用户名: 密码: 验证码:
柔性体与流体耦合运动的数值模拟和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单个和多个柔性体在运动流体中的流固耦合问题广泛存在于生物运动和人类生产、生活中。这一类流固耦合问题的研究同时涉及到流体力学、材料力学、结构动力学、计算力学和实验力学等学科的知识,具有较大的研究难度。对这些问题的深入研究可以帮助提炼成熟有效的流固耦合数值、理论研究方法,积累实验数据,为人类进一步认识自然界提供理论基础,为工程和国防应用提供技术支持。
     本文开发了一种计算“柔性体-流体”耦合运动的二维数值模拟算法,并利用该算法对单个及多个柔性体在均匀来流和卡门涡街中的运动进行了数值模拟计算,分析了各控制参数对柔性体运动及力学性能的影响机制。此外,本文还利用旗帜吹风和丝线摆动实验对计算结果进行了比较验证。最后,本文以两串行排列圆柱为研究对象对低雷诺数下多个钝体绕流的流场结构进行了实验观察和分析。
     本文主要内容和结论包括:
     1.单个柔性体在均匀来流中的流固耦合运动研究。利用流固耦合程序模拟了均匀来流中悬臂梁的运动,考察了流体诱导的柔性体摆动频率、振幅和受力情况随来流速度的变化规律,得出了不同密度比柔性体的临界稳定速度。在低速风洞中进行了旗帜吹风实验,验证了数值结果的正确性。
     2.均匀来流中相同长度并行排列柔性体耦合运动的研究。对运动流体中两个并行排列柔性体的耦合运动进行了数值模拟和实验研究,分析了排列间距对临界稳定速度,运动耦合模态,摆动频率、振幅,尾涡结构和柔性体受力情况的影响。研究结果表明,两并排柔性体在流体中的稳定临界速度随排列间距的增加先减小后增加。速度超过临界速度以后,两柔性体可能呈现同向摆动、反向摆动、过渡状态和解耦这几种运动耦合模式。相同间距下,流速较低时两旗帜以高于单个旗帜的频率反向摆动,流速较高时则以较低的频率同向摆动。相同流速下,间距较小时两旗帜同向摆动,间距较大时反向摆动。值得指出的是,介于同向和反向摆动模态之间存在一个过渡状态,实验和计算都证实在过渡状态柔性体的运动频谱中同时含有两个主频率。
     3.不同排列方式柔性体耦合运动的数值模拟。通过对不同方式排列的两相同柔性体,长短不一的柔性体,柔性体和平板等组合的耦合运动的数值模拟,本文考察了各种排列方式下间距对物体耦合运动模式和受力情况的影响机制。计算结果表明,近距离串行排列时上游丝线的摆动振幅和所受阻力都减小,下游丝线受到的阻力则明显增大。近距离交错排列时,两个柔性体的摆动振幅和阻力都减小,这可能是鱼群游动采用菱形排列方式的一个原因。将短柔性体和平板摆放在柔性体侧边和下游时,也会抑制柔性体的摆动幅度。
     4.柔性体与圆柱的耦合作用。在肥皂膜水洞中进行了丝线在圆柱前后的流动显示实验,并根据实验结果利用面元法计算了丝线在卡门涡街中受到的阻力系数。实验结果表明丝线在圆柱上游时摆动振幅变大,频率变低;在圆柱下游卡门涡街中时,则以圆柱的脱涡频率同步摆动。相关数值计算结果表明丝线具有从卡门涡街中汲取能量,获得推力的能力。以不同相位差在卡门涡街中运动时丝线受到的阻力系数有明显变化。当丝线向着涡心运动时受到推力作用,避开涡心穿行时则仍然受到平均阻力的作用。
     5.串行排列圆柱的低Re数实验研究。在水平肥皂膜水洞中观察了串行排列圆柱周围的流场结构。实验结果显示随排列间距逐渐增大,流场结构依次呈现单钝体(SBB),剪切层再附(SLR),同步脱涡(SVS)和二次涡形成(SVF)模态。本文首次报道了SVF模态以及在尾迹中形成的二次涡,并通过数值计算分析了SVF模态形成的机理。实验观察和数值模拟结果都表明,随排列间距增大或减小各模态之间的转换存在回滞现象。
The interactions between moving fluid and one or multiply deformable bodies are commonly exhibited in animal kinematics, people's everyday life and various industry applications. This kind of fluid-flexible-structure coupling phenomena proves to be research challenge by involving many disciplines, including fluid dynamics, material mechanics, structural dynamics, computational mechanics and experimental mechanics. Studying these problems and collecting experimental data help researchers develop practical and efficient fluid-solid coupling numerical and theoretical methods. The research on the coupling kinematics of one or multiply flexible bodies in fluid flow can not only make us understand the nature better, but also provide technical supports for engineering application and national defense.
     In this dissertation, we developed a two-dimensional numerical method to study flexible-structure-fluid coupling problems. Using this method, we studied the flow-induced flapping of single and multiple deformable bodies and analyzed the dependence of the coupling mode and mechanical properties on each governing parameter. In addition, this paper verified the numerical results through the flapping experiments of flags and filaments. Finally, we studied the flow field structure around two tandem cylinders at low Reynolds number both experimentally and numerically.
     The main content and conclusions are as follow:
     1. Fluid-solid coupling flapping of a flexible body in a uniform flow.
     We simulated the kinematics of a cantilever beam in a moving flow using our in-house program, and investigated the flow-induced flapping frequency, amplitude and forces with different parameters. The critical velocities for different density ratios were calculated. Furthermore, we verified the accuracy of our numerical results through a flag flapping experiment in a low speed wind tunnel.
     2. The coupling flapping of two side by side identical flexible bodies in a uniform flow.
     We investigated the coupling flapping of two side by side flexible bodies in a moving flow numerically and experimentally, and summarized the affect of the arranging distance on the coupling mode, flapping frequency and amplitude, wake structure and forces of the two objects. The results revealed that, with the increasing distance, the critical velocities for two side by side flexible bodies would decrease first and then increase to the same value as in the case of a single flexible body in flow. There are four different coupling modes:in phase flapping, out of phase flapping, transition and decoupled modes. For a same distance, when the flow speed is relatively low the two flexible bodies flap in phase with a high frequency. Oppositely, they flap out of phase with a much lower frequency when the flow speed is high. Under fixed flow velocity condition, the two flexible bodies flap in phase when the distance is small and out of phase when the distance is large. One thing worth of mentioning is that, both our numerical and experimental results proved that a transition state exists between the in phase and out of phase modes, in which the flapping of the flexible bodies involves two frequencies.
     3. Numerical study on the coupling of two bodies in other arrangements.
     By simulating the interactions of two identical flexible bodies, two different flexible bodies, a flexible body and a rigid plate arranged in different manners, this paper studied the influencing mechanism of the distance on the coupling mode and drag coefficients. Our numerical results revealed that when two flexible bodies are set in line with a small distance, the flapping amplitude and the drag coefficient of the upstream body are decreased and those of the downstream body are increased obviously. The drags on both bodies decrease when two flexible bodies are closely stagger positioned. This might be a reason for fish schooling in diamond arrangement. We can also depress the body flapping by setting a short flexible body or a rigid plate either along the side or at the near downstream.
     4. Flapping of a filament in the bow wake and in the downstream of a cylinder.
     The experiments of a filament flapping in front or behind a cylinder were conducted in a flow film tunnel. Based on the experimental kinematic information we calculated the forces of the filament in uniform flow and in a Karman vortex street. The experimental results showed that, in the bow wake in front of a cylinder the filament will flap with larger amplitude and lower frequency than those in a free stream. In the Karman vortex street behind the cylinder, the filament flaps synchronously with the vortices. Numerical results revealed that the filament has the ability to derive energy and achieve thrust from the Karman vortex street. The drag coefficient depends strongly on the phase relation between the filament movement and the Karman vortex street. When the filament moves toward the vortices centers, it suffers a thrust. When it slaloms between vortices, a drag is presented.
     5. Experimental investigation on two tandem cylinders at low Reynolds number.
     We conducted experiments on two tandem cylinders in a horizontal flow film tunnel and investigated the single bluff-body (SBB), shear layer reattachment (SLR), synchronization of vortex shedding (SVS) and second vortex formation (SVF) modes with increasing distance. The SVF mode is first presented in this research and the formation of the secondary vortex in this mode was analyzed numerically. We also confirmed.the mode transitions hysteresis when the distance is increasing or decreasing continuously.
引文
鲍麟.2007.昆虫翼柔性变形的力学效应研究[D].[博士].北京:中国科学院研究生院.
    程鹏.2007.飞行中昆虫运动参数及翼变形的光学测量和演示[D].[博士].合肥:中国科学技术大学.
    胡文蓉.2003.鱼类单向机动运动二维流动特征的数值研究[D].[博士].北京:中国科学院研究生院.
    贾来兵.2009.二维流场中板状柔性体与流体相互作用的研究[D].[博士].合肥:中国科学技术大学.
    敬军.2005.鱼类C形起动的运动特性及机理研究[D].[博士].合肥:中国科学技术大学.
    兰世隆.2002.昆虫翅的高升力机理与蜻蜓、食蚜蝇悬停飞行的研究[D].[博士].北京:北京航空航天大学.
    李龙.2007.鱼类巡游时尾鳍推动特性的实验研究[D].[硕士].合肥:中国科学技术大学.
    李学敏.2002.鱼类波状游动尾涡流场测量[D].[硕士].合肥:中国科学技术大学.
    刘鸿文.1992.材料力学:上册[M].第三版.北京:高等教育出版社.
    陆夕云,杨基明,尹协振等.2007.飞行和游动的生物运动力学和仿生力学技术研究[J].中国科学技术大学学报,37(10):1159-1163.
    孙茂,熊燕.2005.微型飞行器的仿生力学——蜜蜂飞行的气动力特性[J].航空学报,26(4):385-391.
    孙茂,黄华.2006.微型飞行器的仿生力学——蝴蝶飞行的气动力特性[J].北京航空航天大学学报,32(10):1146-1151.
    唐剑.2001.昆虫(果蝇)悬停飞行中的高升力机理及能耗的研究[D].[博士].北京:北京航空航天大学.
    童秉纲,孙茂,尹协振.2005.飞行和游动生物流体力学的国内研究进展概述[J].自然杂志,27(4):191-199.
    王亮.2007.仿生鱼群自主游动和控制的研究[D].[博士].南京:河海大学.
    吴冠豪.2007.鱼自主游动的跟踪测量研究及运动学和动力学分析[D].[博士].北京:清华大学.
    吴江浩.2003.昆虫的高升力机理及果蝇、雄蜂、鹰蛾前飞时的气动力和能耗[D].[博士].北京:北京航空航天大学.
    吴燕峰,贾来兵,尹协振.2007.斑马鱼S型起动运动学研究[J].实验力学,22(5):519-526.
    杨焱.2008.锦鲤常规自由游动的游动物理研究[D].[博士].北京:中国科学院研究生院.
    余永亮.2004.昆虫前飞拍翼非定常空气动力学的理论模化研究[D].[博士].北京:中国科学
    院研究生院.
    张诚.2005.二维波动板的非线性数值分析[D].[硕士].合肥:中国科学技术大学.
    张杰.2009.流固耦合平板绕流的格子波尔兹曼数值研究[D].[博士].合肥:中国科学技术大学.
    赵亮.2006.鱼类C型起动尾鳍模型受力特性实验研究[D].[硕士].合肥:中国科学技术大学.
    庄礼贤,尹协远,马晖扬.1990.流体力学[M].合肥:中国科学技术大学出版社.
    Ahlborn B, Chapman S, Stanford R, et al.1997. Experimental simulation of the thrust phases of fast-start swimming of fish[J]. Journal of Experimental Biology,200:2301-2312.
    Aidun C K, Clausen J R.2010. Lattice-boltzmann method for complex flows[J]. Annual Review of Fluid Mechanics,42:439-472.
    Akhtar 1, Mittal R, Lauder G V, et al.2007. Hydrodynamics of a biologically inspired tandem flapping foil configuration[J]. Theoretical and Computational Fluid Dynamics,21:155-170.
    Alam M M, Moriya M, Takai K, et al.2003. Fluctuating fluid forces acting on two circular cylinders in a tandem arrangement at a subcritical Reynolds number[J]. Journal of Wind Engineering and Industrial Aerodynamics,91:139-154.
    Alben S.2008a. The flapping-flag instability as a nonlinear eigenvalue problem[J]. Physics of Fluids,20:104106.
    Alben S.2008b. Flapping states of a flag in an inviscid fluid:Bistability and the Transition to Chaos[J]. Physics Review Letter,100:074301.
    Alben S.2008c. Optimal flexibility of a flapping appendage in an inviscid fluid[J]. Journal of Fluid Mechanics,614:355-380.
    Alben S.2009a. On the swimming of a flexible body in a vortex street[J]. Journal of Fluid Mechanics,635:27-45.
    Alben S.2009b. Simulating the dynamics of flexible bodies and vortex sheets[J]. Journal of Computational Physics,228(7):2587-2603.
    Alben S.2009c. Wake-mediated synchronization and drafting in coupled flags[J]. Journal of Fluid Mechanics,641:489-496.
    Anderson E J, Mcgillis W R, Grosenbaugh M A.2001. The boundary layer of swimming fish[J]. Journal of Experimental Biology,204:81-102.
    Aref H, Siggia E.1981. Evolution and breakdown of a vortex street in two dimensions[J]. Journal of Fluid Mechanics,109:435-463.
    Argentina M, Mahadevan L.2005. Fluid-flow-induced flutter of a flag[J]. Proceeding of the National Academy of Sciences,102(6):1829-1834.
    Azuma A, Watanabe T.1988. Flight performance of a dragonfly[J]. Journal of Experimental
    Biology,137:221-252.
    Barrett D S, Triantafyllou M S, Yue D K P, et al.1999. Drag reduction in fish-like locomotion[J]. Journal of Fluid Mechanics,392:183-212.
    Beal D N, Hover F S, Triantafyllon M S, et al.2006. Passive propulsion in vortex wakes[J]. Journal of Fluid Mechanics,549:385-402.
    Beizaie M, Gharib M.1997. Fundamentals of a liquid (soap) film tunnel[J]. Experiments in Fluids, 23:130-140.
    Blickhan R, Cheng J Y.1993. Energy storage by elastic mechanism in the tail of large swimmer-a re-evaluation[J]:Journal of Theoretical Biology,168:315-321.
    Bose N, Lien J.1990. Energy absorption from ocean waves:a free ride for cetaceans[J]. Proceedings of the Royal Society of London, Series B,240:591-605.
    Chen S, Doolen G D.1998. Lattice boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics 30:329-364.
    Cheng J, Zhuang L, Tong B.1991. Analysis of swimming of three-dimensional waving plates[J]. Journal of Fluid Mechanics,232:341-355.
    Cheng J Y, Blickhan R.1994. Bending moment distribution along swimming fish[J]. Journal of Theoretical Biology,168:337-348.
    Cheng J Y, Demont M E.1997. A predicted in vivo muscle force-velocity trajectory[J]. Canadian Journal of Zoology,75:371-375.
    Cheng P, Hu J S, Xu B Q, et al.2005. The measurement of the flight gesture and the wings' deformation of dragonfly in free flight[C]. Proceedings of the Society of Photo-Optical Instrumentation Engineers,5852:879-885.
    Chomaz J M.2001. The dynamics of a viscous soap film with soluble surfactant[J]. Journal of Fluid Mechanics,442:387-409.
    Cimbala J M, Nagib H M, Roshko A.1988. Large structure in the far wakes of two-dimensional bluff bodies[J]. Journal of Fluid Mechanics,190:265-298.
    Connell B S H C, Yue D K P.2007. Flapping dynamics of a flag in a uniform stream[J]. Journal of Fluid Mechanics,581:33-67.
    Couder Y.1981. The observation of a shear flow instability in a rotating system with a soap membrane[J]. Journal de Physique Lettres,42(19):429-431.
    Cutts C J, Speekman J R.1994. Energy savings in formation flight of pink-footed geese[J]. Journal of Experimental Biology,189(1):251-261.
    Didier E.2007. Flow simulations over two circular cylinders in tandem[J]. Comptes Rendus Mecanique,335:696-701.
    Dong G J, Lu X Y.2005. Numerical analysis on the propulsive performance and vortex shedding of fish-like travelling wavy plate[J]. International Journal for Numerical Methods in Fluids, 48:1351-1373.
    Dong G J, Lu X Y.2007. Characteristics of flow over traveling-wavy foils in a side-by-side arrangement[J]. Physics of Fluids,19:057107.
    Drucker E G, Lauder G V.1999. Locomotor forces on a swimming fish:three-dimensional vortex wake dynamics quantified using digital particle image velocimetry[J]. Journal of Experimental Biology,202:2393-2412.
    Drucker E G, Lauder G V.2001. Locomotor function of the dorsal fin in teleost fishes: experimental analysis of wake forces in sunfish. Journal of Experimental Biology,204 (17): 2943-2958.
    Ellington C P.1984a. The aerodynamics of hovering insect flight. Ⅱ. Morphological Parameters[J]. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 305(1122):17-40.
    Ellington C P.1984b. The aerodynamics of hovering insect flight. Ⅲ. Kinematics[J]. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 305(1122):41-78.
    Eloy C, Souilliez C, Schouveiler L.2007. Flutter of a rectangular plate[J]. Journal of Fluid Structure,23:904-919.
    Eloy C, Lagrange R, Souilliez C, et al.2008. Aeroelastic instability of cantilevered flexible plates in uniform flow[J]. Journal of Fluid Mechanics,611:97-106.
    Farnell D J J, David T, Barton D C.2004. Coupled states of flapping flags[J]. Journal of Fluids and Structures,19:29-36.
    Fejer A A.1960. Porpoises and the bow-riding of ships under way[J]. Nature,188:700-703.
    Georgiev D, Vorobieff P.2002. The slowest soap-film tunnel in the Southwest[J]. Review of Scientific Instruments,73(3):1177-1184.
    Gharib M, Derango P.1989. A liquid film (soap film) tunnel to study two-dimensional laminar and turbulent shear flows[J]. Physica D,37(1-3):406-416.
    Golpalkrishnan R, Triantafyllou M S, Triantafyllou G S, et al.1994. Active vorticity control in a shear flow using a flapping foil[J]. Journal of Fluid Mechanics,274:1-21.
    Gray J, Hancock G J.1955. The propulsion of sea-urchin spermatozoa[J]. Journal of Experimental Biology,32:802-814.
    Hancock G J.1955. The self-propulsion of microscopic organisms through liquids[J]. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences,217(1128):
    96-121.
    Higdon J J L, Corrsin S.1978. Induced drag of a bird flock[J]. The American Naturalist,112(986): 727-744.
    Horvath V K, Cressman J R, Goldburg W I, et al.2000. Hysteresis at low Reynolds Number: Onset of two dimensional vortex shedding. Physics Review E,61:4702-4705.
    Hu W R, Yu Y L, Tong B G, et al.2004. A numerical and analytical study on a tail-flapping mode for fish fast C-start. ACTA Mechanica Sinica (English Series),20(1):16-23.
    Huang L.1995. Flutter of cantilevered plates in axial flow[J]. Journal of Fluids and Structures, 9(2):127-147.
    Huang W X, Shin S J, Sung H J.2007. Simulation of flexible filaments in a uniform flow by the immersed boundary method[J]. Journal of Computational Physics,226:2206-2228.
    Igarashi T.1981. Characteristics of the flow around two circular cylinders arranged in tandem (1st report)[J]. JSME International Journal Series B,24:323-331.
    Igarashi T.1984. Characteristics of the flow around two circular cylinders arranged in tandem (2nd report, unique phenomenon at small spacing)[J]. JSME International Journal Series B, 27:2380-2387.
    Inoue O, Yamazaki T.1999. Secondary vortex streets in two-dimensional cylinder wakes[J]. Fluid Dynamics Research,25:1-18.
    James M B, Michael H D.2001. Spanwise flow and the attachment of the leading-edge vortex on insect wings[J]. Nature,412(6848):729-733.
    Jia L B, Li F, Yin X Z, et al.2007. Coupling modes between two flapping filaments[J]. Journal of Fluid Mechanics,581:199-220.
    Jia L B, Yin X Z.2008. Passive Oscillations of Two Tandem Flexible Filaments in a Flowing Soap Film[J]. Physics Review Letters,100:228104.
    Jia L B, Yin X Z.2009. Response modes of a flexible filament in the wake of a cylinder in a flowing soap film[J]. Physics of Fluids,21:101704.
    Jing J, Yin X Z, Lu X Y.2005. Observation and hydrodynamic analysis of fast-start of yellow catfish (Pelteobagrus fulvidraco)[J]. Progress Natural Science,15:34240.
    Jing J, Yin X Z, Lu X Y.2004. The hydrodynamic analysis of C start in Crucian Carp (Carassius auratus)[J]. Journal of Bionics Engineering,1(2):1022107.
    Karasudani T, Funakoshi M.1994. Evolution of a vortex street in the far wake of a cylinder[J]. Fluid Dynamics Research,14:331-352.
    Katz J, Plotkin A.2001. Low-Speed Aerodynamics[M].2nd ed. Cambridge:Cambridge University press.
    Kornecki A, Dowell E H, O'Brien J.1976. On the aeroelastic instability of two-dimensional panels in uniform incompressible flow[J]. Journal of Sound and Vibration,47(2):163-178.
    Kuo C H, Chein S M, Hsieh H J.2008. Self-sustained oscillations between two tandem cylinders at Reynolds number 1,000[J]. Experiments of Fluids,44:503-517.
    Langer E de, Paidoussis M P, Doare O, et al.2007. Flutter of long flexible cylinders in axial flow[J]. Journal of Fluid Mechanics,571:371-389.
    Lauder G V, Anderson E J, Tangorra J, et al.2007. Fish biorobotics:kinematics and hydrodynamics of self-propulsion[J]. Journal of Experimental Biology,210(16):2767.
    Li X M, Lu X Y, Yin X Z.2002. Visualization on fish's wake[C]. Proceedings of the Society of Photo-Optical Instrumentation Engineers,4537:473-476.
    Li X M, Wu Y F, Lu X Y, et al.2003. Measurements of fish's wake by PIV[C]. Proceedings of the Society of Photo-Optical Instrumentation Engineers,5058:139-145.
    Liao J C, Beal D N, Lauder G V, et al.2003a. The Karman gait:novel body kinematics of rainbow trout swimming in a vortex street[J]. Journal of Experimental Biology,206:1059-1073.
    Liao J C, Beal D N, Lauder G V, et al.2003b. Fish exploiting vortices decrease muscle activity[J]. Science,302:1566.
    Lighthill M J.1960. Note on the swimming of slender fish[J]. Journal of Fluid Mechanics,9: 305-317.
    Lighthill M J.1971. Large-amplitude elongated-body theory of fish locomotion[J]. Proceedings of the Royal Society of London, Series B, Biological Sciences,179:125-138.
    Lin J C, Yang Y, Rockwell D.2002. Flow past tow cylinders in tandem:Instantaneous and Averaged Flow Structure[J]. Journal of Fluids Structure,16:1059-1071.
    Liu Y J, Liu N S, Lu X Y.2009. Numerical study of two-winged insect hovering flight[J]. Advances in Applied Mathematics and Mechanics,1:481-509.
    Liu Y P, Sun M.2008. Wing kinematics measurement and aerodynamics of hovering drone flies[J]. Journal of Experimental Biology,211:2014-2025.
    Long J H, Hale M E, Mchenry M J, et al.1996. Functions of fish skin:Flexural stiffness and steady swimming of longnose gar Lepisosteus osseus[J]. Journal of Experimental Biology, 199:2139-2551.
    Long J H, Koob-Emunds M, Sinwell B, et al.2002. The notochord of hagfish Myxine glutinosa: visco-elastic properties and mechanical functions during steady swimming[J]. Journal of Experimental Biology,205:3819-3831.
    Matsui T, Okude M.1983. Formation of the secondary vortex street in the wake of a circular cylinder[C]. Proceedings of the Symposium in Structure of Complex Turbulent Shear Flow,
    156-164.
    Meiburg E.1987. On the role of subharmonic perturbations in the far wake[J]. Journal of Fluid Mechanics,177:83-107.
    Meneghini J R, Saltara F, Ferrarijr J A.2001. Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements[J]. Journal of Fluids Structure,15:327-350.
    Michelin S, Smith S G, Glover B J.2008. Vortex shedding model of a flapping flag[J]. Journal of Fluid Mechanics,617:1-10.
    Mittal S, Kumar V, Raghuvanshi A.1997. Unsteady incompressible flows past two cylinders in tandem and staggered arrangements[J]. International Journal for Numerical Methods in Fluids,25:1315-1344.
    Mizushima J, Suehiro N.2005. Instability and transition of flow past two tandem circular cylinders[J]. Physics of Fluids,17:104107.
    Muller U K.2003. Fish'n Flag[J]. Science,302:1511.
    Peskin C S.1972. Flow patterns around heart valves:A digital computer method for solving the equations of motion[D]. [PhD]. Yeshiva:Yeshiva University.
    Peskin C S.1997. Numerical analysis of blood flow in the heart[J]. Journal of Computational Physics 25:220-252.
    Ponta F L, Aref H.2006. Numerical experiments on vortex shedding from an oscillating cylinder[J]. Journal Fluids Structure,22:327-344.
    Ristroph L, Zhang J.2008. Anomalous Hydrodynamic Drafting of Interacting Flapping Flags[J]. Physics Review Letters,101:194502.
    Rosen M J.2004. Surfactants and interfacial phenomena[M].3rd ed. Hoboken:John Wiley & Sons.
    Roshko A.1954. On the development of turbulent wakes from vortex streets[R]. National Advisory Committee for Aeronautics,1191.
    Roushan P, Wu X L.2005. Structure-based interpretation of the Strouhal-Reynolds number relationship[J]. Physical Review Letter,94:054504.
    Rutgers M A, Wu X L, Daniel W B.2001. Conducting fluid dynamics experiments with vertically falling soap films[J]. Review of Scientific Instruments,72(7):3025-3037.
    Sato M, Azuma A.1997. The flight performance of a damselfly Ceriagrion melanurum selys[J]. Journal of Experimental Biology,200:1765-1779.
    Sawada T, Hisada T.2006. Fluid-structure interaction analysis of a two-dimensional flag-in-wind problem by the ALE finite element method[J]. JSME International Journal, Series A,49(2):
    170-179.
    Sawada T, Hisada T.2007. Fluid-structure interaction analysis of a two-dimensional flag-in-wind problem by an interface-tracking ALE finite element method[J]. Computers and Fluids,36: 136-146.
    Scholander P F.1959. Wave-riding dolphins, how do they do it?[J]. Science 129:1085-1087.
    Schouveiler L, Eloy C, Le Gal P.2005. Flow-induced vibrations of high mass ratio flexible filaments freely hanging in a flow[J]. Physics of Fluids,17:047104.
    Schouveiler L, Eloy C.2009. Coupled flutter of parallel plates[J]. Physics of Fluids,21:081703.
    Sharman B, Lien F S, Davidson L, et al.2005. Numerical predictions of low Reynolds number flows over two tandem circular cylinders[J]. International Journal for Numerical Methods in Fluids 47:423-447.
    Shelley M, Vandenberghe N, Zhang J.2005. Heavy Flags Undergo Spontaneous Oscillations in Flowing water[J]. Physics Review Letters,94:094302.
    Srygley R B, Thomas A L R.2002. Unconventional lift-generating mechanisms in free-flying butterflies[J]. Nature,420:660-664.
    Sumner D, Price S J, Paidoussis M P.2002. Flow pattern identification for two staggered circular cylinders in cross-flow[J]. Journal of Fluid Mechanics,411:263-303.
    Sun M, Lan S L.2004. A computational study of the aerodynamic forces and power requirements of dragonfly Aeschna juncea hovering[J]. Journal of Experimental Biology,207:1887-1901.
    Sun M, Tang J.2002a. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion[J]. Journal of Experimental Biology,205:55-70.
    Sun M, Tang J.2002b. Lift and power requirements of hovering flight in Drosophila virilis[J]. Journal of Experimental Biology,205:2413-2427.
    Sun M, Xiong Y.2005. Dynamic flight stability of a hovering bumble bee[J]. Journal of Experimental Biology,208:447-459.
    Taneda S.1959. Downstream development of the wakes behind cylinders[J]. Journal of the Physical Society of Japan,14:843-848.
    Tang L S, Paidoussis M P.2007. On the instability and the post-critical behaviour of two-dimensional cantilevered flexible plates in axial flow[J]. Journal of Sound and Vibration, 305:97-115.
    Tang L S, Paidoussis M P.2008. The influence of the wake on the stability of cantilevered flexible plates in axial flow[J]. Journal of Sound and Vibration,310:512-526.
    Tanida Y, Okajima A, Watanabe Y.1973. Stability of a circular cylinder oscillating in uniform flow or in a wake[J]. Journal of Fluid Mechanics,61:769-784.
    Tasaka Y, Kon S, Schouveiler L, et al.2006. Hysteretic mode exchange in the wake of two circular cylinders in tandem[J]. Physics of Fluids,18:084104.
    Theodorsen T.1935. General theory of aerodynamic instability and the mechanism of flutter[R]. USA:National Advisory Committee for Aeronautics, NACA-TR-496.
    Thomas A L R, Taylor G K, Srygley R B.2004. Dragonfly flight:free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack[J]. Journal of Experimental Biology,207:4299-4323.
    Tian F B, Luo H X, Zhu L D, et al.2010. Interaction between a flexible filament and a downstream rigid body[J]. Submitted to Physical Review E.
    Triantafyllou M S, Triantafyllou G S, Gopalkrishnan R.1991. Wake mechanics for thrust generation in oscillating foils[J]. Physics of Fluids A:Fluid Dynamics,3(12):2835-2837.
    Videler J J.1993. Fish Swimming[M]. Chapman & Hall:New York.
    Vorobieff P, Ecke E R.1999. Cylinder wakes in flowing soap film. Physical Review E,60(3): 2953-2956.
    Vorobieff P, Georgiev D, Ingber M S.2002. Onset of the second wake:Dependence on the Reynolds number[J]. Physics of Fluids,14:51-56.
    Wakeling J M, Ellington C P.1997a. Dragonfly flight Ⅰ. gliding flight and steady-state aerodynamic forces[J]. Journal of Experimental Biology,200:543-556.
    Wakeling J M, Ellington C P.1997b. Dragonfly flight Ⅱ. Velocities accelerations and kinematics of flapping flight[J]. Journal of Experimental Biology,200:557-582.
    Wakeling J M, Ellington C P.1997c. Dragonfly flight Ⅲ. Lift and power requirements[J]. Journal of Experimental Biology,200:583-600.
    Wang H, Zeng L J, Liu H, et al.2003. Measuring wing kinematics, flight trajectory and body attitude during forward flight and turning maneuvers in dragonflies[J]. Journal of Experimental Biology,206:745-757.
    Wang S Y, Jia L B, Yin X Z.2009. Kinematics and forces of a flexible body in Karman vortex street[J]. Chinese Science Bulletin,54(4):556-661.
    Wang S Y, Tian F B, Jia L B, et al.2010. Secondary vortex street in the wake of two tandem circular cylinders at low Reynolds number[J]. Physical Review E,81:036305.
    Wang Z J.2000. Two dimensional mechanism for insect hovering[J]. Physics Review Letters,85: 2216-2219.
    Wang Z J, Birch J M, Dickinson M H.2004. Unsteady forces and flows in low Reynolds number hovering flight:two-dimensional computational vs robotic wing experiments[J]. Journal of Experimental Biology,207:449-460.
    Wang Z J, Russell D.2007. Effect of forewing and hind wing interactions on aerodynamics forces and power in hovering dragonfly flight[J]. Physics Review Letters,99:14801.
    Watanabe Y.2002a. An experimental study of paper flutter[J]. Journal of Fluids and Structures, 16(4):529-542.
    Watanabe Y.2002b. A theoretical study of paper flutter[J]. Journal of Fluids and Structures,16(4): 543-560.
    Weihs D.1973. Hydromechanics of fish schooling[J]. Nature,241(5387):290-291.
    Weimerskirch H, Martin J, Clerquin Y, et al.2001. Energy saving in flight formation[J]. Nature, 413(6857):697-698.
    Williamson C H K, Prasad A.1993. A new mechanism for oblique wave resonance in the natural far wake[J]. Journal of Fluid Mechanics,256:269-313.
    Willmott A P, Ellington C P.1997a.The mechanics of flight in the hawkmoth Manduca sexta. i. kinematics of hovering and forward flight[J]. Journal of Experimental Biology,200: 2705-2722.
    Willmott A P, Ellington C P.1997b.The mechanics of flight in the hawkmoth Manduca sexta. ii. aerodynamic consequences of kinematic and morphological variation[J]. Journal of Experimental Biology,200:2723-2745.
    Wolfgang M J, Anderson J M, Grosenbaugh M A, et al.1999. Near-body flow dynamics in swimming[J]. Journal of Experimental Biology,202:2303-2327.
    Wootton R J.1999. Invertebrate paraxial locomotory appendages:design, deformation and control[J]. Journal of Experimental Biology,202:3333-3345.
    Wootton R J, Herbert R C, Young P G, et al.2003. Approaches to structural modeling of insect wings[J]. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences,358:1577-1587.
    Wu G H, Yang Y, Zeng L J.2007a. Kinematics, hydrodynamics and energetic advantages of burst-and-coast swimming of koi carps (Cyprinus carpio koi)[J]. Journal of Experimental Biology,210:2181-2191.
    Wu G H, Yang Y, Zeng L J.2007b. Routine turning maneuvers of koi carps (Cyprinus carpio koi): effects of turning rate on kinematics and hydrodynamics[J]. Journal of Experimental Biology, 210:4379-4389.
    Wu J H, Sun M.2004. Unsteady aerodynamic forces of a flapping wing[J]. Journal of Experimental Biology,207:1137-1150.
    Wu J H, Zhang Y L, Sun M.2009. Hovering of model insects:simulation by coupling equations of motion with Navier-Stokes equations[J]. Journal of Experimental Biology,212: 3313-3329.
    Wu T Y.1960. Swimming of a waving plate[J]. Journal of Fluid Mechanics,10:321-344.
    Wu T Y.1971. Hydromechanics of swimming propulsion. Part 1. Swimming of a two dimensional flexible plate at variable forward speeds in an inviscid fluid[J]. Journal of Fluid Mechanics, 46:337-355.
    Wu T Y.2002. On theoretical modeling of aquatic and aerial animal locomotion[J]. Advances in Applied Mechanics,38:291-353.
    Xu G, Zhou Y.2004. Strouhal numbers in the wake of two inline cylinders[J]. Experiments in Fluids,37:248-256.
    Zdravkovich M M.1972. Smoke observations of wakes of tandem cylinders at low Reyonlds numbers[J]. Aeronautical Journal,76:108-114.
    Zdravkovich M M.1987. The effects of interference between circular cylinders in cross flow[J]. Journal of Fluids Structure,1:239-261.
    Zhang J, Childress S, Libchaber A, et al.2000. Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind[J]. Nature,408 (6814):835-838.
    Zhang P F, Wang J J, Huang L X.2006. Numerical simulation of flow around cylinder with an upstream rod in tandem at low Reynolds numbers[J]. Applied Ocean Research,28:183-192.
    Zhou Y, Yiu M W.2006. Flow structure, momentum and heat transport in a two tandem cylinder wake[J]. Journal of Fluid Mechanics,548:17-48.
    Zhu L D, Peskin C S.2002. Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method[J]. Journal of Computational Physics,179:452-468.
    Zhu L D, Peskin C S.2003. Interaction of two flexible filaments in a flowing soap film[J]. Physics of Fluids,15(7):1954-1960.
    Zhu Q, Shoele K.2008. Propulsion performance of a skeleton-strengthened fin[J]. Journal of Experimental Biolody,211:2087-2100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700