用户名: 密码: 验证码:
基于计算智能技术的聚类分析研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚类属于无监督学习,是将数据集中的数据对象分成多个簇或者类,使得在同一个簇中对象相似度高,而在不同簇中对象的相似度低,因此,对空间数据对象的聚类可通过基于聚类目标函数的优化问题来解决。从这一思路出发,将自适应能力及鲁棒性较高的计算智能技术应用于聚类分析,产生了很多基于计算智能技术的聚类分析模型。基于计算智能的聚类分析成功解决了数据的聚类问题,对处理目标的特性有良好的适应能力,弥补了传统聚类方法的不足,取得了良好的效果。
     计算智能方法主要包括神经网络、模糊控制、进化计算、混沌科学、免疫计算、DNA计算及群体智能等。近年来,神经网络、模糊逻辑和进化计算三个方向的研究成为热点。自组织映射(SOM)是最有代表性的神经网络聚类方法;遗传算法、进化策略、免疫规划、克隆学说、蚁群系统、微粒群优化、文化算法等进化计算已成功应用到聚类分析中;另外,在传统聚类分析中引入模糊集概念,产生了模糊聚类算法;根据计算智能技术的优缺点,将一些计算智能方法融合起来应用于聚类分析,提高了聚类的能力。
     论文将神经网络、遗传算法等计算智能技术用于聚类分析,构造聚类分析模型,研究该模型的定义及优化方法的特点和不足,改进或提出相应的解决方法;另外,针对模型在聚类分析中的应用研究并结合离散Morse的相关理论和方法,研究离散Morse理论在聚类分析中实现的关键技术和方法,并提出基于Morse理论的聚类分析模型以适应具体应用的要求。通过实验,验证了模型的有效性和可行性。
     本文的主要研究内容如下:
     1.针对传统SOM网络模型用于聚类分析时竞争层神经元个数须预先指定的缺点,给出了在训练过程中动态确定网络结构和单元数目的解决方案,提出一种新的动态自组织特征映射模型,并给出模型的训练算法。此算法初始只有一个根结点。在网络训练过程中不断产生新结点。新的结点可在任意位置根据需要自动生成。当训练算法结束时,根据得到的树形结构确定聚类的数目。算法中通过扩展因子控制网络的生长,实现了不同层次的聚类。算法采用两阶段的训练思想。当算法的生长阶段完成后,利用模糊C-聚类的思想,对生长阶段产生的粗聚类结果做细化处理,从而提高最终聚类结果的精度和算法的收敛速度。通过UCI数据集来验证该模型的有效性和优越性,并对其聚类的有效性进行对比分析。
     2.介绍了谱聚类技术及相关概念,对谱聚类算法进行研究及分析,提出一种自动确定聚类数目的谱聚类算法。为了解决CLARANS算法易收敛于局部最优及面对大数据集聚类效率不高的问题,结合遗传算法易于找到全局最优值的特点,将遗传算法和CLARANS算法相结合,提出基于GA的聚类分析模型,并通过选择合适的适应值函数,达到聚类的目的。通过实验证明了新算法的的优越性
     3.介绍了离散Morse理论的基本原理及相关概念,提出一种构建离散Morse函数求最优解的算法,并证明了构建的函数是最优的离散Morse函数,同时构建了一种基于离散Morse理论的优化模型,实验的结果证明了该模型的有效性。这是一个全新的尝试。
     4.把基于离散Morse理论的优化模型应用于聚类分析,提出一种基于离散Morse优化模型的密度聚类算法。聚类后的结果运用层次聚类的思想进行优化,可以通过参数的调整来控制聚类簇的数目,达到聚类效果。实验证明新算法的可行性及有效性。
     本文的创新点总结如下:
     1.提出一种新的动态SOM模型。该模型采用新的生长阈值函数,训练算法采用两阶段思想。实验在UCI数据集上进行,通过与SOM模型、FCM算法及TreeGNG对比验证了该模型的有效性和优越性。
     2.提出一种基于GA的自动谱聚类算法GA-ISC。通过改进的谱聚类算法ISC-CLARANS达到自动产生聚类结果的目的。引入GA提高CLARANS算法的执行效率。实验分别在人工数据集及UCI数据集上进行。实验证明ISC-CLARANS算法正确、有效。通过GA-ISC与ISC-CLARANS算法的聚类结果比较,验证了GA-ISC算法的高效性。
     3.提出一种基于离散Morse理论的优化模型,该模型通过在单纯复形上构造离散Morse函数来实现。实验结果证明了该模型的正确性及有效性。
     4.提出一种新的基于离散Morse优化的聚类模型。该模型在离散曲面上进行。聚类后的结果运用层次聚类的思想进行优化。实验在人工数据集及UCI数据集上进行,通过与DBSCAN算法的聚类结果比较,验证了新模型的高效性及优越性。
Data clustering is applied to finding natural clusters in data. It belongs tounsupervised learning methods. The objective of clustering is that a cluster is agroup of objects that are more similar to one another than to members of otherclusters. We can transform a clustering problem into optimization problem based onthe objective function. Many algorithms based on Computational Intelligence havebeen proposed. The cluster analysis methods based on Computational Intelligence(CI) can effectively solve the problem of data clustering, make up for the deficiencyof the traditional clustering methods, and have achieved good results.
     CI techniques include artificial neural network,fuzzy control, evolutionarycomputation, immunization algorithm, DNA computation, swarm intelligence, etc.Artificial neural network, fuzzy computation and evolutionary computation havebecome the fore in recent years in the computation intelligence field. SOM is therepresentative among neural network clustering methods. Genetic algorithm,culturealgorithm,evolutionary strategy, immune programming, clone theory, particle swarmoptimization are successfully applied into cluster analysis. Fuzzy clusteringalgorithm based on the concept of fuzzy is an effective method for data clustering.Moreover, Computational intelligence methods mentioned above are combined toenhance the clustering performance.
     In this paper, neural network and GA are chosed as a tool of clustering. Clusteranalysis models are present. The corresponding improvement solutions are putforward according to deficiency of optimization methods and the definition of themodel. Furthermore, discrete Morse theory is combined with cluster analysis bystudying the key technique and method, then a new clustering algorithm based ondiscrete Morse theory is proposed. The experimental results show the feasibility andeffectiveness of the new clustering algorithm.
     The main research contents of this dissertation are summarized in thefollowing:
     (1)For overcoming the shortcoming that the output layer neuron number mustbe pre-specified in classical SOM network in cluster analysis, a new dynamic SOMclustering model is proposed, then the training algorithm of the model is given.Theclustering model can dynamically determine the network structure and the number ofneurons in the process of training. There is one root node at the beginning of thealgorithm, then new nodes can dynamically produce anywhere. The clusters number will automatically be determined with the establishment of tree structure. Thealgorithm of new SOM clustering network adopts an spread factor, which can beused to measure and control the network growth and spread. The spread factor is alsoproposed as a method of obtaining hierarchical clustering of a data set with the newclustering model.2-phase training is adopted in the algorithm. Fuzzy C-meansalgorithm is applied to refinement of the clustering result which is the general resultin phase1when finishing the network growth. By this way, the clusters is producedautomatically, the convergence speed of the algorithm and the accuracy of the finalclustering results have been greatly improved. The experimental results on UCI datasets have demonstrated that the new algorithm is feasible and effective. Thecomparative analysis is used to prove the effectiveness of the new SOM clusternetwork and the improved algorithm.
     (2) Theory basis of spectral clustering is introduced, which includes:introductions to spectral clustering definitions, technology and algorithms. Then anew algorithm of spectral clustering is proposed which can automaticallydetermine the number of clusters in a dataset. In order to solve convergence to localoptimum and inefficiency of clustering of CLARANS algorithm in large data sets,spectral clustering model based on GA is present because genetic algorithm is easyto find the global optimal value. The experimental results show the effectiveness ofthe new clustering algorithm.
     (3) Fundamentals and concepts of discrete Morse theory are introduced. Then anew algorithm of constructing Morse function for optimization is proposed. Morsefunction is proved to be a optimal function. The experimental results show theeffectiveness of the new model. This is a novel attempt.
     (4) The optimization model based on discrete Morse theory is successfullyapplied to cluster analysis. then a new cluster framework based on discrete Morseoptimization Model is proposed. is the hierarchical clustering is adopted tooptimization of clustering results. The experimental results show the feasibility andthe effectiveness of the new model.
     Innovative viewpoints of this dissertation are summarized in the following:
     (1) A new SOM clustering model is proposed. A new growth threshold isapplied to the model.2-phase training is adopted in the algorithm. The experimentalresults on UCI data sets have demonstrated that the new algorithm is feasible andeffective. The comparisons with classical SOM method, FCM algorithm andTreeGNG method further are used to prove the effectiveness of the new SOMnetwork.
     (2) a new algorithm of spectral clustering based on GA(GA-ISC) is proposed.An improved spectral clustering algorithm(ISC-CLARANS) can automaticallydetermine the number of clusters in a dataset. The experimental results on somesynthetic and UCI data sets have demonstrated that ISC-CLARANS algorithm is feasible. The comparison with the ISC-CLARANS algorithm is used to prove theeffectiveness of the GA-ISC network.
     (3) A discrete Morse optimization model is present by constructing Morsefunction on a simplicial complex.The experimental results show the effectiveness ofthe new model.
     (4) A new clustering algorithm based on discrete Morse optimization model isproposed in this paper. The hierarchical clustering is adopted to optimization ofclustering results. The experimental were carried out on some synthetic and UCI datasets.ed that the new model is feasible and effective. The comparisons with DBSCANalgorithm show the feasibility and the effectiveness of the new model.
引文
[1] Han J.,Kamber M.Data Mining:Concepts and Techniques, Second Edition, ChinaMachine Press,2007.
    [2] Berkhin P. Survey of Clustering Data Mining Techniques. Accrue SoftwareResearch Paper.2002,[Online]. Available:http://www.ee.ucr.edu/~barth/EE242/clustering_survey.pdf.
    [3] Jain A., R. Algorithms for Clustering Data. Prentice-Hall,EnglewoodCliffs,NJ,1998.
    [4]姜园,张朝阳,仇佩亮,周东方.用于数据挖掘的聚类算法[J].电子与信息学报.2005,27(4):655-662.
    [5] Xu R.,Wunsch IID.Survey of Clustering Algorithms.IEEE Trsans.on NeuralNetworks.2005,16(3):645-678.
    [6]行小帅,焦李成.数据挖掘的聚类方法[J].电路与系统学报.2003,8(1):59-67.
    [7] Zhong S. Semi-Supervised model-based document clustering:A comparativestudy.Machine Learning.2006,65(1):3-29.
    [8]苏木亚.谱聚类方法研究及其在金融时间序列数据挖掘中的应用(博士学位论文)[D].大连:大连理工大学,2011.
    [9] Milnor J. Morse theory[M]. NewJersey: Princeton University Press,1963.
    [10]M. W. Bern, D. Eppstein. Emerging challenges in computational topology. ACMComputing Research Repository,1999.
    [11] T. K. Dey, H. Edelsbrunner, and S. Guha. Computational topology[C]. In B.Chazelle, J. Goodman, and R. Pollack, editors, Advances in Discrete andComputational Geometry,American Mathematical Society, Providence,1999.223:109-143.
    [12] G. Vegter. Computational topology[M]. In J. E. Goodman and J. O'Rourke,editors, Handlebook of Discrete Computational Geometry, CRC Press,1997,517-536.
    [13]R. Forman. Morse theory for cell complexes[J]. Advances in Mathematics,1998,134(1):90-145.
    [14]H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse-SmaleComplexes for Piecewise Linear2-Manifolds[J]. Discrete Comput. Geom.2003.30(1):87–107.
    [15]Lewiner T, Lopes H, Tavares G. Toward optimality in discrete Morse theory[J].Experimental Mathematics,2003,12(3):271–286.
    [16]J.C.Bezdek,Pattern recognition with fuzzy objective function algorithms[M],Plenum Press, New York.1981.
    [17]Han J W,Kamber M.Datamining concepts and techniques[M].2nd ed. Francisco:Morgan Kaufmann Publishers,2006:383-385.
    [18]Karypis,G.,E.-H. Han, V. Kumar, Chameleon: hierarchical clustering usingdynamic modeling[J]. Computer2002.32(9):68-75.
    [19]Ester,M.,et al.A density-based algorithm for discovering clusters in large spatialdatabases[C].in Proceedings of the International Conference on KnowledgeDiscover and Data Mining. Portland,OR:AAAI.1996.226-231.
    [20]Ankerst,M.,et al. OPTICS: Ordering points to identify the clusteringstructure[C]. in Proceedings of the1999ACM SIGMOD internationalconference on Management of data. Philadelphia,PA.ACM.1999.49-60.
    [21]K.Fukunaga, Introduction to Statistical Pattern Recognition[M], second ed.BostonAcademic Press,1990.
    [22]Hinneburg,A.,D.A.Keim.An efficient approach to clustering in large multimediadatabases with noise[C].in Proceedings of the1998International ConferenceKnowledge Discovery and Data Mining. New York,USA:AAAI,1998,58-65.
    [23]HAN Jiawe, KAMBER M. Data mining concepts and techniques[M].范明,孟小峰,等译.北京:机械工业出版社.2002.
    [24]张建萍,刘希玉.基于聚类分析的K-means算法研究及应用[J].计算机应用研究.2007,24(5):166-168.
    [25]T Kohonen, Self-organization and associate memory[M], Berlin:Springer-Verlag,1984, Chapter5.
    [26]Kohonen T, Improved versions of learning vector quantization[C], Internationaljoint Conference on Networks,San Diego1990,1:545-550.
    [27]Kohonen T, The self-organizing map[J], Neuro computing,1998,21(1-3):1-6.
    [28]Kohonen T,Self-Organizing Maps[M],Springer,Berlin:1995.
    [29]李敏强,寇纪淞.遗传算法的基本理论与应用[M].北京:科学出版社,2003
    [30]李远成,阴培培等.基于模糊聚类的推测多线程划分算法[J].计算机学报.2014.37(3):580-592.
    [31]杨悦,郭树旭等.基于核函数及空间邻域信息的FCM图像分割新算法[J].吉林大学学报(工学版).2011.41(2):283-287.
    [32]Ng R, Han J. Efficient and effective clustering methods for spatial data mining[C]. Proceeding of the20th VLDB Conference Santiago, Chile,1994.
    [33]陈旭,冯岭等.基于技术功效矩阵的专利聚类分析[J].小型微型计算机系统.2014,35(3):526-531.
    [34]Ng R, Han J. CLARANS: a method f or clustering objects for spatial datamining[J]. IEEE Trans on Knowledge, Data Eng,2002,14(5):1003-1016.
    [35]Sheikholeslami G, Chatterjee S, Zhang A. WaveCluster: a multi-resolutionclustering approach for very large spatial databases [C]. In: Proceedings ofVLDB,1998,428-439.
    [36]Zhang Ya-ping, Sun Ji-zhou, et al. Parallel implementation of CLARANSusing PVM [C]. In: Proceeding of the3rd International Conference on MachineLearning and Cybernetics,2004,26-29.
    [37]Ester M, Kriegel H P, Xu X. A database interface for clustering in large spatialdatabases[C]. Proceedings of the Knowledge Discovery and Data MiningConference,1995.
    [38]宗瑜,江贺等.空间平滑搜索CLARANS算法[J].小型微型计算机系统.2008.29(4):667-671.
    [39]郭晓娟,刘晓霞,李晓玲,层次聚类算法的改进及分析[J].计算机应用与软件,25(6):243-244.2005
    [40]龙真真,张策等.一种改进的Chameleon算法[J].计算机工程,35(20):189-191,2009.
    [41]Xiao-FengWang, De-ShuangHuang. A Novel Density-Based ClusteringFramework by Using Level Set Method[J]. IEEE Transactions On Knowledgeand Data Engineering,2009,21(11):1515-1531
    [42]Ballard,D.H.,Gardner,P.C.,Srinivas,M.A. Gragh problems and connectionistarchitectures[R].Technical Report TR167,Dept.Computer Science, University ofRochester,1987.
    [43]Jianbo Shi and Jitendra Maik. Normalized cuts and image segmentation[J].IEEETranactions on PatternAnalysis and Machine Intelligence.22(8):888-905,2000.
    [44]Ravi Kannan,Santosh Vempala,Adrian Vetta.On clusterings-good,bad andspectral[C],In FOCS,2000,367-377.
    [45]Daniel A.Spielman,Shang-Hua Teng. Spectral partitioning works: Planar graphsand finite element meshes[C].In IEEE Symposium on Foundations of ComputerScience,1996,96-105.
    [46]A.Y.Ng,M.I.Jordan. and Y.Weiss. On spectral clustering: Analysis and analgorithm[C].In T.G.Dietterich,S.Becher, and Z.Ghahramani,editor, Advances inNeural Information Processing Systems Cambridge, MA, MIT press.2002,14:849-856.
    [47]Marina Meila and Jianbo Shi. A random walks view of spectral segmentation[J].Artificial Intelligence and Statistics.2001.
    [48]Andrew Moore. The anchors hierarchy: Using the triangle inequality to survivehigh-dimension data[C].In Proceedings of the Twelfth Conference onUncertainty in Artificial Intelligence,AAAI Press,2000:397-405..
    [49]孔敏,关联图的谱分析及谱聚类方法研究.(博士论文)[D].安徽:安徽大学,2006.
    [50]Grossberg S. Adaptive pattern classification and universal recoding: I. Paralleldevelopment and coding of neural feature detectors[J]. Biological Cybernetics,1976,23(3):121-134.
    [51]Alahakoon D,Halgamuge S K,Srinivasan B, A self-growing cluster developmentapproach to data mining, IEEE International Conference on Systems,Man,andCybernetics,1998,3:2901-2906.
    [52]王莉,王正欧. TGSOM:一种用于数据聚类的动态自组织映射神经网络[J].电子与信息学报.2003,25(3):313-319.
    [53]A Raube,D Merkl,M Dittenbach,The Growing Hierarchical Self-OrganizingMap: Exploratory Analysis of High-Dimensional Data,IEEE Trans.on neuralnetworks,2002:13(6):1331-1340.
    [54]Su M.,Chang H.A new nodel of self-organizing neural networks and itsapplication in data projection.IEEE Transactions on Neural Networks.2001,12(1):153-158,
    [55]Jin H.,Shum W.,Leung K., Wong M.Expanding Self-Organizing Map for datavisualization and cluster analysis.Information Sciences,2004,163:157-173.
    [56]张毓敏,谢康林.基于SOM算法实现的文本聚类[J].计算机工程.2004,30(1):75-76+157.
    [57]张钊,王锁柱,张雨.一种基于SOM和PAM的聚类算法[J].计算机应用.2007,27(6):1400-1402.
    [58]Hussin M.F.,Kamel M.Document clustering using hierarchical SOMART neuralnetwork.Proc.of the Int’l Joint Conf.on Neural Network.2003,2238-2241.
    [59]J.Lampinen,E.Oja.Clustering Properties of Hierarchical Self-organizingMaps.J.Math. Imag.Vis.1992,2(2-3):261-272.
    [60]M.Y.Kiang.Extending the Kohonen Self-organizing Map Networks forClusteringAnalysis. Comput.Stat.DataAnal.2001,38:161-180.
    [61]J.Vesanto,E.Alhonierni.Clustering of the Self-organizing Map.IEEETrans.Neural Networks.2000,11(3):586-600.
    [62]尹小娟,肖勤,琚报德.基于SOM的三维人脸表情聚类[J].信息系统工程.2013,3:136-137.
    [63]李为,都雪,林明利等.基于PCA和SOM网络的洪泽湖水质时空变化特征分析[J].长江流域资源与环境.2013,22(12):1593-1600.
    [64]王修岩,李翠芳,李宗帅.基于SOM和协同学的航空发动机气路故障诊断研究[J].计算机测量与控制.2014,22(2):319-320+328.
    [65]吴烨,钟志农,熊伟等.一种高效的属性图聚类方法[J].计算机学报.2013,36(8):1704-1713.
    [66]温涛,盛国军,郭权等.基于改进粒子群算法的Web服务组合[J].计算机学报.2013,36(5):1031-1046.
    [67]廖松有,张继福,刘爱琴.利用模糊熵约束的模糊C均值聚类算法[J].小型微型计算机系统.2014,35(2):379-383.
    [68]董红斌,黄厚宽,周成等.基于模糊权和有效性函数的演化聚类算法[J].电子学报.2007,35(5):964-970.
    [69]高新波.模糊聚类分析及其应用.西安电子科技大学出版社[M].2004.
    [70]朱林,雷景生,毕忠勤,杨杰.一种基于数据流的软子空间聚类算法[J].软件学报,2013,24(11):2610-2627.
    [71]Laszlo M.,Mukherjee S.A genetic algorithm using hyper-quadtrees forlow-dimensional k-means clustering.IEEE Trans. On Pattern Analysis andMachine Intelligence.2006,28(4):533-543.
    [72]Sheng W.,Liu X.A hybrid algorithm for k-medoid clustering of large datasets.Proc.of Congress on Evolutionary Computation(CEC’04).2004,77-82.
    [73]Wu B.,Zheng Y.,Liu S.Shi Z.CSIM:a document clustering algorithm based onswarm intelligence.Proc.of IEEE World Congress on Computational Intelligence.2002,477-482.
    [74]王春明,王正欧.基于粗集与遗传算法相结合的文本模糊聚类方法[J].电子与信息学报.2005,27(4):548-551.
    [75]陈金山,韦岗.遗传+模糊C-均值混合聚类算法[J].电子与信息学报.2002,24(2):210-215.
    [76]李洁,高新波,焦李成.一种基于CSA的模糊聚类新算法[J].电子与信息学报.2005,27(2):302-305.
    [77]李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报.2006,34(1):89-92.
    [78]徐晓艳.基于聚类思想的改进混合遗传算法(硕士学位论文)[D].北京:北京工业大学,2013.
    [79]曹永春,邵亚斌等.一种基于免疫遗传算法的聚类方法.广西师范大学(自然科学版).2013,31(3):59-64.
    [80]H. Edelsbrunner, J. L. Harer, and A. Zomorodian. Hierarchical MorseComplexes for Piecewise Linear2-Manifolds. In Proceedings of the17thSymposium of Computational Geometry,2001,70-79.
    [81]J. C. Hart. Morse theory for implicit surface modeling. In H.-C.Hege and K.Polthier, editors, Mathematical Visualization, Berlin, Springer.1998.257-268.
    [82]H. Lopes. Algorithms to build and unbuild2and3dimensional manifolds[D].PhD thesis, Department of Mathematics, PUC-Rio,1996.
    [83]Y. Shinagawa, T. Kunii, and Y. Kergosien. Surface coding based on Morsetheory[J]. IEEE Computer Graphics andApplications,1991,11:66-78.
    [84]R. Bott, Morse Theory Indomitable, Publ. Math. I. H. E. S.68(1998),99-117.
    [85]M. W. Bern, D. Eppstein. Emerging challenges in computational topology[M].ACM Computing Research Repository,1999.
    [86]R. Forman. Some Applications of combinatorial differential topology[C]. InProceedings of the SullivanFest,2000.
    [87]R. Forman. Auser guide to discrete Morse theory[R]. In Seminaire Lotharingiende Combinatoire,2002.48:1-35
    [88]R.Forman. Combinatorial Vector Fields and Dynamical Systems[J], Math.Zeit.,1998,228:629-681.
    [89]R. Forman. Combinatorial differential topology and geometry, in NewPerspectives in algebraic Combinatorial (Berkeley,CA.1996-97),Math.Sci.Res.
    [90]Henry King, Kevin Knudson. Generating Discrete Morse Function from PointData[J]. Experimental Math.2005,14:435-444.
    [91]R. Ayala, L.M. Fernández and J.A. Vilches, Desigualdades de Morsegeneralizadas sobre grafos, Actas de las III jornadas de Matem′atica Discreta yAlgor′tmica (Universidad de Sevilla, Spain,2002:159–164.
    [92]J.A. Vilches, Functions de Morse discrete sobre complejos infinitos, book(Edici n Digital@tres, Sevilla,2003).
    [93]R. Ayala, L.M. Fernández and J.A. Vilches, Defining discrete Morse functionson infinite surfaces.20th European Workshop on Computational Geometry,2004,3:25-27.
    [94]Li na. Zhang. The Visualization of Topologies and the Fast Metamorphosis ofPolyhedral Model in3D. Master’s thesis, Jan.2007.Advised byYaolin Gu
    [95]K.A.J.Doherty, R.G.Adams, N.Davey, TreeGNG-Hierarchical TopologicalClustering[C], European Symposium on Artificial Neural Networks proceedings.Bruges,2005:27-29
    [96]B Fritzke. Growing cell structure: A self organizing network for supervised andun-supervised Learning, Neural Networks,1994,7(10):1441-1460.
    [97]D Choi, S Park, Self-creating and organizing neural networks, IEEE Trans. onNeural Networks,1994,5(4):561-575.
    [98]D Alahakoon, S K Halgamuge. Dynamic self-organizing maps with controlledgrowth for knowledge discovery, IEEE Trans. on Neural Networks,2000,11(3):601-614.
    [99] A Raube, D Merkl, M Dittenbach, The Growing Hierarchical Self-OrganizingMap: Exploratory Analysis of High-Dimensional Data, IEEE Trans. on neuralnetworks,2002:13(6):1331-1340.
    [100] Lee D T and Schacher B J. Two algorithms for constructing a delaunaytriangulation[J]. International Journal of ComputerandInformationSciences,1980,9(3):219-242.
    [101]杨雅辉,黄海珍等.基于增量式GHSOM神经网络模型的入侵检测研究[J].计算机学报.2014,37(5):1216-1224.
    [102]Andrew Y.Ng, Michael I.Jordan, and Yair Weiss,“On spectral clustering:Analysis and an algorithm,” in Advances in Neural Information ProcessingSystems, Thomas G.Dietterich, Sue Becker, and Zoubin Ghahramani,Eds.,Cambridge, MA,2002,vol.14,MIT Press.
    [103]Guido Sanguinetti, Jonathan Laidler and Neil D.Lawrence. AutomaticDetemination of The Number of Clusters Using Spectral Algorithms[C]. In Proc.2005IEEE Workshop on Machine Learning for Signal Processing,2005:55-60.
    [104]Lawson C L. Generation of a triangular grid with application to contourplotting[A]. California Institute of Technology, Jet PollutionLaboratory,,1972:299.
    [105]Lee D T and Schacher B J. Two algorithms for constructing a delaunaytriangulation[J]. International Journal of ComputerandInformationSciences,1980,9(3):219-242.
    [106]Wu Z, Leahy R. An optimal graph theoretic approach to data clustering:theory and its application to image segmentation[J].IEEE Trans on PAMI,1993,15(11):1101-1113.
    [107]Shi J, Malik J.NonIlalized cuts and image segmentation. IEEE Transactionson Pattern Analysis and Machine Intelligence,2000,22(8):888-905.
    [108]Hagen L, Kahng A B. New spectral methods for ratio cut partitioning andclustering. IEEE Trans. Computer-aided Design,1992,11(9):1074-1085.
    [109]Sarkar S, Soundararajan P. Supervised learning of large perceptual organization:Graph spectral partitioning and learning automata. IEEE Transaction on PatternAnalysis and Machine intelligence,2000,22(5):504-525.
    [110] Ding C, He X, Zha H. Spectral Min-Max cut for Graph Partitioning and DataClustering[C]. Proc. of the IEEE Intl Conf. on Data Mining.2001:107-114.
    [111]Meila M, Xu L. Multiway cuts and spectral clustering. U.Washington TechReport.2003.
    [112] Raymond T. Ng, Jiawei Han. CLARANS: A Method for Clustering Objects forSpatial Data Mining[J]. IEEE Transactions on Knowledge and Data Engineering.2002,14(5):1003-1016.
    [113]Savaresi S M, et al. Choosing the cluster to split in bisecting divisive clusteringalgorithms[R]. CSE Report TR00-055, University of Minnesota,2000.
    [114]尹文禄,叶良丰等.基于高阶四面体矢量元的大规模本征值求解[J].微波学报.2010,26(1):12-18.
    [115]R. Forman. A discrete Morse theory for cell complexes. In S. T.Yau, editor,Geometry, Topology and Physics for Raoul Bott.International Press,1995.
    [116]R Forman. Morse theory for cell complexes[J]. Advances in Mathematics,1998,134(1):90-145.
    [117]King H, Knudson K. Generating discrete Morse function from point data[J].Experimental Mathematics,2005,14(4):435–444.
    [118] Forman R, Wolf M. Six themes on variation[M]. New York: AMS,2004:13–31.
    [119]Huang H, Qin H, Hao Z F. Example based learning particle swarm optimizationfor continuous optimization[J].Information Sciences,2012,182(1):125–138
    [120]Tran T N, Wehrens R, Buydens L M C. KNN-kernel density-based clusteringfor high-dimensional multivariate data[J].Computational Statistics&DataAnalysis,2006,51(2):513-525.
    [121]Fukunaga K. Introduction to statistical pattern recognition[J].2nd ed.Boston:Academic Press,1990:181-397.
    [122]Edelsbrunner H, Hare rJ, Natarajan V, et al. Morse-smale complexes forpiecewise linear3-manifolds[C]. Proc of19th Annual Symposium onComputational Geometry. San Diego,2003:361-370.
    [123]Xiaochun Wang, Xiali Wang, and D. Mitchell Wilkes. A Divide-and-Conquer
    Approach for Minimum Spanning Tree-Based Clustering[J]. IEEE Transactions
    on Knowledge and Data Engineering,2009,21(7):945-958

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700