用户名: 密码: 验证码:
缝纫复合材料细观结构表征及面内力学性能的理论和模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统纤维增强复合材料层合板的不足之处在于相对较低的层间断裂强度和韧性以及较低的冲击损伤容限,在横向载荷尤其是低速冲击载荷作用下很容易发生分层破坏。缝纫作为一种能有效提高复合材料层间力学性能的低成本方法一直得到人们的广泛关注。厚度方向上的纤维直接增强可以充分提高层合板层间的断裂韧性、低速冲击损伤容限和冲击后压缩强度。也就是说,对于缝纫复合材料层合板,分层破坏已不再是破坏的主要形式。一个值得关注的问题是:缝纫过程中缝纫线的加入迫使原来均匀分布的面内纤维发生弯曲变形和聚集现象,造成面内结构的严重非均匀性,并使层合板面内产生局部损伤,在一定程度上影响层合板的面内力学性能。本文旨在对缝纫诱导的局部细观结构进行参数化、定量化的表征,深入地研究缝纫造成的结构和性能的严重非均匀性,探寻缝纫复合材料在拉伸载荷作用下的面内力学行为,发展一套预测缝纫复合材料面内力学性能的理论体系和模拟方法,揭示面内宏观力学性能与缝纫引起的纤维扰动之间的内在关系,力图将缝纫复合材料层合板在拉伸载荷作用下的面内刚度和强度与材料体系、体积分数、缝纫线直径以及缝纫密度等定量地联系起来。
     基于对缝纫孔附近的局部细观结构的试验研究,本文将代表性单元体按材料性质的不同划分为四个不同的区域,即未变形区、纤维变形区、树脂富集区和厚度增强区。提取四个细观结构参数:包括变形区长度、变形区宽度、缝纫孔短轴和缝纫孔长轴,来表征缝纫诱导的局部细观结构。对细观结构的数字照片进行图像处理,进而对细观结构参数进行定量测量,测量结果表明细观结构参数的测量值服从正态分布。并且找到四个细观结构参数之间的定量关系,即:变形区长度约是缝纫孔短轴的12-20倍,变形区宽度和缝纫孔长轴约是缝纫孔短轴的3-4倍,缝纫孔短轴约是缝纫线直径的80%。在此基础上,发展了新型纤维弯曲模型,得到纤维偏转角和纤维体积含量的解析表达式,给出了缝纫引起的纤维偏转角和纤维体积含量在代表性单元体内的空间非均匀分布。
     设计了六种复合材料单向板的拉伸试验件,包含不同的缝纫密度和缝纫线直径以及未缝纫的情况。对各试验件在单向准静态载荷下进行拉伸试验,记录其破坏模式和拉伸强度。研究结果表明:中低缝纫密度的复合材料单向板的主要破坏模式为纤维断裂,面内拉伸强度较高,约为未缝纫复合材料单向板拉伸强度的85-90%。拉伸强度随缝纫密度和缝纫线直径的增加而降低。当缝纫密度过高时,相邻缝纫孔之间相互干涉造成树脂富集区之间彼此联接贯通,复合材料的破坏模式为复合材料撕裂破坏,拉伸强度较低,约为未缝纫复合材料单向板拉伸强度的70%。
     缝纫线的加入造成面内纤维的偏转变形,在单向拉伸载荷作用下,纤维不仅产生轴向位移,还产生横向位移。为此,采用欧拉-贝努利曲梁来描述单根纤维的力学行为,建立相互作用微曲梁模型。采用有限差分法对控制微分方程进行数值求解,得到与有限元模型相吻合的结果,表明该模型可以很好的预测缝纫诱导的局部应力集中。
     由于纤维拉伸强度的分散性,采用双参数韦伯分布来描述纤维强度的统计分布。考虑纤维的随机断裂及基体剪切破坏两种破坏模式,建立了统一型微曲梁相互作用模型。发展了复合材料拉伸破坏过程的模拟方法,结合蒙特卡罗模拟技术,对缝纫复合材料单向板在单向拉伸载荷作用下的破坏过程进行数值模拟,得到与试验相吻合的结果,表明该理论模型和模拟方法的正确性。
     研究了缝纫密度以及细观结构参数包括变形区长度、变形区宽度和缝纫孔短轴对复合材料单向板拉伸强度和弹性模量的影响。研究结果表明当纤维强度服从双参数韦伯分布时,缝纫复合材料单向板的拉伸强度也服从双参数的韦伯分布,且其形状参数与纤维强度韦伯分布的形状参数在数值上基本相当。拉伸强度随缝纫行距的增加而减小,随针距的增加而增大;拉伸强度随变形区宽度和缝纫孔短轴的增加而减小;变形区长度对拉伸强度的影响不是单调的,存在最优值。缝纫密度和细观结构参数对面内弹性模量的影响很小。
A serious problem with traditional fiber reinforced polymer(FRP) laminates is their relatively poor interlaminar fracture toughness and low impacted damage tolerance which makes them susceptible to delamination when subjected to interlaminar loading. Stitching as a cost-effective method has received recognition for the remarkable improvement in the through-the-thickness mechanical properties.The introduction of the through-the-thickness reinforcement can substantially improve the interlaminar properties of laminates,such as the interlaminar fracture toughness,low-velocity impact damage tolerance and compression-after-impact(CAI) strength.The significant improvement in the interlaminar fracture toughness implies that delamination might be no longer the main failure mode of stitched composite laminates.In contrast,for the stitched composite laminates,what calling attention of researchers is that the insertion of the stitch thread forces the fibers to distort and congregate,making the in-plane microstructure inhomogeneous and generating local damages,which will affect the in-plane mechanical properties of stitched composite laminates.In this study,we focus on the parameterized and quantificational characterization of the microstructure induced by stitching,the investigation of the inhomogeneous microstructure and material properties,development of a theoretical model to predict the in-plane mechanical properties of stitched composite laminates.And we try to uncover the inherent relationship of in-plane macro-mechanical properties and microstructure and obtain the quantified connection between the in-plane stiffness as well as strength of the stitched composite laminates under tensile loading and the material system,fiber content, stitching parameters such as diameter of stitch yarn and stitching density.
     Based on the experimental research on the microstructure around a stitch,a representative elementary volume is divided into such domains as the undistorted region, the fiber distortion region,the resin-rich pocket and the through-thickness reinforcement section.Four microstructure parameters such as distortion length,distortion width, minor axis and major axis of stitch hole are introduced to describe the local structure induced by stitching.The microstructure parameters are measured quantificationally based on the analysis of digital images.The averaged values and the distributions of four structural parameters are obtained by statistical analysis of the dimensions.Image analysis revealed that the structural parameters are statistically distributed and fitted Gaussian density functions.The proportions between the minor axis and the other parameters are obtained.The dimension of distortion length is about 12 times(thin yarn) and 20 times(thick yarn) as that of the minor axis,the dimensions of distortion width and major axis are about 3-4 times as that of the minor axis,and the minor axis of stitch hole is about 80%of the diameter of stitch yarn.
     A novel fiber distortion model(FDM) is developed based on the investigation of typical morphology to predict the in-plane fiber misalignment angle and inhomogeneous fiber content using the basic microstructure parameters.This will be the foundation for evaluating the inhomogeneous effective material properties of the stitched composite laminates.It is assumed that the path of a fiber in the distortion region can be represented by a cosine function.For simplicity,the fiber volume fraction is assumed to follow a liner variation along the y-axis.The analytical expressions of the fiber misalignment angle and fiber volume fraction are derived rigorously,and the spatial distributions of fiber misalignment angle and fiber content within the unit cell of the ply are obtained using fiber distortion model.
     Six kinds of tensile samples of stitched unidirectional composite laminates including difference stitch densities and difference diameters of the stitch thread as well as unstitched laminate are designed in this study.The failure modes and tensile strength are recorded during the experimental process.The results show that at the low stitch density, the failure mode is fiber breakage,and the tensile strength of the stitched composite laminate is reduced by about 10-15%compared with that of unstitched laminate.The tensile strength of stitched composite laminates decreases with the stitch density and diameter of stitch thread.When the stitch density is very high,the failure mode is splitting of the composite instead of fiber breakage,so the tensile strength is very low, about 70%of that of the strength of unstitched one.
     Because of the distortion and inhomogeneous distribution of the in-plane fibers induced by stitching,the deformation of a single fiber is not only in the longitudinal direction but also in the transverse direction even under unidirectional tensile loading. We establish a multiple curved micro-beam model and derive governing differential equations of the model,which take into account the interaction of adjacent fibers.The stress concentration around the stitch hole can be well predicted using this model compared with the results calculated by finite element method.
     A two-parameter Weibull distribution is adopted to describe the statistics of fiber strength.Considering fiber random breakage and matrix shear failure,a unified multiply micro-beam model is developed to simulate the failure process of stitched unidirectional composite laminate under tensile loading,coupling with Monte-Carlo simulation technique.
     The in-plane tensile strength of stitched unidirectional composite laminates is predicted using the unified multiply micro-beam model coupling with Monte-Carlo simulation technique.The results simulated by this model agree well with that of the experiment,which indicates that the theoretical model,the simulation method and the program are reliable.Then,the effects of stitch density and microstructure parameters including distortion length,distortion width and minor axis on the tensile strength and elastic modulus of stitched composite laminate are studied in this paper.The results show that the tensile strength increases with the decrease of stitch spacing and with the increase of stitch step;decreases with the distortion width and minor axis of stitch hole; the effect of distortion length on tensile strength is not monotonic.The effects of stitch density and microstructure parameters on the in-plane elastic modulus are very little. The tensile strength of the composite is dispersive because of the statistical distribution of fiber strength.It is found that the tensile strength of stitched unidirectional composite laminates can be described statistically by the two-parameter Weibull distribution when the strength of fiber obeys two-parameter Weibull distribution,and the shape parameter in the strength distribution of the composite is almost the same with that of the fiber.
引文
[1] Dow MB, Dexter HB. Development of stitched,braided and woven composite structures in the ACT program and at Langley Research Center(1985 to 1997) summary and bibliography, NASA TP-97-206234[R]. Hampton, Virginia: NASA, 1997.
    [2] Jain LK. Improvement of interlaminar properties in advanced fiber composites with through-thickness reinforcement. Cooperative Research centre for Aerospace Structures Ltd., CRC-AS TM 94012,1994.
    [3] Jain LK, and Mai Y-W. Determination of mode II delamination toughness of stitched laminated composites. Composites Science and Technology, 1995, 55(3): 241-253.
    [4] Sankar BV, Sharma SK. Mode II delamination toughness of stitched graphite/epoxy textile composites. Composites Science and Technology, 1997, 57(7):729-737.
    [5] Dransfield KA, Jain LK, Mai Y-W. On the effects of stitching in CFRPs-I. Mode I delamination toughness. Composites Science and Technology, 1998, 58(6):815-27.
    [6] Jain LK, Dransfield KA, Mai Y-W. On the effects of stitching in CFRPs-II. Mode II delamination toughness. Composites Science and Technology, 1998, 58(6): 829-837.
    [7] Mouritz AP, Baini C, Herszberg I. Mode I interlaminar fracture toughness properties of advanced textile fibreglass composites. Composites Part A: Applied Science and Manufacturing, 1999, 30(7): 859-870.
    [8] Mouritz AP, Jain LK. Further validation of the Jain and Mai models for interlaminar fracture of stitched composites. Composites Science and Technology, 1999,59(11): 1653-1662.
    [9] Gui Liangjin, Li Zhengneng. Delamination buckling of stitched laminates. Composites Science and Technology, 2001, 61(5): 629-636.
    [10] Tong Liyong, Sun Xiannian. Bending effect of through-thickness reinforcement rods on mode I delamination toughness of DCB specimen. I. Linearly elastic and rigid-perfectly plastic models. International Journal of Solids and Structures, 2004, 41(24-25):6831-6852.
    [11]Tsai G-C, Chen J-W. Effect of stitching on Mode I strain energy release rate. Composite Structures, 2005, 69(1)1-9.
    [12]Velmurugan R, Solaimurugan S. Improvements in Mode I interlaminar fracture toughness and in-plane mechanical properties of stitched glass/polyester composites. Composites Science and Technology, 2007, 67(1):61-69.
    [13]Tong Liyong, Sun Xiannian. Bending effect of through-thickness reinforcement rods on mode Ⅱ delamination toughness of ENF specimen:Elastic and rigid-perfectly plastic analyses.Composites Part A:Applied Science and Manufacturing,2007,38(2):323-336.
    [14]Cottone A,Turetta T,Giambanco G.Delamination study of through-thickness reinforced composite laminates via two-phase interface model.Composites Part A:Applied Science and Manufacturing,2007,38(9):1985-1995.
    [15]Wood MD,Sun XN,Tong LY,Katzos A,Rispler AR,Mai Y-W.The effect of stitch distribution on Mode I delamination toughness of stitched laminated composites-experimental results and FEA simulation.Composites Science and Technology,2007,67(6):1058-1072.
    [16]Iwahori Y,Ishikawa T,Watanabe N.Experimental investigation of interlaminar mechanical properties on carbon fiber stitched CFRP laminates.Advanced Composite Materials,2007,16(2):95-113.
    [17]朱华东,矫桂琼,扬宝宁.缝合复合材料Ⅱ型层间断裂特性研究,复合材料学报,2001,18(2):85-89.
    [18]王瑞,王广封,郭兴峰,张梅.缝合层合板的Ⅰ型层间断裂韧性研究.无机材料学报,2004,19(5):1123-1128.
    [19]Kang TJ,Lee SH.Effect of stitching on the mechanical and impact properties of woven laminate composite.Journal of Composite Materials,1994,28(16):1574-1587.
    [20]Mouritz AP,Gallagher J,Goodwin AA.Flexural strength and interlaminar shear strength of stitched GRP laminates following repeated impacts.Composites Science and Technology,1997,57(5):509-522.
    [21]Liu D,Raju BB,Dang XL.Impact perforation resistance of laminated and assembled composite plates.International Journal of Impact Engineering,2000,24(6-7):733-746.
    [22]Sankar BV,Zhu HS.The effect of stitching on the low-velocity impact response of delaminated composite beams.Composites Science and Technology,2000,60(14):2681-2691.
    [23]Mouritz AP.Ballistic impact and explosive blast resistance of stitched composites.Composites Part B:Engineering,2001,32(5):431-439.
    [24]Greenhalgh E.Hiley M.The assessment of novel materials and processes for the impact tolerant design of stiffened composite aerospace structures.Composites Part A:Applied Science and Manufacturing,2003,34(2):151-161.
    [25]Hosur MV,Karim MR,Jeelani S.Experimental investigations on the response of stitched/unstitched woven S2-glass/SC15 epoxy composites under single and repeated low velocity impact loading.Composite Structures,2003,61(1-2):89-102.
    [26]Suh SS,Han NL,Yang JM,Hahn HT.Compression behavior of stitched stiffened panel with a clearly visible stiffener impact damage.Composite Structures,2003,62(2):213-221.
    [27]Hosur MV,Vaidya,UK,Ulven C,Jeelani S.Performance of stitched/unstitched woven carbon/epoxy composites under high velocity impact loading.Composite Structures,2004,64(3-4):455-466.
    [28]Lopresto V,Melito V,Leone C,Caprino G Effect of stitches on the impact behaviour of graphite/epoxy composites.Composites Science and Technology,2006,66(2):206-214.
    [29]Herszberg I,Weller T.Impact damage resistance of buckled carbon/epoxy panels.Composite Structures,2006,73(2):130-137.
    [30]Caprino G,Lopresto V,Santoro D.Ballistic impact behaviour of stitched graphite/epoxy laminates.Composites Science and Technology,2007,67(3-4):325-335.
    [31]Aymerich F,Pani C,Priolo P.Damage response of stitched cross-ply laminates under impact loadings.Engineering Fracture Mechanics,2007,74(4):500-514.
    [32]Cheng XQ.Ali A-M,Li ZN,Kou CH.Compressive strength of stitched laminates after low-velocity impact.Journal of Reinforced Plastics and Composites,2005,24(9):935-947.
    [33]桂良进,程小全,寇长河,郦正能,谢向莉.缝纫对复合材料层合板强度和抗冲击性能的影响.航空学报,2000,21(4):368-371.
    [34]程小全,低速冲击后复合材料层合板的压缩破坏行为.复合材料学报,2001,18(1):115-119.
    [35]程小全,寇长河,郦正能.缝合复合材料可用性-环境条件下层合板的冲击后压缩性能.材料工程,2004,9(1):38-41.
    [36]燕瑛,曾东.复合材料层板低速冲击剩余强度的研究.航空学报,2003,24(2):137-139.
    [37]曾东,燕瑛,王立朋,刘兵山.缝合复合材料低速冲击损伤研究.复合材料学报,2005,22(6):125-129.
    [38]Mouritz AP,Leong KH,Herszberg I.A review of the effect of the stitching on the in-plane mechanical properties of fiber reinforced polymer composites.J.Composites A-Applied Science and Manufacturing,1997,28(12):979-991.
    [39]Mouritz AP,Cox BN.A mechanistic approach to the properties of stitched laminates.Composites Part A-Applied Science and Manufacturing,2000,31(1):1-27.
    [40]Kang TJ,Lee SH.Effect of stitching on the mechanical and impact properties of woven laminate composite.Journal Composite Material,1994,28:1574-1587.
    [41]Mouritz AP.Flexural properties of stitched GRP laminates.Composites A-Applied Science and Manufacturing,1996,27(7):525-530.
    [42]Larsson F.Damage tolerance of a stitched carbon/epoxy laminate.Composites A-Applied Science and Manufacturing,1997,28(12) 923-934.
    [43]Furrow KW,Loos AC,Cano RJ.Environmental effects on stitched RTM textile composites.Journal of Reinforced Plastics and Composites,1996,15(4):378-419.
    [44]Reeder JR.Stitching vs a toughened matrix:compression strength effects.Journal of Composite Materials,1995,29(18):2464-2487.
    [45]Gunnion A J,Scott ML,Thomson RS,Hachenberg Dieter.Thickness effects on the compressive stiffness and strength of stitched composite laminates.Composite Structures,2004,66(1-4):479-486.
    [46]李学明,张国利.缝纫工艺对改善复合材料机械性能的研究.纺织学报,2002,3(23):214-216.
    [47]杨胜春,沈薇,陈绍杰.带缝合复合材料力学性能试验研究.结构强度研究.2000,(03):29-35.
    [48]谢向利,赵龙.缝纫对纤维增强复合材料性能的影响.航空制造技术,2003,(6):41-43.
    [49]程小全,寇长河,郦正能.缝合复合材料可用性-一般复合材料的基本性能.复合材料学报,2004,21(4):71-76.
    [50]程小全,赵龙,张怡宁.缝合复合材料可用性-简单层合板的基本性能.北京航空航天大学学报,2003,29(11):1001-1005.
    [51]汪海,孙国钧,许希武,刘书田.缝合参数对复合材料板面内刚度和强度影响研究.工程力学,2005,22(6):82-86.
    [52]Pang F,Wang CH,Bathgate RG.Creep response of woven fibre composites and the effect of stitching.Composites Science and Technology,1997,57(1):91-98.
    [53]Bathgate RG,Wang CH,Pang F.Effects of temperature on the creep behaviour of woven and stitched composites.Composite Structures,1997,38(1-4):435-445.
    [54]Kang TJ,Lee SH.Effect of stitching on the mechanical and impact properties of woven laminate composite.Journal of Composite Materials,1994,28(10):1574-1587.
    [55]Thuis HGSJ,Bron E.The effect of stitching density and laminate lay-up on the mechanical properties of stitched carbon fabrics.National Lucht-en Ruimtevaartlaboratorium.Report NLR CR 96126L,1996.
    [56]桂良进,范子杰,寇长河等.缝纫层合板的本构关系研究(Ⅱ)-缝纫层层板刚度分析与试验[J].复合材料学报,2002,1(19):101-106.
    [57]孟凡颢,陈绍杰,童小燕.缝合/RTM复合材料及其计算分析的工程方法.第十一届全国复合材料学术会议论文集.合肥:中国科学技术大学出版社,2000,870-875.
    [58]赵龙,谢向利.复合材料缝纫技术研究.第十一届全国复合材料学术会议论文 集.合肥:中国科学技术大学出版社,2000,343-347.
    [59]Jain LK,Mai Y-W,Recent work on stitching of laminated composites - theoretical analysis and experiments.In:M.L.Scott Editor,Proc 11th Int Conf Comp Mat,14-18 July 1997 Technomic Publishing,Lancaster,Pennsylvania,1997,25-51.
    [60]Du X,Xue F,Gu Z.Experimental study of the effect of stitching on strength of a composite laminate.Proc Int Syrup Comp Mat Struct,1986,10-13:912-918.
    [61]黄涛,矫桂琼,赵龙,黄峰.缝线区域及界面特性对缝纫复合材料单向板力学性能的影响研究.西北工业大学学报,2004,22(1):76-79.
    [62]汪海,刘书田,程狄东.缝合复合材料板的破坏机理.固体力学学报,2002,23:s108-113.
    [63]Harris H,Schinske N,Krueger R,Swanson B.Multiaxial stitched preform reinforcements for RTM fabrication.In Proc.36th Int SAMPE Syrup,15-18 April 1991,521:35.
    [64]Shah KMZ,Mouritz AP.Fatigue behaviour of stitched GRP laminates.Composites Science and Technology,1996,56(6):695-701.
    [65]Herszberg I,Weller T,Leong KH,Bannister MK.The residual tensile strength of stitched and unstitched carbon/epoxy laminates impacted under tensile load.Proc 1st Aust Congress on Applied Mechanics,21-23 February 1996,309-314.
    [66]Herszberg I,Bannister MK.Tensile properties of thin stitched carbon/epoxy composites.In:Proc.5th Aust.Aero.Conf.20-23 March 1993,213-218.
    [67]Shim S-B,Ahn K,Seferis JC,Berg AJ,Hudson W.Cracks and microcracks in stitched structural composites manufactured with resin film infusion process.Journal of Advanced Materials,1995,(1):48-62.
    [68]Pelstring RM,Madan RC.Stitching to improve damage tolerance of composites.In:Proc.34th Int.SAMPE Symp.8-11 May,1989,1519-1528.
    [69]Herszberg I,Bannister MK.Compression and compression-after-impact properties of thin stitched carbon/epoxy composites.Presented at 5th Aust Aero Conf,20-23March 1993.
    [70]Caneva C,Olivieri S,Santulli C,Bonifazi G Impact damage evaluation on advanced stitched composites by means of acoustic emission and image analysis.Composite Structure,1993,25(2):121-128.
    [71]Farley GL,Smith BL,Maiden J.Compression response of thick layer composite laminates with through-the-thickness reinforcement.Journal of Reinforced Plastics and Composites,1992,11(9):787-810.
    [72]Furrow KW,Loos AC,Cano RJ.Environmental effects on stitched RTM textile composites.Journal of Reinforced Plastics and Composites,1996,15(4):378-419.
    [73]Farley G.L,Dickinson LC,Removal of surface loop from stitched composites can improve compression and compression-after-impact strengths.Journal of Reinforced Plastics and Composites,1992,11(8):633-642.
    [74]Jain LK,Leong KH,Mai YW.Effect of through-thickness stitching on the fatigue life of composite single-lap joints.Applied Composite Materials,1998,5(6):399-409.
    [75]Aymerich F,Priolo P,Sun CT.Static and fatigue behaviour of stitched graphite/epoxy composite laminates.Composites Science and Technology,2003,63(6):907-917.
    [76]Aymerich F.Effect of stitching on the static and fatigue performance of co-cured composite single-lap joints.Journal of Composite Materials,2004,38(3):243-257.
    [77]Mouritz AP.Fracture and tensile fatigue properties of stitched fibreglass composites.Journal of Materials-Design and Applications,2004,218(L2):87-93.
    [78]Aymerich F,Onnis R,Priolo P.Analysis of the effect of stitching on the fatigue strength of single-lap composite joints.Composites Science and Technology,2006,66(2):166-175.
    [79]Sharma SK,Sankar BV.Sublaminate buckling and compression strength of stitched uniweave graphite/epoxy laminates.Journal of Reinforced Plastics and Composites,1997,16(5):425-434.
    [80]Pan TS,Herrington PD.Local buckling of stitched composite laminate.Composites Part B-Engineering,1999,30(8):833-840.
    [81]Huang D,Minnetyan L.Progressive fracture of stitched stiffened composite shear panels in the postbuckling range.Journal of Reinforced Plastics and Composites,2001,20(18):1617-1632.
    [82]Wei Yuqing,Chen Bin.Buckling of stitched composite laminates with a through-width delamination.In:International conference on heterogeneous materials mechanics(ICHMM),Chongqing,China,Jun 21-26,2004,365-368.
    [83]魏玉卿,陈斌.缝纫对复合材料层合板分层屈曲的影响.重庆大学学报(自然科学版),2004,27(7):24-27.
    [84]桂良进,郦正能,章怡宁,杨旭.含任意分层缝纫正交层合板压缩屈曲分析,复合材料学报,2001,18(2):97-101.
    [85]Chen G;Cheng XQ,Li ZN,Kou CH.Hygrothermal properties of stitched and unstitched uniweave T300/QY9512 laminates(with a hole).Journal of Reinforced Plastics and Composites,2004,23(15):1663-1671.
    [86]Chen G,Cheng XQ,Li ZN,Kou CH.The effect of environment on tensile properties of stitched and unstitched laminates(with a hole).Journal of Reinforced Plastics and Composites,2005,24(17):1883-1889.
    [87]陈纲,郦正能,寇长河.湿热环境对缝纫层合板及含孔板压缩性能的影响.强度与环境,2004,31(1):46-49.
    [88]黄涛,矫桂琼.湿热环境下缝合层压板的拉伸和剪切性能.强度与环境,2006,33(2):45-49.
    [89]Dransfield KA,Baillie C,Mai Y-W.Improving the delamination resistance of CFRP by stitching-a review.Composites Science and Technology,1994,50(3):305-317.
    [90]Warrior N.A,Rudd C.D,Gardner S.P.Experimental studies of embroidery for the local reinforcement of composites structures 1.Stress concentrations.Composites Science and Technology,1999,59:2125-2137.
    [91]Tsai S.W.,Hahn H.T.,Introduction to composite materials,Technomic Publishing Company,CT,1980.
    [92]Sinclair J.H.,Chamis C.C.,Fracture modes in off-axis fiber composites,In proc.34th SPI/RP Annual Tech.Conf.,1979.Paper 22-A.
    [93]Kelly A.,Concise encyclopedia of composite materials,Pergamon,London,1994.
    [94]Wu E,Wang J.Behavior of stitched laminates under in-plane tensile and transverse impact loading,Journal of Composite Materials,1995,29(17):2254-2279.
    [95]Chang P,Mouritz AP,Cox BN,Properties and failure mechanisms of z-pinned laminates in monotonic and cyclic tension,Composites Part A-Applied Science and Manufacturing,2006,37(10):1501-1513.
    [96]Steeves CA,Fleck NA.In-plane properties of composite laminates with through-thickness pin reinforcement,International Journal of Solids and structures,2006,43(21):3197-3212.
    [97]Lomov SV,Belov EB,Bischoff T,Ghosh SB,Chi TT,Verpoest I.Carbon composites based on multiaxial multiply stitched preforms.Part 1.Geometry of the preform,Composites Part A-Applied Science and Manufacturing,2002,33(9):1171-1183.
    [98]Loendersloot R,Lomov SV,Akkerman R,Verpoest I.Carbon composites based on multiaxial multiply stitched preforms.Part V.Geometry of sheared biaxial fabrics,Composites Part A-Applied Science and Manufacturing,2006,37(1):103-113.
    [99]桂良进,范子杰,寇长河等.缝纫层合板的本构关系研究(Ⅰ)-缝纫单层板有效弹性常数分析.复合材料学报,2002,1(19):95-100.
    [100]魏玉卿,张俊乾,汪海,黄金.缝纫复合材料层合板面内性能的分析模型.重庆大学学报(自然科学版),2002,25(12):35-38.
    [101]Wei Yuqing,Zhang Junqian.Inhomogeneous material properties in stitched unidirectional composite laminates.In:International conference on heterogeneous materials mechanics(ICHMM),Chongqing,China,Jun 21-26,2004,361-364.
    [102]Zhang Junqian,Wei Yuqing.A Hierachical Multiscale Model for In-plane Mechanical strength of stitched composite laminates.Fifteenth International Conference on Composite Materials,Durban,South Africa.June,27-July,01,2005,307-308.
    [103]魏玉卿,张俊乾.缝纫复合材料层合板面内弹性模量分析.力学与实践,2005,27(1):36-38.
    [104]魏玉卿,张俊乾.缝纫复合材料层合板面内拉伸强度研究.力学季刊,2005,26(4):634-638.
    [105]Zhang Junqian,Wei Yuqing.A predictive approach to the in-plane mechanical properties of stitched composite laminates.Acta Mechanica Solida Sinica,2007,20(2):130-140.
    [106]刘兵山,燕瑛.缝纫复合材料弹性性能分析的新方法-流场模型Ⅰ:缝合单向板弹性常数计算.复合材料学报,2006,23(4):129-135.
    [107]刘兵山,燕瑛.缝纫复合材料弹性性能分析的新方法-流场模型Ⅱ:缝合层合板弹性常数计算与试验.复合材料学报,2006,23(4):136-142.
    [108]梦凡颢.用DPS模型预测缝合复合材料弹性常数.飞机设计,2004(3):17-20.
    [109]燕瑛,韩凤宇,杨东升,刘兵山.缝合复合材料弹性性能的三维有限元细观分析和试验验证.航空学报,2004,25(3):267-269.
    [110]金春花,周储伟,王鑫伟.缝合复合材料的细观力学分析,材料科学与工程学报,2006,24(4):607-610.
    [111]李晨,许希武,汪海.缝合复合材料层板面内力学性能试验与分析.南京航空航天大学学报,2005,37(2):192-197.
    [112]李晨,许希武.缝合复合材料层板刚度预报.计算力学学报,2006,23(6):760-765.
    [113]李晨,许希武.缝合复合材料层板三维纤维弯曲模型及压缩强度预报.复合材料学报,2006,23(6):179-185.
    [114]汪海.复合材料缝合结构静强度研究.博士学位论文.大连理工大学,2001.
    [115]邓传斌,张俊乾,李苹.缝纫对复合材料层板面内单向拉伸强度的影响.重庆大学学报,2002,25(1):9-12.
    [116]李晨,许希武.缝合复合材料层板的面内拉伸强度预报,材料科学与工程学报,2005,23(6):814-817.
    [117]Chen PH,Shen Z,Wang JY.Prediction of the strength of notched fiber-dominated composite laminates.Composites Science and Technology,2001,61(14):1311-1321.
    [118]沈真.复合材料结构损伤容限特性.航空学报,1998,9(2):B1-10.
    [119]Chang FK,Chang KY.Post-Failure Analysis of Bolted Composite Joints in Tension or Shear-Out Mode Failure.Journal of Composite Materials,1987,21(9):809-833.
    [120]Chang FK,Chang KY.A progressive damage model for laminated composites containing stress concentrations.Journal of Composite Materials,1987,21(9):834-855.
    [121]Chang FK,Lessard LB.Damage tolerance of laminated composites containing an open hole and subjected to compressive loadings:Part Ⅰ--Analysis.Journal of Composite Materials.1991,25(1):2-43.
    [122]Chang KY,Liu S,Chang FK.Damage tolerance of laminated composites containing an open hole and subjected to compressive loadings:Part Ⅱ--Experiment.Journal of Composite Materials,1991,25(1):44-64.
    [123]Chang KY,Liu S,Chang FK.Damage tolerance of laminated composites containing an open hole and subjected to tensile loadings.Journal of Composite Materials,1991,25(3):274-301
    [124]Yamada SE,Sun CT.Analysis of laminate strength and its distribution.Journal of Composite Materials,1978,12(2):275-284.
    [125]Hashin Z,Rotem A.A fatigue criterion for fiber reinforced materials.Journal of Composite Materials,1973,7(4):448-464
    [126]Hashin Z.Failure criteria for unidirectional fiber composites.Journal of Applied Mechanics,1980,47(2):329-335.
    [127]Lin HJ,Tsai CC,Shie JS.Failure analysis of woven-fabric composite with moulded-in holes.Composite Science and Technology,1995,55(3):231-239.
    [128]Camanbo PP,Matthews FL.A progressive damage model for mechanically fastened joints in composite laminates.Journal of Composite Materials,1999,33(24):2248-2280.
    [129]Tserpes KI,Labeas G,Papanikos P,Kermanidis T.Strength prediction of bolted joints in graphite/epoxy composite laminates.Composites Part B:Engineering,2002,33(7):521-529.
    [130]Epaarachchi JA.A study on estimation of damage accumulation of glass fibre reinforce plastic(GFRP) composites under a block loading situation.Composite Structures,2006,75(1-4):88-92.
    [131]Karadeniz ZH Kumlutas D.A numerical study on the coefficients of thermal expansion of fiber reinforced composite materials.Composite Structures,2007,78(1):1-10.
    [132]Sun CJ,Saffari P,Ranade R,Sadeghipour K,Baran G.Finite element analysis of elastic property bounds of a composite with randomly distributed particles.Composites Part A:Applied Science and Manufacturing,2007,38(1):80-86.
    [133]Kweon JH,Shin SY,Choi JH.A two-dimensional progressive failure analysis of pinned joints in unidirectional-fabric laminated composites.Journal of Composite Materials,2007,41(17):2083-2104.
    [134]Liu X,Wang GP.Progressive failure analysis of bonded composite repairs.Composite Structures,2007,81(3):331-340.
    [135]王丹勇,温卫东,崔海涛.含孔复合材料层合板静拉伸三维逐渐损伤分析.力学学报,2005,37(6):787-794.
    [136]王丹勇,温卫东,崔海涛.复合材料单钉接头三维逐渐损伤破坏分析.复合材料学报,2005,22(3):168-174.
    [137]王丹勇,温卫东,崔海涛.含材料非线性的复合材料单钉接头积累损伤分析.固体力学学报,2006,27(2):186-190.
    [138]崔海涛,郝勇,温卫东.含孔复合材料层合板逐渐损伤破坏分析.理化检验.物理分册,2002,38(4):150-153.
    [139]Coleman BD.On the strength of classical fibers and fiber bundles.Journal of the Mechanics and Physics of Solids,1958,7(1):60-70.
    [140]张孝泽.蒙特卡罗方法在统计物理中的应用.郑州:河南科技出版社,1991.
    [141]裴鹿成.蒙特卡罗方法及其应用.长沙:国防科技大学出版社,1993.
    [142]齐欢.数学模拟方法.武汉:华中理工大学出版社,1996.
    [143]Kong POh.A Monte Carlo study of the strength of unidirectional fiber-reinforced composites.Journal of Composite Materials,1979,13(4):311-328.
    [144]Goda K,Leigh PS.Reliability approach to the tensile strength of unidirectional CFRP composites by Monte-Carlo simulation in a shear-lag model.Composites Science and Technology,1994,50:457-468.
    [145]Yuan JM,Xia YM,Yang BC.A note on the Monte-Carlo simulation of the tensile deformation and failure process of unidirectional composites.Composites Science and Technology,1994,52(2):194-204.
    [146]Wang Z,Yuan JM,Xia YM.A dynamic monte-carlo simulation for unidirectional composites under tensile impact.Composites Science and Technology,1998,58(3-4):487-495.
    [147]Xia YM,Wang Z.A dynamic Mote Carlo microscopic damage model incorporating thermo-mechanical coupling in a unidirectional composite.Composites Science and Technology,1999,59(6):947-955.
    [148]Zhou YX,Huang W,Xia YM.A microscopic dynamic Monte Carlo simulation for unidirectional fiber reinforced metal matrix composites.Composites Science and Technology,2002,62(15):1935-1946.
    [149]Cheng TL,Qiao R,Xia YM.A Monte Carlo simulation of damage and failure process with crack saturation for unidirectional fiber reinforced ceramic composites.Composites Science and Technology,2004,64(13-14):2251-2260.
    [150]夏源明,王镇,汪洋.纤维束及其单向复合材料动态力学性能的研究.第十一届全国复合材料学术会议论文集.合肥:中国科学技术大学出版社,2000,22-27.
    [151]Chiang MYM,Wang XF,Schulthelsz CR,et al.Prediction and three-dimensional Monte-Carlo simulation for tensile properties of unidirectional hybrid composites.Composites Science and Technology,2005,65(11-12):1719-1727.
    [152]Okabe T,Takeda N,Kamoshida Y,et al.A 3D shear-lag model considering micro-damage and statistical strength prediction of unidirectional fiber-reinforced composites. Composites Science and Technology, 2001, 61 (12):1773-1787.
    [153] Wang XF and Zhao JH. Monte-Carlo simulation to the tensile mechanical behaviors of unidirectional composites at low temperature. Cryogenics, 2001, 41(9):683-691.
    [154] Wang XF, Chiang MY, Snyder CR. Monte-Carlo simulation for the fracture process and energy release rate of unidirectional carbon fiber-reinforced polymers at different temperatures. Composites Part A-Applied Science and Manufacturing, 2004, 35(11): 1277-1284.
    [155] Zhou YX, Baseer MA, Mahfuz H, Shaik J. Monte Carlo simulation on tensile failure process of unidirectional carbon fiber reinforced nano-phased epoxy. Materials Science and Engineering: A, 2006,420(1-2):63-71.
    [156]Landis CM, Beyerlein IJ, McMeeking RM. Micromechanical simulation of the failure of fiber reinforced composites. Journal of the Mechanics and Physics of Solids, 2000,48 (3): 621-648.
    [157] Kim JK, Kim CS, Song DY. Strength evaluation and failure analysis of unidirectional composites using Monte-Carlo simulation. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2003, 340 (1-2):33-40.
    [158] Li HZ, Jia YX, Mamtimin G, et al. Stress transfer and damage evolution simulations of fiber-reinforced polymer-matrix composites. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2006, 425(1-2):178-184.
    [159] Chen G, Ding X. Breaking progress simulation and strength prediction of woven fabric under uni-axial tensile loading. Textile Research Journal, 2006, 76(12): 875-882.
    [160] Li HZ, Jia YX, Mamtimin G, et al. Stress transfer and damage evolution simulations of fiber-reinforced polymer-matrix composites. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2006, 425 (1-2): 178-184.
    [161]Wbiney JM, Daniel IM, Byron R. Experimental mechanics of fiber reinforced composite materials. Society Experiment Stress Analysis, New Jersey, 1982.
    [162] Sun DC, Tong LY. Modeling and analysis of curved beams with debonded piezoelectric sensor/actuator patches. International Journal of Mechanical Sciences, 2002, 44(8): 1755-1777.
    [163] Lin KC, Hsieh CM. The closed form general solutions of 2-D curved laminated beams of variable curvatures. Composite Structures, 2007,79 (4): 606-618.
    [164]Naik NK, Tiwari SI, Kumar RS. An analytical model for compressive strength of plain weave fabric composites. Composites Science and Technology, 2003, 63(5):609-625.
    [165]steven CC.工程中的数值方法(影印版第三版).北京:科学出版社,2000.
    [166]Ferzigr JH.Numerical methods for engineering application.New York:Wiley,1981.
    [167]夏志皋,江理平,唐寿高.弹性力学以及数值方法.上海:同济大学出版社,1996.
    [168]李荣华.偏微分方程数值解法.北京:高等教育出版社,2004.
    [169]陆金甫,关治.偏微分方程数值解法(第二版).北京:清华大学出版社,2004.
    [170]Beyerlein IJ,Phoenix SL.Statistics of fracture for an elastic notched composite lamina containing Weibull fiber.Part 1.Features from Monte-Carlo simulation.Engineer Fracture Mechanics,1997,57(2):241-65.
    [171]Liu YF,Kagawa Y.Analysis of debonding and frictional sliding in fiber-reinforced brittle matrix composites:Basic problems.Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,1996,212(1):75-86.
    [172]陈祥宝.聚合物基复合材料手册.北京:化学工业出版社,2004.
    [173]杜善义,王彪.复合材料细观力学.北京:科技出版社,1998.
    [174]Landis CM,Beyerlein IJ,Mcmeeking RM.Micromechanical simulation of the failure of fiber reinforced composites.Journal of the Mechanics and Physics of Solids,2000,48(3):621-648.
    [175]蒋仁言.威布尔模型族-特性、参数估计的应用.北京:科学出版社,1998.
    [176]邹祖讳著,吴人洁译.复合材料的结构与性能.北京:科学出版社,1999.
    [177]郝小辉,乔生儒,陈博.不同标距下CVD钨丝sic纤维强度的Weibull分布.理化检验-物理分册,2005,41(10):487-490.
    [178]彭鸿霖.可靠度技术手册-可靠度统计分析技术.中国可靠性网,中华民国八十九年(2000).
    [179]吴善元.非参数统计方法,北京:高等教育出版社,1996.
    [180]王宗华.可靠度工程技术手册,台北:中华民国品质学会,1996.
    [181]汪海.复合材料结构强度准则扩展应用及缝合参数对力学性能的影响研究.上海交通大学博士后研究工作报告,2004.
    [182]航空工业部科学技术委员会编.应力集中系数手册,北京:高等教育出版社,1990
    [183]Byrd LW,Birman V.Effect of temperature on stresses and delamination failure of z-pinned joints.International Journal of Mechanical Sciences,2006,48(9):938-949.
    [184]Chang P,Mouritz AP,Cox BN.Properties and failure mechanisms of z-pinned laminates in monotonic and cyclic tension.Composites Part A:Applied Science and Manufacturing, 2006, 37(10):1501-1513.
    [185] Lin HJ, Tsai CC. Failure analysis of bolted connections of composites with drilled and moulded-in hole. Composite Structures, 1995, 30(1): 159-168.
    [186] Lin HJ, Tsai CC, Shie JS. Failure analysis of woven-fabric composites with moulded-in holes. Composites Science and Technology, 1995, 55(2):231-239.
    [187] Jensen D, Pascual J, August A. Performance of Graphite/Bismaleimid laminates with embedded optical fiber optics, Part I: unidxial tension, Smart Materials & Structures, 1992, 1(1):24-30.
    [188]Shivakumar KN, Bhargava A. Failure mechanics of a composite laminate embedded with a fiber optic sensor. Journal of composite materials, 2005, 39(9): 777-797.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700