用户名: 密码: 验证码:
多模区域差分增强系统相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代卫星导航定位系统的飞速发展,各国都开展了相应的差分增强系统的研究,而当前国内外对多模区域差分增强系统(MLDAS)的系统性研究目前还是空白,本文以MLDAS为中心开展了相关技术的研究,主要研究内容包括:MLDAS的设计和多模GNSS组合的性能分析、周跳探测与修复技术、差分改正数算法和载波相位平滑伪距技术、MLDAS系统的完好性监测和接收机自主完好性监测技术。
     论文的主要工作成果总结如下:
     1.设计了MLDAS的总体结构,针对参考站子系统、数据链率子系统、用户子系统的任务、处理流程以及各自要实现的功能进行了详细设计。并对数据链子系统的差分格式及纠错编码技术进行了研究。
     2.对多GNSS系统组合应用的特性进行了深入分析,比较了各GNSS系统的异同点,对时间基准和空间参考坐标的转换、频谱间的干扰等进行了研究,以GPS和GALILEO组合系统为例,分析比较了多模系统与各单一系统在可见卫星数、定位精度衰减因子、最小可探测偏差等方面的性能,通过对比可知,多模系统性能比单系统的性能有显著提高。
     3.对周跳探测与修复的常用方法:高次差法、多项式拟合法、多普勒法、电离层残差法、伪距相位组合法进行了研究,探讨了影响各方法探测修复精度的因素、使用条件、对数据的要求和探测能力。重点推导了基于三频线性组合的周跳探测方法,利用三频伪距相位组合进行周跳探测需全面考虑伪距噪声、电离层和噪声放大系数,以周跳实数解的方差最小作为选取三频线性组合的原则。最后用此原则选取的线性组合进行了周跳探测实验,结果显示此组合可探测几乎所有周跳。
     4.提出了一种可应用于电磁暴条件下的电离层TEC变化率周跳探测修复方法。首先推导了电离层TEC变化率法的计算公式,并通过实验分析可知,电离层TEC变化率法可应用于电磁暴条件下的1s采样间隔数据中的周跳探测与修复。而针对此方法对某些周跳组合不敏感的问题,提出了可结合MW方法来进行周跳探测,实验结果显示,对于1s采样间隔的数据而言,电离层TEC变化率法与MW组合联合使用,对那些利用各自方法无法探测的周跳具有很高的成功率。
     5.推导了区域差分增强系统的的改正数算法:一般加权平均法、线性内插法、低次曲面模型法和三角形内插法,对比了各算法异同点,模拟建立了一个参考站网络,将用户分参考站网络内、外两种情况,分别计算了各算法的系数,从内插质量因子角度分析了各个算法的特点和性能。
     6.深入研究了MLDAS系统中实时载波平滑伪距差分的Hatch滤波技术,推导分析了Hatch滤波后的误差与平滑时间、伪距测量噪声、电离层延迟变化的关系公式,从公式可知平滑时间越长,噪声误差影响越小,但是由电离层延迟变化引起的误差却会增大。而忽略电离层延迟变化影响的经典Hatch滤波在平滑时间设定不合理时,其平滑结果会出现发散。
     7.针对经典Hatch滤波存在的发散问题,综合考虑电离层延迟变化和伪距噪声的影响,提出了一种顾及电离层延迟变化的改进Hatch滤波算法。新算法利用经验公式求解噪声,而用Klobuchar模型估计电离层延迟变化率,再用卡尔丹方程求解最优平滑时间。改进算法对每颗卫星的每一历元都依据噪声和电离层的变化情况解算最优平滑时间,从而提高平滑效果。经过仿真和实测数据验证,改进Hatch滤波比经典Hatch滤波的解算结果有更高的定位精度和更好的稳健性。
     8.设计了包括信号质量监测、数据质量监测、观测质量监测、多参考站一致性监测、均值-标准差监测、信号域监测等功能的MLDAS的完好性监测体系,各个监测模块发现异常时发出告警,系统通过一系列逻辑来对这些告警进行处理,从而隔离发生故障的卫星接收机通道,保障系统的完好性。
     9.提出了一种应用于均值-标准差监测的改进累积和算法。针对在均值-标准差监测中常使用的累积和算法对较大的突发性大值偏差较难监测的缺点,将其它领域中广泛使用的、对突发大值偏差具有很好检测性能的通用控制图引入到经典累积和算法中,从而弥补了经典累积和算法的不足,在对相关参数进行合理设置的条件下,改进算法既能有效监测小的累积性误差又能一步检测大值偏差。而经过实验证明,改进算法对基于B值的均值和标准差监测中的无故障、中小的累积偏差、突发型大值偏差等三种情况均具有良好的性能。
     10.研究了最小二乘残差法、奇偶空间矢量法等接收机自主完好性监测(RAIM)常用算法,利用最小二乘残差法基于实测数据进行了单故障探测隔离实验,实验结果显示,最小二乘残差法具有较好的单故障检测隔离能力。针对最小二乘残差法较难准确探测多故障的缺点,提出了一种改进的基于最小二乘残差的多故障探测方法。实验结果证明,改进算法具有较好的检测多故障的能力。
With the rapid development of GNSS, Augmentation system have be studied by more andmore countries,but Multi-Mode Local Difference Augment System (MLDAS) have not enteredinto the system research. The center of thesis is MLDAS. The main contents of paper are: designof MLDAS and multi-mode GNSS systems performance analysis, cycle slip detection and repairtechnology, differential correction algorithms and carrier phase smoothed pseudo rangetechnology, MLDAS system integrity and RAIM.
     The main achievements of the thesis are summarized as follows:
     1. In order to achieve the function, the thesis designed an overall structure and subsystemdetail of MLDAS, and discussed the differential format and error correction coding techniques.
     2. The thesis analyzed on the characteristics of the combination of the multi-GNSSsystems deeply, and compared the similarities and differences of the various GNSS systems,discussed the time reference coordinates、the spatial reference coordinates, and their interfrequency interference. Based on the GPS and GALILEO system, the thesis analyzed thenumber of visible satellites, DOP factor, the minimum detection bias, by comparing theseperformance, it can be find that the multi-mode system performance is better than system alone.
     3. The thesis discussed the cycle slip detection and repair methods: high-differencemethod, polynomial fitting method, Doppler method, ionosphere residual method, pseudo rangephase combination method, and then some experiments were carried out to analyze thesemethods precision, and the applicable conditions were gave for each method. And then the cycleslip detection algorithm using tri-frequency combination was discussed. The cycle slip detectionby Tri-frequency combination need to take into account the noise、ionosphere factor and noiseamplification factor. And the select principle of the Tri-frequency pseudorange carriercombination is the least variance of the cycle slip float resolution. And the thesis did anexperiment to test a group combination of cycle slip detection which are based on the leastvariance of the circle slip float resolution, and the experimental results can detect all the cycleslip.
     4. Ionosphere TEC rate of cycle slip detection and repair method was proposed which canbe used in ionosphere storms. The formula of TEC rate algorithm was proposed. Theexperiments show that the storm can’t affect the useage of the TEC rate algorithm for1seccondsampling interval data. In order to detect some cycle slip which were difficult fot TEC ratealgorithm, a combined algorithm was proposed. Combined with MW method has a very highpossibility on the combination of cycle slips, which are very difficult to be detected by them alone.
     5. The thesis studied the MLDAS’s corrections algorithm-the weighted average method,linear interpolation, low-surface model method and triangle interpolation method.And analyzedthe similarities and differences of various algorithms.And a simulation reference station networkwas build in order to analysis each algorithm performance.
     6. The classical Hatch filter in carrier phase smoothed pseudorange difference was studied.The relationship among the filtering error and smoothing times、noise、ionosphere rate wasderived, from the formula we can knew,the more smooth time,the small noise error, but whenthe smoothing time become long, the ionosphere effect can not be ignored. It may lead to filterdivergence.
     7. In order to reduce the classical Hatch filter divergence problem, The paper proposed anew Hatch filter method, Which take into account the ionosphere delay variation, It obtained thenoise error by empirical formula and get the ionosphere error by Klobuchar model,and deducedcalculated the smoothing time by cardaro. The improved Hatch filter algorithm works on eachsatellite at each epoch to get the optimal smooth time. The experiments show that the newalgorithm not only improved the positioning accuracy, but also enhance the robustness.
     8. Thesis designed the integrity monitoring system of MLDAS. It includes Signal QualityMonitoring、Data Quality Monitoring、Measurement Quality Monitoring、Multiple ReferenceConsistency Check、mean and standard deviation Monitoring、Message Field Range Monitoring.the alarm can be issued for monitoring module logic, fault channel can be isolated, and theintegrity of the system will be get.
     9. Accumulated algorithm was proposed which is use in the mean and standard deviationmonitoring. Accumulated algorithm can have good performance in accumulated error, but itcan’t quickly detect the large deviation, the improved algorithm which combined general controlcharts can rapid detection large deviation.It was introduced to the mean and standard deviationmonitoring to make it up for classical accumulated algorithms’ shortcoming. Experimentalresults show that the improved algorithm could not only monitor small medium cumulativedeviation but also to detect the large deviation.
     10. The least squares residual RAIM and parity space vector RAIM were introduced. Andthe integrity of these algorithms was discussed. The least squares residual experimental resultsshow that, the least squares residual RAIM has a better detection capability to single fault. Thethesis proposed an improved method based on least squares residuals to detection multiple faults.This method assumed that the fault number and size were unknown. And assumed the fault ispositive errors caused by ionosphere and tropospheric delay, which can restrict the solver arepositive. Under the condition, the fault can be found which have the minimum least squares residual sum.
引文
[1]刘基余.GPS卫星导航定位原理与方法[M].北京:科学出版社,2008.
    [2]许其凤.空间大地测量学-卫星导航与精密定位[M].北京:解放军出版社,2001.
    [3]刘经南,陈俊勇,张燕平等.广域差分GPS原理和方法[M].北京:测绘出版社,1999.
    [4]邱致和,王万义(译).GPS原理与应用[M].北京:电子工业出版社,2002.
    [5]魏子卿,葛茂荣.GPS相对定位的数学模型[M].北京:测绘出版社,1998.
    [6]王广运等.差分GPS定位技术与应用[M].北京:电子工业出版社,1996.
    [7]周忠谟,易杰军,周琪.GPS卫星测量原理与应用[M].北京:测绘出版社,1997.
    [8]黄立人,高砚龙,任立生.关于NEU(ENU)坐标系[J].大地测量与地球动力学,2006,26(1):97-99.
    [9]陈俊勇.GPS和GLONASS定位成果的坐标转换[J].测绘通报,2002,(7):1-2.
    [10]李毓麟,葛茂荣GPS/GLONASS单点定位的数据处理,测绘通报.1999,(4).
    [11]刘准,陈哲.GPS自主式完整性检测技术研究[J].北京航空航天大学学报,2003,29(8):673-676.
    [12]何海波.高精度GPS动态测量及质量控制[D].解放军信息工程大学博士学位论文,2002.
    [13]朱衍波,张晓林,薛瑞,等.民航GPS地基区域完好性监视系统设计与实现[J].北京航空航天大学学报,2006,32(7):797-801.
    [14]伍岳.第二代导航卫星系统多频数据处理理论及应用[D].武汉大学博士学位论文,2005.
    [15]陈金平,许其凤,刘广军.GPS RAIM水平定位误差保护限值算法分析[J].测绘学院学报,2001,18(增刊):1-3.
    [16]赵毅,GPS/GALILEO组合导航定位关键技术研究[D].东南大学博士学位论文,2009.
    [17]陈秀万,方裕,尹军.伽利略导航卫星系统[M].北京大学出版社,2005.
    [18]高为广,陈金平,王楠.印度卫星导航系统最新进展[J].全球定位系统,2008(1):43-45.
    [19]刘基余,李征航,王跃虎,桑吉章.全球定位系统原理及其应用[M].北京:测绘出版社,1993.
    [20]王新龙,李亚峰.GPS定位中4种对流层延迟修正模型适应性分析[J].电光与控制,200815(11):5-9.
    [21]李良,张小超,赵华平。GPS差分RTCM数据实时编码解码算法及实现[J].计算机工程与应用,2006.7(11):209-211.
    [22]刘智敏,林文介,唐卫明。GPS差分协议RTCM电文分析与应用[J]。桂林工学院学报,2004,24(2):188-191.
    [23]郭树人,王永超.多星座组合导航系统自主完好性监测方法研究[J].遥测遥控,2007,28(3):15-19.
    [24]李飞,段哲民,龚诚,贺卫东.GNSS接收机自主完好性监测算法研究[J].测绘通报,2007,(8):14-15.
    [25]陈金平.GPS完善性增强研究[D].郑州:信息工程大学博士学位论文,2001.
    [26]吕小平.发展我国的GNSS完好性监测系统(一)[J].空中交通管理,2004,(3):6-10.
    [27]刘大杰,施一民,过静珺.全球定位系统(GPS)的原理与数据处理[M].上海:同济大学出版社,1996.
    [28]联合使用高次差法和TurboEdit法自动探测修复周跳[J].测绘信息网。2007.
    [29]王爱兵.WAAS接收机端用户算法[D].郑州:信息工程大学测绘学院硕士学位论文,2007.
    [30]朱华统.常用大地坐标系统及其变换[M].北京:八一出版社,1994.
    [31]常志巧,郝金明,李俊毅.利用多普勒观测检测周跳和粗差[J].测绘通报,2008(3):28-30.
    [32]陈小明.高精度GPS动态定位的理论与实践[D].武汉测绘科技大学博士学位论文,1997.
    [33]冯来平.GPS多频观测数据处理方法及应用研究[D].解放军信息工程大学硕士学位论文,2009.
    [34]生仁军.GPS载波相位定位中周跳探测方法的研究[D].东南大学硕士学位论文,2006.
    [35]谭述森,窦长江.论基于北斗的卫星导航应用服务[J].中国航天,2008(7):11-13.
    [36]吴北平.GPS网络RTK定位原理与数学模型研究[D].中国地质大学博士学位论文,2003.
    [37]夏林元.GPS观测值中的多路径效应理论研究及数值结果[D].武汉大学博士学位论文,2000.
    [38]张成军.虚拟参考站误差分析与算法研究[D].信息工程大学硕士学位论文,2005.
    [39]周巍.COMPASS-M1数据预处理与精密定轨方法研究[D].解放军信息工程大学硕士学位论文,2009.
    [40]王刚.广域差分GPS系统的研究[D].郑州:信息工程大学博士学位论文,2001.
    [41]牛力丕. WAAS系统电离层算法研究[D].西安:西北工业大学硕士学位论文,2000.
    [42]陈刘成.中国GPS增强系统性能分析及技术发展[J].四川测绘,2006,29(2):55-58.
    [43]何海波,杨元喜,孙仲苗.几种GPS测速方法的比较分析[J].测绘学报,2002,31(3):217-221.
    [44]郭睿.区域导航系统接收机自主完好性监测研究[D].郑州:信息工程大学硕士学位论文,2006.
    [45]秘金钟.广域差分GPS完备性监测技术研究[D].北京:中国测绘科学研究院硕士学位论文,2005.
    [46]秘金钟,李毓麟.RAIM算法研究[J].测绘通报,2001(3):7-9.
    [47]黄晓瑞,田巍,李波. GPS接收机的自主完善性监测算法研究[J].遥测遥控,2003,21(1):21-23.
    [48] Mohammed Hossam-E-Haider. RAIM技术中校验空间方法的研究[D].北京:北京航空航天大学博士学位论文,2000.
    [49]黄维彬.近代平差理论及其应用[M].解放军出版社,1992.
    [50]隋立芬,宋力杰.误差理论与测量平差基础[M].解放军出版社,2004.
    [51]杨力.大气对GPS测量影响的理论与研究[D].郑州:信息工程大学博士学位论文,2001.
    [52]袁运斌.基于GPS的电离层监测及延迟改正理论与方法的研究[D].中国科学院博士学位论文,2002.
    [53]李德仁。误差处理和可靠性理论——摄影测量平差的近代发展[M].北京:测绘出版社,1998:120-123,139-147.
    [54]欧吉坤。数据检测的若干理论与实践[M].北京:测绘出版社,1992:170-174.
    [55] Remondi B W(1983).GPS Geodetic Receivers-A Status Update Repor.Technical Papers of the43rdAnnual Meeting of the American Congress on Surveying and Mapping:441-448.
    [56] Cannon M.E., K.P. Schwarz, M. Wei and D. Delikaraoglou(1992), A consistency test of airborne GPSusing multiple monitor station. Bulletin Geodesique,66:2-11.
    [57] Han, S.(1997), Ambiguity recovery for long-range GPS kinematic positioning. NAVIGATION: Journalof the Institute of Navigation,44(2).
    [58] Han S, Chris Rizos C(1999). The Impact of Two Additional Civilian GPS Frequencies on AmbiguityResolution Strategies.55th National Meeting U.S. Institute of Navigation,“Navigational Technologyfor the21st Century”. Cambridge, Massachusetts,28-30June,1999, pp315~321.
    [59] Hein G.,J. Godet, J. Issler, Status of Galileo Frequency and Signal Design. Proc. Of ION GPS2002,Portland,September:24-27.
    [60] Hein G.,J. Godet, J. Issler, the Galileo Frequency Structure and Signal Design. Proc. Of ION GPS2001,Salt Lake City,September:1273-1282.
    [61] De Mateo Garcia J.,P.Erhard and J. Godet. GPS/Galileo Interference Study. Proc.of ENC-GNSS2002,Copenhagen,May.
    [62] Baarda, W. A test procedure for use in Geodetic Netorks, publication on Geodesy[J]. NewSeries,Netherlands Geodetic Commission,1968,2(5):56-57.
    [63] Teunissen P.J.G. Quality Control in Integrated Navigation System [J]. IEEE Aerospace and ElectronicSystem Magazine,1990,5(7):35-41.
    [64] Teunissen P.J.G. Quality Control in geodetic networks. In E.W.Grafarend, F.Sanso(Eds),Optimizationand design of geodetic networks.Springer,Berlin Heidelberg New York,1985:526-547.
    [65] Teunissen P.J.G. Minimal Detectable Biases of GPS data[J]. Journal of Gedesy,1998(72):236-244.
    [66] Hatch R. The synergism of GPS code and carrier measurements. Proceedings of3rd InternationalSymposium on Satellite Doppler Positioning.1982;2:1213-1232.
    [67] Loomis, P.(1989), Correction Algorithms for Dif erential GPS Reference Station, The Journal ofNavigation,36pp179–193.
    [68] Ene, A., Qiu, D., Luo, M., Pullen, S. and Enge, P.(2005). A Comprehensive Ionosphere Storm DataAnalysis Method to Support LAAS Threat Model Development, the Institute of Navigation NationalTechnical Meeting, San Diego CA, pp110–130.
    [69] Kim D.(2000), The Multipath Divergence Problem in GPS Carrier-Smoothed Code Pseudorange,Proceedings of47th Annual Conference of the Canadian Aeronautics and Space, Ottawa, Ont, pp161–163.
    [70] Yun, D. and Kee, C.(1999), Single-frequency Dif erential GPS Accuracy Improvement via Local AreaIonospheric Time Delay Model Development, Telecommunications Review,9(1), pp33–49.
    [71] Wullschleger, V.(2000), FAA LAAS Specification: Requirements for Performance Type1, EuropeanInstitutes of Navigation GNSS2000Conference.
    [72] Chris Rizos, A New Recursive Carrier-Smoothed-Code Filter for Differential Global NavigationSatellite Systems[M], Sydney, Australia: University of New South Wales,2007:4-15.
    [73] http://www.gap-system.org/~history/Biographies/Cardan.html。
    [74] Kee, C., Park, B., Kim, J., Cleveland, A., Parsons, M., Wolfe, D.(2007). A Guideline on EstablishingDGPS Reference Station Requirements, The Journal of Navigation,61pp99–114.
    [75] Lee, Position Domain Filtering and Range Domain Filtering for Carrier-Smoothed-Code DGNSS: AnAnalytical Comparison, Sydney, Australia: University of New South Wales,2006:6-14.
    [76] Veit Oehler, Francesco Luongo, Juan-Pablo Boyero. The Galileo Integrity Concept[A]. ION GNSS2004[C]. Long Beach, CA: Institute of Navigation.2004:604-615.
    [77] Yonug Lee, Karen van Dyke,Bruce Decleene et al. Summary of RTCA SC-159GPS integrity workinggroup activaties. NAVIGATION: Journal of the institute of navigation.1996,Vol43,No.3:307:337P.
    [78] Warburton J.,Lamb D.,Validation of the FAA LAAS specification using the LAAS test prototype.Navigation:Journal of the Institute of Navigation.1998-1999,Vol.45,No.4:265-274P.
    [79] Fan Liu. Development of Gaussian overbounds for the LAAS signal-in-space integrity monitoringalgorithms. Navigation. Journal of the Institute of Navigation.1999,Vol.46,No.1:49-64P.
    [80] Rife Jason, Pullen Sam. Core overbounding and its implications for LAAS integrity. Proceedings of the17th International Technical Meeting of the Satellite Division of the Institute ofnavigation.2004:2810-2821P.
    [81] Shively C.A., Hsiao T.T.. Availability enhancements for CAT III LAAS. Navigation: Journal of theInstitute of Navigation.2004,Vol.51,No.1:45-57P.
    [82] Swider Raymend. Recent development in the LAAS program. Record-IEEE PLANS, Position Locationand Navigation Symposium.1998:441-470P.
    [83] R.Braff. Alarm limits for Local-DGPS integrity monitoring. Proceedings of the1995Nation TechnicalMeeting.1995:387-399.
    [84] G.Xie, S.Pullen. Integrity design and updated test results for the Stanford LAAS integrity monitoringtestbed. ION57th annual meeting,Albuquerque.2001,6:681-693.
    [85] G.Xie. Optimal on-airport monitoring of the integrity of GPS based Landing systems, Ph.D thesis.Stanford University,2004,3:20-80.
    [86] D.Akos, R.E.Phelts, S.Pullen, P.Enge.GPS Signal quality monitoring: test result. Proceedings of theION2000National Technical Meeting.Anaheim,CA.,2000,1:536-541.
    [87] Lee Jiyun. LAAS position domain monitor analysis and test results for CATIII operations,17th ITM ofthe Satellites Division of the Institute of navigation.2004:2786-2796.
    [88] Brown R.G.. Self-contained GPS failure detection:the Kalman filter approach.Proceeding of IONSatellite division technical meeting,Colorado Springs,1997.
    [89] Y.Lee.Analysis of range and position comparision methods as a means to provide GPS integrity in theuser receiver. Proceedings of ION42th annual meeting,1986:1-4.
    [90] B.W.Parkinson,P.Axelrad.Autonomous GPS integrity monitoring using maximum solution separation.Navigation:Journal if the institute if navigation.1988,VOL.35,No.2.
    [91] Sturza, M.A. and A.K. Brown. Comparison of fixed and variable threshold RAIM algorithm[A]. IONGPS90[C]. USA: Institute of Navigation.1990:437-443.
    [92] N.Liohnson,EC.Leone.Cumulativesum control charts--mathematical principles applied to theirconstructionand use.IndustrialQuality Control,1962,(6):15—21,
    [93] Lucas James M.. Combined Shewhart-CUSUM quality control schemes. Journal of QualityTechnology.1982,Vol.14,No.2:51-59.
    [94] James C.Fu,Fred A.Sriring,Hansheng Xie.On the average run lengths of quality control schemes using aMarkov chain approach. Statistics and Probability letters.56(2002):369-380.
    [95] http://www.ngs.noaa.gov/
    [96] De Jonge PJ, Teunissen PJG, Jonkman NF, Joosten P (2000) The distributional dependence of the rangeon triple frequency GPS ambiguity resolution. In: Proceedings of ION-NTM2000,26–28January,Anaheim, CA, pp605–612.
    [97] Euler H.J., C.C. Goad(1991). On optimal filtering of GPS dual frequency observations without orbitinformation. Bulletin Geodesique,1991,65(2):130-143.
    [98] Feng Y, Rizos C (2005).Three carrier approaches for future global regional and local GNSS positioningservices: concepts and performance Perspectives. In: Proceedings of IONGNSS2005,13–16September,Long Beach, CA, pp2277~2787.
    [99] Feng Y(2008).GNSS three carrier ambiguity resolution using ionosphere-reduced virtual signals.Journal of Geodesy.
    [100] Minimum Aviation System Performance Standards for Local Area AugmentationSystem(LAAS).Washington,D.C.,RTCM SC-159,WG-4A,DO-245.1998,9,28.
    [101] R.Fraff,C.Shively. An overbound concept for pseudorange error from the LAAS ground facility.Proceedings of IAIN Worls Congress/ION56th Annual Meeting,San Diego.2000,6:26-28.
    [102] Vignesh Krishnan. Analysis of error propagation in differential satellite based positioning systems.Master Thesis,Ohio University,2004,8:37-93.
    [103] Geoffrey McLachlan,David Peel, Finite mixture models,Newyork: wiley Press,2000,10:10-56.
    [104] Georgiadou, Y., and A. Kleusberg (1988). On the Effect of Ionospheric Delay on Geodetic RelativeGPS Positioning, Manuscripta Geodaetica,13:1~8.
    [105] Goad C.C.(1986). Precise Positioning with the Global Positioning System. Preceedings of the ThirdInternational Symposium on Inertial Technology for Surveying and Geodesy, September16-20,1985,Baff, Canada, pp.745-756.
    [106] Han S., Rizos C.(1997). Multipath effects on GPS in Mine environments, Xth International Congress onthe International Society for Mine Surveying, Fremantle, Australia,2-6November,447~457.
    [107] Hatch R, Jung J, Enge P, Pervan B (2000).Civilian GPS: the benefits of three frequencies. GPS Solu3(4):1~9.
    [108] http://www.glonass-ianc.rsa.ru/pls/html.
    [109] Klobuchar, J. A.(1987), Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users. IEEETransactions on Aerospace and Electronic Systems, AES-23(3):325~331.
    [110] Odijk D.(2000), Weighting Ionospheric Corrections to Improve Fast GPS Positioning Over MediumDistances, ION GPS2000,19-22September2000, Salt Lake City, UT.
    [111] Sandhoo K.Turner D(2000).Shaw M. Modernization of the Global Positioning System.
    [112] http://www.glonass-ianc.rsa.ru/pls/html.
    [113] Schaer, S.(1999), Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System,Ph. D dissertation, Astronomical Institute, University of Bern, Switzerland.
    [114] Wang, J.(1999), Stochastic modeling for real-time kinematic GPS/GLONASS positioning. Navigation:Journal of the Institute of Navigation, Vol.46, No.4, Winter, pp.297~305.
    [115] XIA Lin yuan, Liu Jing nan(2001). Approch for multipath reducing using wavelet algorithm, IONGPS2001,Salt Like City,2001.
    [116] Bradford W.Parkinson and J.J.Spilker Jr. et.al. Global Positioning System: Theory and Applications[M].Washington D.C., published by AIAA.1994.
    [117] Jazwinski AH. Stochastic Processes and Filtering Theory[A]. New York and London: Mathematics onScience and Engineering[C]. Academic Press.1969.64.
    [118] Koch K R and Yang Y. Robust Kalman filter for rank deficient observation model[J]. Journal ofGeodesy.1998.72:436-441.
    [119] Karen L.Van Dyke. The World After SA: Benefits to GPS Integrity[J]. IEEE,2000:387-394.
    [120] Hewitson S, Lee HK and Wang J.Localizability analysis for GPS/Galileo receiver autonomous integritymonitoring[J]. The Journal of Navigation.2004,57(2):245-259.
    [121] Veit Oehler, Francesco Luongo, Juan-Pablo Boyero. The Galileo Integrity Concept[A]. ION GNSS2004[C]. Long Beach, CA: Institute of Navigation.2004:604-615.
    [122] Dr.Young C.Lee. Investigation of Extending Receiver Autonomous Integrity Monitoring(RAIM) toCombined Use of Galileo and Modernized GPS[A]. ION GNSS2004[C]. Long Beach, CA: Institute ofNavigation.2004:1691-1698.
    [123] Ron Hatch, Tenny Sharpe, Yunchum Yang. A Simple RAIM and Fault Isolation Scheme[A]. In: IONGPS/GNSS2003[C]. Portland, Oregon USA: Institute of Navigation.2003:801-808.
    [124] Brown R.G.,A baseline GPS RAIM scheme and a note on the equivalence of three RAIM methods.NAVIGATION.journal of institute if navigation.1992,Vol.39,No.3:301-316.
    [125] Bradford W.Parkinson and J.J.Spilker Jr. et.al. Global Positioning System: Theory and Applications[M].Washington D.C., published by AIAA.1994.
    [126] Ryan S.Y.Young, Rockwell Collins. Fault Detection and Exclusion Using Normalized SolutionSeparation Methods[A]. ION GPS2002[C]. Portland, Oregon USA: Institute of Navigation.2002:565-578.
    [127] Giinter W.Hein. Integrity Monitoring Concepts for a Global Navigation Satellite System(GNSS-2)[A].ION GPS99[C]. Nashville, USA: Institute of Navigation.1999:2149-2158.
    [128] Matthem Powe, John Owen. A Flexible RAIM Algorithm[A]. ION GPS97[C]. Kansas City. Missouri,USA: Institute of Navigation.1997:439-449.
    [129] J.Kraemer, G.Chin, G.Nim, K.Van Dyke. RAIM for WAAS Category I Precision Approach[A]. IONGPS98[C]. USA: Institute of Navigation.1998:1375-1384.
    [130] Ronald Braff. Missed Detection Probability Requirements for LAAS Integrity Monitoring of RangingSources[A]. ION GPS99[C]. Nashville, USA: Institute of Navigation.1999:663-670.
    [131] Sturza M.A., Navigation System Integrity Monitoring Using Redundant Measurements[J],NAVIGATION,1988-89,35(4):483-501.
    [132] Grover R.G., Self-Contained GPS Integrity Check Using Maximum Solution Separation[J],NAVIGATION,1988,35(1):41-54.
    [133] Walter, T. and Enge P., Weighted RAIM for Precision Approach[J], proceedings of ION GPS95. IONGPS-95[C]. Palm Springs, CA,1995:1995-2004.
    [134] Steve Hewitson. GNSS receiver Autonomous Integrity Monitoring: A Separability Analysis[A]. IONGPS/GNSS-2003[C]. Portland, Oregon, USA: Institute of Navigation.2003:1502-1509.
    [135] Brown R.Grover, Chin Gerald Y., GPS RAIM: Calculation of Threshold and Protection Radius UsingChi-Square Methods-A Geometric Approach. Invited Pater in Navigation: Journal of the ION, Vol.5,1997, pp.155-178.
    [136] Frank van Diggelen, Alison Brown. Mathematical Aspects of GPS RAIM[J]. IEEE,1994:733-738.
    [137] William R.Michalson. Ensuring GPS Navigation Integrity using Receiver Autonomous IntegrityMonitoring[J]. IEEE,1995:31-34.
    [138] G Jeffrey Geier, T Michael King, Howard L Kennedy, et al. Prediction of the Time Accuracy andIntegrity of GPS Timing[A].1995IEEE International Frequency Control Symposium[C], MotorolaPosition and Navigation Systems Business,1995:266-274.
    [139] Kee, Changdon. Wide Area Differential GPS(WADGPS)[D]. Stanford University Ph.D. Dissertation,Department of Aeronautics and Astronautics, December1993.
    [140] Yi Bian. Modelling and Simulation of WADGPS Systems[J]. IEEE,1996:188-195.
    [141] Shau-Shiun Jan. Aircraft Landing Using a Modernized Global Positioning System and the Wide AreaAugmentation System[D]. Stanford University Ph.D. Dissertation, Department of Aeronautics andAstronautics.2003.
    [142] Shau-Shiun Jan. Analysis of a Three-Frequency GPS/WAAS Receiver to Land an Airplane[J].Department of Aeronautics and Astronautics, Stanford University,2003.
    [143] Samuel P.Pullen, Y.C. Chao and Per K.Enge. Effects of Local Ionospheric Anomalies on NavigationPerformance and Integrity using WAAS[J]. IEEE,1996:574-581.
    [144] Shau-Shiun Jan, Demoz Gebre-Egziabher, Todd Walter, et.al. Worst-Case Analysis of a3-FrequencyReceiver to Land a General Aviation Airplane[A]. Proceedings of ION NTM2002, San Diego, CA,2002.
    [145] Juan Blanch. Using Kriging to Bound Satellite Ranging Errors Due to the Ionosphere[D]. StanfordUniversity Ph.D. Dissertation, Department of Aeronautics and Astronautics.2003.
    [146] Colleen H.Yingger, William A.Feess, Ray Di Esposti, et.al. GPS Satellite Interfrequency Biases[A].ION55th Annual Meeting. ION GPS99[C]. Cambridge, MA.1999:347-354.
    [147] Sturza, M.A. and A.K. Brown. Comparison of fixed and variable threshold RAIM algorithm[A]. IONGPS90[C]. USA: Institute of Navigation.1990:437-443.
    [148] http://www.beidou.gov.cn/.
    [149] ftp://ftp.unibe.ch/aiub/CODE/0000_CODE.ACN.
    [150] Alfred Leick, GPS Satellite Surveying2nd ed New York,1995.
    [151]崔建勇,孙付平,陈明剑,任红亮.GPS RAIM算法中的多异常值探测方法[J].测绘科学技术学报,2011,28(5):342-346.
    [152] Blewitt G. An automatic editing algorithm for GPS data[J]. Geophys Res Lett,1990,17(3):199-202.
    [153]郑作亚等.对Blewitt周跳探测与修复方法的改进[J].天文学报,2005,46(2):216-224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700