observed by the TRMM Precipitation Radar. J. Geophys. Res.,2005,110, D05106, doi:10.1029/2004JD004815.
    Hong. G.. G. Heygster. J. Miao, K. Kunzi. Detection of tropical deep convective clouds from AMSU-B water vapor channels measurements. J. Geophys. Res.,2005,110, D05205. doi: 10.1029/2004JD004949.
    Holton J R, Haynes P H. McIntyre M E, et al. Stratosphere-troposphere exchange. Reviews of Geophysics.1995.33:403-439
    Houze R A. Wilton D C, Smull B F. Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar. Q. J. R. Meteorol Soc.2007,133:1389-1411
    Jiang J H, Wang B, Goya K, et al. Geographical distribution and interseasonal variability of tropical deep convection:UARS MLS observations and analyses. J. Geophys. Res.,2004, 109, D03111, doi:10.1029/2003JD003756.
    Kodama Y-M, Ohta A, Katsumata M. et al. Seasonal transitions of predominant precipitation type and lightning activity over tropical monsoon areas derived from TRMM observations. Geophys. Res. Lett.,2005,32, L14170. doi:1029/2005GL022986.
    Kozu T, and Coauthors. Development of precipitation radar onboard the Tropical Rainfall Measuring Mission satellite. IEEE Trans. Geosci. Remote Sens.,2001.39:102-116.
    Kummerow C, Barnes W, Kozu T, et al. The tropical rainfall measuring mission (TRMM) sensor package. J Atmos Ocean Technol,1998,15:809-817
    Liu C T, Zipser E J. Global distribution of convection penetrating the tropical tropopause. J. Geophys. Res.,2005,110, D23104, doi:10.1029/2005JD006063.
    Liu C T, Zipser E J, Cecil D J, et al. A Cloud and Precipitation Feature Database from Nine Years of TRMM Observations. J. Appl. Meteor. Climatol.,2008,47:2712-2728.
    Lopez J P, Fridlind A M, Jost H J, et al. CO signatures in subtropical convective clouds and anvils during CRYSTAL-FACE:An analysis of convective transport and entrainment using observations and a cloud-resolving model [J]. J. Geophys. Res.,2006,111, D09305, doi: 10.1029/2005JD006104.
    Mapes B E, Houze R A. Cloud clusters and super-clusters over the oceanic warm pool. Mon. Wea. Rev.,1993,121:1398-1416.
    Mohr K I, Zipser E J. Defining mesoscale convective systems by their 85-GHz ice-scattering signatures. Bull.Amer. Meteor. Soc.1996,77:1179-1189.
    Poulida O, Dickerson R R, Heymsfield A. Stratosphere-troposphere exchange in a midlatitude mesoscale convective complex,1. Observations. J. Geophys. Res.,1996,101:6823-6836.
    Ramanathan V, Cess R D, Harrison E F, et al. Cloud-radiative forcing and climate:results from the earth Radiation Budget Experiment. Science,1989,243:57-63, doi: 10.1126/science.243.4887.57.
    Riehl H. Malkus J S. On the heat balance in the equatorial trough zone. Geophysica,1958,6:503-538.
    Romatschke U, Medina S, Houze R A. Regional. Seasonal, and Diurnal Variations of Extreme Convection in the South Asian Region. J. Climate,2010.23:419-439.
    Salby M, Sassi F, Callaghan P, et al. Fluctuations of cloud, humidity, and thermal structure near the tropical tropopause [J]. Journal of Climate.2003,16(21):3428-3446.
    Sawyer J S. The structure of the intertropical front over N.W. India during the S.W. monsoon. Quart. J. Roy. Meteor. Soc,1947,73:346-369.
    Sherwood S C, Dessler A E. On the control of stratospheric humidity. Geophys. Res. Lett.,2000, 27:2513-2516.
    Simpson J, Kummerow C, Tao W K. et al. On the tropical rainfall measuring mission (TRMM). Meteorol Atmos Phys,1996,60:19-36
    Sprenger, M., Croci Maspoli. M., Wernli, H. Tropopause folds and cross-tropopause exchange:A global investigation based upon ECMWF analyses for the time period March 2000 to February 2001. J. Geophys. Res.,2003,108(D12),8518, doi:10.1029/2002JD002587.
    Strom J, Fischer H, Lelieveld H, et al. In situ measurements of microphysical properties and trace gases in two cumulonimbus anvils over western Europe [J]. J. Geophys. Res.,1999, 104(D10):12221-12226.
    Toracinta, E. R., E. J. Zipser. Lightning and SSM/I-ice-scattering mesoscale convective systems in the global Tropics. J. Appl. Meteor.,2001,40:983-1002.
    Ueda H, Kamahori H, Yamazaki N. Seasonal contrasting features of heat and moisture budgets between the eastern and western Tibetan Plateau during the GAME IOP. J. Climate,2003,16: 2309-2324.
    Yanai M, Li C, Song Z. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J. Meteor. Soc. Japan.,1992,70:319-351.
    Yanai M, Li C. Mechanism of heating and the boundary layer over the Tibetan Plateau. Mon. Wea. Rev.,122:305-323.
    Zipser E J, Cecil D J, Liu C T, et al. Where are the most intense thunderstorms on earth? Bull. Amer. Meteor. Soc,2006,87:1057-1071.
    白虎志,谢金南,李栋梁.近40年青藏高原季风变化的主要特征[J].高原气象,2001,20(1):22-27.
    陈洪滨,卞建春,吕达仁.上对流层下平流层交换过程研究的进展与展望[J].大气科学,2006,30(5):813-820.
    丛春华,李维亮,周秀骥.青藏高原及其邻近地区上空平流层-对流层之间大气的质量交换[J].科学通报,2001,46(22):1914-1918.
    樊雯璇,王卫国,卞建春,等.青藏高原及其邻近区域穿越对流层顶质量通量的时空演变特征[J].大气科学,2008,32(6):1309-1318.
    杨健,吕达仁.2000年北半球平流层、对流层质量交换的季节变化[J].大气科学,2004,28(2):294-300.
    汤懋苍,程国栋,林振耀.青藏高原近代气候变化及对环境的影响[M].广州:广东科技出版社,1998:161-183.
    汤懋苍,梁娟,邵明镜,等.高原季风年际变化的初步分析[J].高原气象,1984,3(3):75-82.
    Austin J F, Midgley R P. The climatology of the jet stream and stratospheric intrusion of ozone over Japan. Atmos. Environ.,1994,28:39-52.
    Brewer A M. Evidence for a world circulation provides by the measurements of helium and water vapor distribution in the stratosphere. Q. J. R. Meteorol. Soc.,1949,75:351-363.
    Chen B, Liu X. Seasonal migration of cirrus clouds over the Asian monsoon regions and the Tibetan Plateau measured from MODIS/Terra. Geophys. Res. Lett.,2005,32, L01804, doi: 10.1029/2004GL020868.
    Chu P, Lu S, Chen Y. Temporal and spatial variabilities of the South China Sea surface temperature anomaly. J. Geophys. Res.,1997,102:20937-20955, doi:10.1029/97JC00982.
    Cong C, Li W, Zhou X. Mass exchange between stratosphere and troposphere over the Tibetan Plateau and its surroundings. Chinese Science Bulletin,2001,46:1914-1918.
    Danielsen E F. Stratosphere-troposphere exchange based upon radioactivity, ozone and potential vorticity. J. Atmos. Sci.,1968,25:502-518.
    Dobson G M B. Origin and distribution of the polyatomic molecules in the atmosphere. Proc. R. Soc. Lond. Ser. A,1956,236:187-193.
    Edmon H J, Hoskins B J, Mcintyre M E. Eliassen-Palm cross sections for the troposphere. J. Atmos. Sci.,1980,37:2600-2616.
    Eluszkiewicz J, Coauthors. Residual circulation in the stratosphere and lower mesosphere as diagnosed from Microwave Limb Sounder data. J. Atmos. Sci.,1996,53:217-240.
    Eyring V, Chipperfield M P, Giorgetta M A, et al. Overview of the new CCMVal reference and sensitivity simulations in support of upcoming ozone and climate assessments and planned SPARC CCMVal. SPARC Newsl,2008,30:20-26.
    Fu R, Hu Y, Wright J S, et al. Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau. Proc. Nat. Acad. Sci.,2006, 103:5664-5669.
    Garcia R R, Marsh D R, Kinnison D E, et al. Simulation of secular trends in the middle atmosphere,1950-2003. J. Geophys. Res..2007,112, D09301. doi:10.1029/2006JD007485.
    Gettleman A. Holton J R. Rosenlof K H, et al. Mass fluxes of 03, CH4, N2O and CF2C12 in the lower stratosphere calculated from observational data. J. Geophys. Res.,1997,102(D15): 19149-19159. doi:10.1029/97JD01014.
    Gettleman A, Kinnison D E, Dunkerton T J, et al. Impact of monsoon circulations on the upper troposphere and lower stratosphere. J. Geophys. Res.,2004,109, D22101, doi:10. 1029/2004JD004878.
    Gettelman A, Sobel A H. Direct Diagnoses of Stratosphere-Troposphere Exchange. J. Atmos. Sci., 2000,57:3-16, doi:10.1175/1520-0469.
    Gettelman A, Hoor P. Pan L L. et al. The extratropical upper troposphere and lower stratosphere. Rev. Geophys.,2011,49, RG3003, doi:10.1029/2011RG000355.
    Guo D, Lu D, Sun Z. Seasonal variation of global stratosphere-troposphere mass exchange. Progress in natural Science,2007,17(12):1466-1475.
    Haynes P H, Marks C J, Mclntyre M E, et al. On the“downward control”of extratropical diabatic circulations by eddy-induced mean zonal forces, J. Atmos. Sci.,1991,48:651-679.
    Hoerling M P, Schaack T K, Lenzen A J. A global analysis of stratospheric-tropospheric exchange during northern winter. Mon. Weather. Rev.,1993,121:162-172.
    Holton J R, Haynes P H, Mclntyre M E, et al. Stratosphere-troposphere exchange. Rev. Geophys., 1995,33:403-439.
    Kutzbach J E, Prell W L. Ruddiman W F. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau. J. Geol,.1993.101:177-190.
    Lamarque J F, Hess P G. Cross-tropopause mass exchange and potential vorticity budget in a simulated tropopause folding. J. Atmos. Sci.,1994,51:2246-2269.
    Liu S, Trainer M, Fehsenfeld F C, et al. Ozone production in the rural troposphere and the implications for regional and global ozone distributions. J. Geophys. Res.,1987,92(D4): 4191-4207.
    Liu X, Chen B. Climatic wanning in the Tibetan Plateau during recent decades. Int. J. Climatol., 2000,20:1729-1742.
    Liu X, Zhang M. Contemporary climatic change of Qinghai-Xizang (Tibetan) Plateau and its response to greenhouse effect. Chinese Geographical Science,1998,8:289-298.
    Manabe S, Broccoli A J. Mountains and arid climate of middle latitudes. Science,1990,247: 192-195.
    Manabe S, Terpstra T B. The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments. Journal of Atmospheric Science,1974,31:3-42.
    Pan L L, Randel W J, Gary B L, et al. Definitions and sharpness of the extratropical tropopause:A trace gas perspective. J. Geophys. Res.,2004,109, D23103, doi:10.1029/2004JD004982.
    Randel W J, Park M. Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS). J. Geophys. Res.,2006,111. D12314. doi:10.1029/2005JD006490.
    Randel W J, Park M, Emmons L, et al. Asian monsoon transport of pollution to the stratosphere. Science.2010,328:611-613. doi:10.1126/science.1182274.
    Reed R J. A study of a characteristic type of upper-level frontofenesis. J. Meteor.,1955,12: 226-237.
    Rosenlof K H. Seasonal cycle of the residual mean meridional circulation in the stratosphere. J. Geophys. Res.,1995,100(D3):5173-5191.
    Siegmund P C, Van Velthoven P F J, Kelder H. Cross-tropopause transport in the extratropical northern winter hemisphere, diagnosed from high-resolution ECMWF data. Q. J. Roy. Meteor. Soc,1996,122:1921-1941.
    Spaete P, Johnson D R, Schaack T K. Stratospheric-tropospheric mass exchange during the President's Day storm. Mon. Wea. Rev.,1994,122(3):424-439.
    Tian W, Chipperfield M, Huang Q. Effects of the Tibetan Plateau on total column ozone distribution. Tellus,2008,60B:622-635.
    Wei M. A new formulation of the exchange of mass and trace constituent between the stratosphere and the troposphere. J. Atmos Sci.,1987,44:3079-3086.
    Wirth V, J. Egger. Diagnosing extratropical synoptic-scale stratosphere-troposphere exchange:A case study. Q. J. Roy. Meteorol. Soc,1999,125:635-655.
    World Meteorological Organization. Scientific assessment of ozone depletion:2002, WMO Rep. 47, WMO Global Ozone Res. and Monit. Proj., Geneva, Switzerland,2003.
    World Meteorological Organization. Definition of the tropopause, World Meteorol. Org. Bull.,197, 6,136 pp.
    Xie F, Tian W, Austion J, et al. The effect of ENSO activity on lower stratospheric water vapor. Atmos. Chem. Phys. Discuss.,2011,11:4141-4166, doi:10.5194/acpd-ll-4141-2011.
    Yanai M, Li C, Song Z. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the summer monsoon. J. Meteorol. Soc. Jpn.,1992,70:319-351.
    Zhang M, Tian W, Chen L, et al. Cross-tropopause mass exchange associated with a tropopause fold event over the northeastern Tibetan Plateau. Adv. Atmos. Sci.,2010,27(6):1344-1360.
    Zhou X, Li W, Chen L, et al. Study of ozone change over Tibetan Plateau. Acta. Meteorol. Sin., 2004,20:129-143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700