用户名: 密码: 验证码:
基于二维相关谱掺杂牛奶检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对乳制品掺假日益严重的现象,国家食品药品监督局、乳制品企业、消费者都亟需一种能实现对牛奶中掺杂的痕量目标物进行快速检测的方法。基于光谱的方法具有快速、简单、可实现在线测量等优势,已被广泛地应用于食品检测的各个领域。但由于牛奶体系的复杂性、掺杂物的多样化和微量化、以及掺杂物特征峰与牛奶特征峰相互重叠等的影响,常规的二维光谱在数据分析过程中还存在以下困难:①选择性低;②特征谱信息提取难;③图谱解析难。二维相关光谱是一种强大而灵活的分析技术,主要强调由外界扰动引起的信号变化的细微特征,具有高分辨率、高图谱解析能力等优点,已经在各个领域得到了广泛的应用研究。本文在对纯牛奶、掺杂牛奶二维相关谱特性研究的基础上,将二维相关谱与化学计量学用于掺杂牛奶的定性、定量分析。主要的研究内容包括以下四个方面:
     1、提出了基于二维相关谱提取牛奶中掺杂物特征信息的方法。以掺杂尿素牛奶和掺杂三聚氰胺牛奶为研究对象,以牛奶中掺杂物浓度为外扰,构建二维相关谱(IR-IR, NIR-NIR, IR-NIR),提取了牛奶中掺杂物特征信息,根据相关交叉峰的正负和有无对掺杂物的特征峰进行相互指认,验证了该方法的有效性。
     2、发展了一种基于二维相关谱统计参量建模以判别牛奶掺杂的方法。通过两种方法:统计理论和多维主成分分析(Multi-way principal components analysis, MPCA),提取了二维相关谱的特征参量,建立掺杂尿素牛奶、掺杂三聚氰胺牛奶、及两种掺杂牛奶与纯牛奶的判别模型,验证了该方法的可行性。
     3、提出将基于核隐变量正交投影(Kernel orthogonal projection to latent structure, KOPLS)掺杂牛奶的判别方法,以解决牛奶中掺杂物信息与光谱信息的非线性问题。采用该方法建立两种掺杂牛奶与纯牛奶的KOPLS-DA模型,相对于OPLS-DA和PLS-DA模型,该方法提高了掺杂牛奶判别准确度。
     4、提出了直接基于二维相关谱矩阵与多维偏最小二乘法(Multi-way partial least squares discriminant analysis,N-PLS)结合定量分析掺杂牛奶的检测方法。采用该方法对掺杂尿素牛奶和掺杂三聚氰胺牛奶的相关谱矩阵建立定量分析的N-PLS模型,相对于采用常规掺杂牛奶光谱建立的PLS模型,该方法可提高掺杂牛奶的预测精度。
     本论文主要在量化相关谱矩阵的基础上,将其与化学计量学方法结合起来实现掺杂牛奶的检测。论文中所得到的实验研究结果,为相关谱矩阵在食品掺杂检测中的应用提供了理论和实验依据。
In view of the serious situation of adulteration in milk, it is urgent to develop a rapid, widely available and cost-effective method to detect the trace adulterant in the complex system of milk for the State Food and Drug Administration, the dairy industry and the consumers. The conventional one-dimensional spectroscopy analysis, which is widely applied in the examinations of milk quality, is a fast, non-destructive method, with no environmental pollution. However, milk is a complicated biological system, which contains both dissolved substances and colloidal suspensions and it has strong absorption and scattering. So it is impossible to extract the feature information of adulterants in milk using conventional one-dimensional spectrum due to the diversity and trace of adulterants and overlapping characteristic peaks between adulterants and milk. Two-dimensional (2D) correlation spectroscopy is an effective method for three major problems encountered by the conventional spectrum: low selectivity of the spectra, difficulty in extracting the information of the spectral feature and difficulty in spectrogram analysis. The2D correlation spectroscopy is a powerful tool for the detailed analysis of various spectroscopic data by external perturbation.2D correlation spectroscopy has been successfully applied in many complex biological systems because of high resolution, and good ability of spectrogram analysis. Qualitative and quantitative analysis of adulterated milk were studied systemically by2D correlation spectroscopy. The main content of the work and innovation, include the following four aspects:
     1. The method of extracting effectively feature information of adulterant in milk based on2D correlation spectroscopy was proposed. By taking urea-tainted milk and melamine-tainted milk as the research objects,2D correlation analysis (IR-IR, NIR-NIR, IR-NIR) were performed under the perturbation of adulterants’ concentration to extract the characteristic information of adulterants. The effectiveness of this method was verified in terms of positive or negative corss peaks of adulterants in milk.
     2. A new method for discrimination analysis of adulterated milk was developed based on parameterization of2D correlation spectroscopy. The characteristic parameters of2D correlation spectra of adulterated milk and pure milk were extracted by statistical theory and multi-way principal components analysis (MPCA). The discriminant models for milk adulterated with melamine, milk adulterated with urea and milk adulterated with either melamine or urea were constructed, respectively. The results showed that the proposed method was feasible.
     3. A discrimination method of adulterated milk was proposed based on kernel orthogonal projection to latent structure for solving the problem of non-linear relationship between predictor and spectra variables. The KOPLS-DA models of adulterated milk and pure milk were built. The results showed that, comparing with OPLS-DA and PLS-DA models, the proposed new method could improve effectively discriminant accuracy of adulterated milk.
     4. A new detection method of quantitative analysis of adulterated milk was proposed by combining2D correlation spectra with multi-way partial least squares (N-PLS). The N-PLS models for milk adulterated with either melamine or urea were constructed. The results showed that, comparing with PLS models, the proposed new method could improve effectively quantitative analysis precision of adulterated milk.
     The detection methods of adulterated milk were studied using chemometrics based on quantification of2D correlation spectra. The experimental results, obtained in the paper, provide a theoretical and experimental basis for2D correlation spectroscopy applications in food safety.
引文
[1]第十一届全国人民代表大会常务委员会,中华人民共和国食品安全法,北京:2009.
    [2]陆峰,吴玉田,柴逸峰,食品(药品)安全时代的分子光谱法,生命科学仪器,2007,5(11):6~12.
    [3]李景红,牛乳中掺加胶原水解蛋白检测方法的建立:[硕士学位论文],哈尔滨,东北林业大学,2007.
    [4]钱博,乳粉蛋白质快速检测方法的研究:[硕士学位论文],杭州,浙江大学,2006.
    [5]国家质量监督检验检疫局,GB/T22388-2008原料乳与乳制品中三聚氰胺检测方法,北京:中国标准出版社,2008.
    [6]赵晓娟,李星芝,王俊全等,液相色谱技术在三聚氰胺检测方面的应用研究进展,天津化工,2012,26(3):1~5.
    [7]孙艳侠,高效液相色谱在乳品抗生素残留检测中的应用,山西农业科学,2010,28(3):10~13.
    [8] Espeja E, Gareia M C, Marina M L, Fast detection of added soybean protein incow’s, goat’s and ewe’s milk by perfusion reversed-phase high-performance liquidchromatography, Journal of Separation Science,2001,24:10~11.
    [9] Ana C A V, Teixera N, IsabelM P L, Separation and quantification of the majorcasein fractions by reverse-phase high-performance liquid chromatography andurea-polyacrylamide gel electrophoresis. Detection of milk adulterations, Journal ofChromatography A,2002,967(2):209~218.
    [10]杨洋,徐春祥,车文军,高效液相色谱法测定奶粉中的三聚氰胺及其不确定度分析,食品科学,2010,31(4):250~253.
    [11]黄艳红,丁健桦,邱昌福等,液相微萃取-高效液相色谱法测定乳制品中的三聚氰胺,分析测试,2010,31(2):161~164.
    [12] Filazi A,Sireli U T, Ekici H, et al, Determination of melamine in milk and dairyproducts by high performance liquid chromatography, Journal of Dairy Science,2012,95(2):602~608.
    [13]郑洪,于秋丽,高效液相色谱法测定液态奶三聚氰胺方法的建立,动物医学进展,2009,30(4):57~59.
    [14]肖锡林,廖力夫,肖静水等,三聚氰胺的HPLC-DAD检测新方法研究,南华大学学报(自然科学版),2009,23(2):83~86.
    [15] Mahmood S, El-Sayed S. Abdel Hameed, Mohamed S. Al-Amoudi, et al,Identification and determination of melamine in milk by high performance liquidchromatography-UV detector, Der Pharma Chemica,2012,4(2):737~748.
    [16]林芳栋,蒋珍菊,曹蕊,牛奶掺假现状及检测方法的研究进展,2011,30(3):93~96.
    [17]张婉洁,苏洋,徐可欣等,一种利用同一表面等离子体共振传感器检测多种残留物的方法,化学学报,2010,68(24):2574~2580.
    [18]石婷,刘瑾,张婉洁等,基于SPR生物传感器的抗生素残留检测及影响因素分析,天津大学学报(自然科学版),2010,43(3):255~261.
    [19]苏洋,张婉洁,徐可欣等, SPR生物传感器检测牛奶中氨苄青霉素残留,传感器与微系统,2010,29(11):40~42.
    [20] Gustavsson E, Degelaen J, Bjurling P, et al, Determination of beta-lactams inmilk using a surface plasmon resonance-based biosensor, Journal of Agricultural andFood Chemistry,2004,(52):279l~2796.
    [21] Gustavsson E,Bjurling P, Sternesjo A, Biosensor analysis of penicillin G in milkbased on the inhibition of carboxypeptidase activity, Analytica Chimica Acta,2002,468:153~159.
    [22] Valerie G,Jehanne F,Pierre M,Screening of penicillin residues in milk by asurface plasmon resonance based biosensor assay: comparison of chemical andenzymatic sample pretreatment, Analytica Chimica Acta,2001,436:191~198.
    [23]陈继冰,生物传感器在食品安全检测中的应用与研究进展,食品研究与开发,2009,30(1):180~183.
    [24]孙霞,王相友,贾传东,乙酰胆碱酯酶生物传感器及其研究进展,食品科学,2009,30(7):251~253.
    [25]林涛,于海燕,应义斌,可见/近红外光谱技术在液态食品检测中的应用研究进展,光谱学与光谱分析,2008,28(2):285~290.
    [26] Etsuo S, Sumiq K, Detection of foreign fat adulteration of milk fat by nearinfrared spectroscopic method, Journal of Dairy Science,1990,73:3408~3413.
    [27]韩东海,鲁超,刘毅,纯牛奶、还原奶、掺假奶、牛奶新鲜度的近红外检测,乳业导刊,2006,(4):39~41.
    [28] Sumaporn K, Warunee T, Artaya K, Feasibility of near infrared spectroscopy todetect and to quantify adulterants in cow milk, Analytical Sciences,2007,23:907~910.
    [29]王右军,朱大洲等,CCD短波近红外光谱快速检测牛奶中产假物质的研究,食品科学,2009,30(6):135~138.
    [30]董一威,屠振华,朱大洲等,利用近红外光谱快速检测牛奶中三聚氰胺的可行性研究,光谱学与光谱分析,2009,29(11):2934~2938.
    [31] Lu C H, Xing B R, Hao G, et al, Rapid detection of melamine in milk powder bynear infrared spectroscopy, J. Near infrared Spectroscopy,2009,17:59~67.
    [32] Lisa J M, Alona A, Chernyshova A H, et al, Melamine detection in infantformula powder using near-and mid-infrared spectroscopy, Journal of Agriculturaland Food Chemistry,2009,57:3974~3980.
    [33]李亮,丁武,掺有植物性填充物牛奶的近红外光谱判别分析,光谱学与光谱分析,2010,30(5):1238~1242.
    [34] Liu R, Lv G R, He B, et al, Discriminant analysis of milk adulteration based onnear-infrared spectroscopy and pattern recognition, Proc of SPIE,2011,7906.
    [35]陈安宇,焦义,刘春伟等,采用增强拉曼检测技术对牛奶中的三聚氰胺的检测,中国卫生检验杂志,2009,19(8):1710~1712.
    [36] Lee S Y, Erdene O G, Jaebum C, et al, Detection of melamine in powderedmilk using surface-enhanced raman scattering with no pretreatment, Analytical Letters,2010,43:2135~2141.
    [37]赵宇翔,彭少杰,赵建丰等,表面增强拉曼光谱法快速检测牛奶中的三聚氰胺,2011,1:27~29.
    [38] Noda I, Ozaki Y, Two-dimensional correlation spectroscopy-applications invibrational and optical spectroscopy, Johns Wiley&Sons, Chichester,2004.
    [39]胡鑫尧,王琪,孙素芹等,二维相关光谱技术的研究进展,广西师范大学学报,2003,21(2):242~243.
    [40]褚小立,二维相关红外光谱及其应用,光电产品与资讯,2011,2(10):27~28.
    [41] Wang Y, Tsenkova R, Amari M, et al, Potential of two-dimensional correlationspectroscopy in analyses of NIR spectra of biological fluids I. Two-dimensionalcorrelation analysis of protein and fat concentration-dependent spectral variations ofmilk, Analusis Magazine,1998,26(4):64~69.
    [42] Matusewicz B C, Murayama K, Tsenkova R, et al, Analysis of near-infraredspectra of complicated biological fluids by two-dimensional correlation spectroscopy:protein and fat concentration-dependent spectral changes of milk, AppliedSpectroscopy,1999,53(12):1582~1594.
    [43] Slobodan S, Yukihiro O, Wavelength-wavelength and sample-sample twodimensional correlation analyses of short wave near-infrared spectra of raw milk,Applied Spectroscopy,2001,55(2):163~172.
    [44] He B, Liu R, Yang R J, et al, Adulteration detection in milk using infraredspectroscopy combined with two-dimensional correlation analysis, Proc of SPIE,2011,7572,5720P.
    [45]杨仁杰,刘蓉,徐可欣,二维相关光谱结合偏最小二乘法测定牛奶中的掺杂尿素,农业工程学报,2012,28(6):259~263.
    [46] Wang Y, Xu C H, Wang P, et al, Analysis and identification of different animalhorns by a three-stage infrared spectroscopy, Spectrochim acta part a-mol ecular andbiomolecular spectroscopy,2011,83(1):265~270.
    [47] Sun S Q, Zhou Q, Chen J B, Infrared spectroscopy for complex mixtures:applications in food and traditional chinese medicine, Chemical Industry Press,Beijing,2011.
    [48] Zhang Y L, Chen J B, Lei Y, et al, Discrimination of different red wine byFourier-transform infrared and two-dimensional infrared correlation spectroscopy,Journal of Molecular Structure,2010,974(1-3):144~150.
    [49] Chen J B, Zhou Q, Noda I, et al, Quantitative classification of two-dimensionalcorrelation spectra, Applied Spectroscopy,2009,63(8):920~925.
    [50]周群,李静,刘军等,真伪大黄的二维相关红外光谱,光谱学与光谱分析,2003,31(9):1058~1061.
    [51]郁露,孙素琴,周群等,白芥子炒制过程的红外及二维相关光谱研究,光谱学与光谱分析,2006,26(12):2181~2185.
    [52] Zhan D Q, Sun S Q,Application of wavelet transform in improving resolution oftwo-dimensional infrared correlation spectroscopy, Lecture Notes in ComputerScience,2005,3645:356~365.
    [53]徐可欣,彭丹,刘蓉,基于响应量转换实现牛奶成分测量的装置及方法,中国专利,200810154366.9,2008-12-23.
    [54] He Z H, Xu K X, Han Y H, Study on measurement of milk constistuents by NIRanalysis, Saratov fall meeting, SPIE,2004,5771:189~194.
    [55]韩永辉,徐可欣,贺忠海等,牛奶光学特性参数的单积分球法测量,光电子·激光,2004,15(9):1079~1082.
    [56]刘蓉,陈文亮,徐可欣等,奇异点快速检测在牛奶成分近红外光谱测量中的应用,光谱学与光谱分析,2005,25(2):207~210.
    [57]刘瑾,徐可欣,林旺等,基于免疫法的食品中兽药和饲料添加剂残留检测的方法,中国专利,200910070801,2009-10-14.
    [58]刘瑾,徐可欣,栗大超等,一种检测乳品中多种抗生素残留的方法,中国专利,200910308194,2009-10-12.
    [59]韩永辉,牛奶成分近红外测量的光学基础理论与实验研究,[博士学位论文],天津:天津大学,2005.
    [60] Wang L J, Zhou D W, Xu K X, et al, Near-infrared spectroscopy to measure milkconstituents and its reliability design, Photonics Asia, SPIE,2002,4916:189~193.
    [61]赵旭博,董文宾,王顺民等,国外牛奶中尿素含量检测新进展,食品研究与开发,2004,15(6):109~113.
    [62]唐玉莲,近红外光谱在乳制品成分快速检测方面的应用研究,乳业科学与技术,2009,32(4):190~194.
    [63]张忠慧,华欲飞,大豆分离蛋白与低浓度尿素相互作用的红外光谱分析,大豆科学,2008,27(1):134~136.
    [64] Lefier D, Analytical methods for the determination of the urea content in milk,IDF Bul1,1996,315:35~38.
    [65] Jankovska R, Sustova K, Analysis of cow milk by near-infrared spectroscopy,Czech Journal of Food Science,2003,21(4):123~128.
    [66] Aernouts B, Polshin E,Lammertyn J,et al, Visible and near-infraredspectroscopic analysis of raw milk for cow health monitoring: reflectance ortransmittance, Journal of Dairy Science,2011,94(11):5315~5329.
    [67]杨仁杰,刘蓉,徐可欣,基于中红外光谱检测牛奶中掺杂尿素,光谱学与光谱分析,2011,31(9):2383~2385.
    [68]吴瑾光,近代傅里叶变换红外光谱技术及应用(上卷),北京:科学技术文献出版社,1994.
    [69]陆婉珍,袁洪福,徐广通等,现代近红外光谱分析技术,北京:中国石化出版社,2000.
    [70]张雯,基于二维相关红外光谱技术的无创血糖检测特异性研究:[硕士学位论文],天津,天津大学,2012.
    [71]严衍禄,近红外光谱分析基础与应用,北京:中国轻工业出版社,2005,29-31.
    [72]常敏,牛奶质量光学检测的作用机理及影响因素研究:[博士学位论文],天津,天津大学,2006.
    [73] Anderson S K, Hansen P W, Anderson H V, Vibrational spectroscopy in theanalysis of dairy products and wine,Handbook of Vibrational Spectroscopy, Wiley,Chichester, UK,2002.
    [74]常敏,应用红外光谱技术进行牛奶成分检测的研究,[硕士学位论文],天津,天津大学,2004.
    [75]陈建波,二维相关红外光谱差异分析方法及其应用研究,[硕士学位论文],北京,清华大学,2010.
    [76] Harrick N J, Internal reflection spectroscopy, New York: Interscience,1967.
    [77]张恒,高曼侠,徐兆棠等,非线性建模红外光谱法测定三聚氰胺的研究,安徽农业科学,2011,39(1):583~584.
    [78]司民真,李清玉,刘仁明等,典型的三聚氰胺致幼儿肾结石红外光谱分析,光谱学与光谱分析,2010,30(2):363~367.
    [79] Eddy C V, Flanigan M, Arnold M A, Near-infrared spectroscopic measurementof urea in dialysate samples collected during hemodialysis treatments, AppliedSpectroscopy,2003,57(10):1230~1235.
    [80] Olesberg J T, Arnold M A, Flanigan M J. Online measurement of urea concentration inspent dialysate during hemodialysis. Clinical Chemistry,2004,50(1):175~181.
    [81] Cho D S, Olesberg J T, Flanigan M J, et al, On-line near-infrared spectrometer tomonitor urea removal in real time during hemodialysis, Applied Spectroscopy,2008,62(8):866~872.
    [82] Noda I, Ozaki Y, Two-dimensional correlation spectroscopy-applications invibrational and opticalspectroscopy, Johns Wiley&Sons, Chichester,2004.
    [83] Jia Q, Wang N N, Yu Z W, et al, An insight into sequential order intwo-dimensional correlation spectroscopy, Applied Spectroscopy,2009,63(3):344~353.
    [84]沈怡,彭云,武培怡等,二维相关振动光谱技术,化学进展,2005,17(3):499~513.
    [85]张丽萍,大分子体系微结构变化的谱学新方法研究,[博士学位论文],长春,吉林大学,2010.
    [86] Barton F E, Himmelsbach D S, Two-dimensional vibrational spectroscopy II:correlation of the absorptions of lignins in the mid and near-infrared, AppliedSpectroscopy,1993,47(11):1920~1925.
    [87] Jung Y M, Chae J B, Yu S C, et al, Two-dimensional hetero-spectral correlationfluorescence Raman spectroscopy for a thermotropic liquid-crystalline oligomer,Vibrational Spectroscopy,2009,51(1):11~14.
    [88] Awichi A, Tee E M, Srikanthan G, et al, Identication of overlapped near-infraredbands of glucose anomers using two dimensional near-infrared and middle-infraredcorrelation spectroscopy, Applied Spectroscopy,2002,56(7):897~901.
    [89] Jung Y M, Matusewucz B C, Ozaki Y, Two-dimensional infrared,two-dimensional Raman, and two-dimensional Infrared and Raman heterospectralcorrelation studies of secondary structure of a-Lactoglobulin in buffer solutions,Journal of Physical Chemistry B,2000,104(32):7812~7817.
    [90] Jung Y M, Two-dimensional correlation spectroscopy in analyzing theconcentration dependent IR spectra of urea aqueous solution, Bulletin of the KoreanChemical Society,2003,24(9):1243~1244.
    [91] Jung Y M, Matusewucz B C, Kim S B, Characterization of concentrationdependent infrared spectral variations of urea aqueous solutions by principalcomponent analysis and two-dimensional correlation spectroscopy, Journal ofPhysical Chemistry B,2004,108(34):13008~13014.
    [92] Czarnik M B, Kim S B, Jung Y M, A study of urea-dependent denaturation ofβ-Lactoglobulin by principal component analysis and two-dimensional correlationspectroscopy, Journal of Physical Chemistry B,2009,113(2):559~566.
    [93]田高友,鲁长波,袁洪福,液体奶和奶粉中三聚氰胺含量红外光谱分析方法研究,现代科学仪器,2009,(5):86~91.
    [94]杨仁杰,杨延荣,杜艳红等,掺伪三聚氰胺牛奶二维相关红外谱法鉴别研究,天津农学院学报,2011,4:34~37.
    [95] Jung Y M, Hyeon S S, Noda I, New approach to generalized two-dimensionalcorrelation spectroscopy II: eigenvalue manipulation transformation (EMT) for noisesuppression, Applied Spectroscopy,2003,57(5):557~563.
    [96] Jung Y M, Hyeon S S, Seung B K, et al, New approach to generalizedtwo-dimensional correlation spectroscopy I: combination of principal componentanalysis and two-dimensional correlation spectroscopy, Applied Spectroscopy,2002,56(12):1562~1567.
    [97] Jung Y M, Noda I, New approaches to generalized two-dimensional correlationspectroscopy and its applications, Applied Spectroscopy Reviews,2006,41:515~547.
    [98]吴元清,基于三维荧光光谱的水体有机污染物浓度检测方法,[硕士学位论文],杭州,浙江大学,2011.
    [99]张艳林,矿物油三维荧光谱识别技术及研究,[硕士学位论文],秦皇岛,燕山大学,2010.
    [100]田广军,基于三维荧光谱参数化及模式识别的水中油类鉴别与测定,[博士学位论文],秦皇岛,燕山大学,2005.
    [101] Johnson R A, Wichem D W, Applied multivariate statistical analysis, Beijing:Tsinghna University Press,2008.
    [102] Geladi P, Isaksson H, Lindqvist L,et al, Principal Component Analysis ofmultivariate image, Chemometrics and Intelligent Laboratory Systems,1989,5(3):209~220.
    [103] Geladi P, Analysis of multi-way(multi-mode) data, Chemometrics andIntelligent Laboratory Systems,1989,7(1-2):11~30.
    [104]张佳,基于多阶段MPCA方法的间歇过程监测研究,[硕士学位论文],北京,北京化工大学,2009.
    [105] Smilde A K, Doornbos D A, Three-way methods for the calibration ofchromatographic Systems: comparing PARAFAC and three-way PLS, Journal ofchemometrics,1991,5:345~360
    [106] Vapnik V N,The Nature of Statistical Learning, New York:Springer,1995.
    [107] Suykens J A K,Vandewalle J, Least squares support vector machine classifiers,Neural Process Letters,1999,9(3):293~300.
    [108]李国正,王猛,曾华军译,支持向量机导论,北京:电子工业出版社,2004.
    [109]谈爱玲,毕卫红,基于KPCA和LSSVM的蜂蜜近红外光谱鉴别分析,激光与红外,2011,41(12):1331~1336.
    [110]章颖强,董伟,张冰等,基于拉曼光谱和最小二乘支持向量机的橄榄油掺伪检测方法研究,2012,32(6):1554~1558.
    [111]林升梁,刘志,基于RBF核函数的支持向量机参数选择,浙江工业大学学报,2007,35(2):163~167.
    [112]虞科,程翼宇,一种基于最小二乘支持向量机算法的近红外光谱判别分析方法,分析化学研究简报,2006,34(4):561~564.
    [113]林毅,蔡福营,袁宇熹等,基于均匀设计的主成分分析-支持向量机模型及其在几丁质酶最适pH建模中的应用,生物工程学报,2007,23(3):514~519.
    [114]陈民森,近红外光谱扣除背景误差的研究,[硕士学位论文],天津,天津大学,2005.
    [115]俞汝勤,化学计量学导论,长沙:湖南教育出版社,1991.
    [116]梁逸曾,白灰黑复杂多组分分析体系及其化学计量学算法,长沙:湖南科学技术出版社,1996.
    [117]刘迪思,食品分析中三维荧光二阶校正法的应用研究,[硕士学位论文],长沙,湖南大学,2007.
    [118]尚丽平,杨仁杰,现场荧光光谱技术及其应用,科技出版社,2009.
    [119]吴海龙,俞汝勤,化学多维校正的若干新进展,化学通报,2011,74(9):771~782.
    [120]盖云,鲍成满,叶树明等,化学计量学方法在三维荧光光谱分析中的应用,光谱学与光谱分析,2011,31(7):1828~1833.
    [121]何彬,基于红外光谱技术的食品掺杂判别方法研究,[硕士学位论文],天津,天津大学,2010.
    [122]褚小立,袁洪福,陆婉珍,近红外分析中光谱预处理及波长选择方法进展与应用,化学进展,2004,16(4):528~542.
    [123]余浩,基于正交信号校正算法的近红外光谱预处理,[硕士学位论文],杭州,浙江大学,2004.
    [124] Trygg J, Wold S, Orthogonal projections to latent structures (O-PLS), Journalof Chemometrics,2002,16:119~128.
    [125] Bylesj M, Rantalainen M, Cloarec O, et al, OPLS discriminant analysis:combining the strengths of PLS-DA and SIMCA classification, Journal ofChemometrics,2006,20:341~351.
    [126] Rantalainen M, Bylesj M, Cloarec O, et al, Kernel-based orthogonalprojections to latent structures (K-OPLS), Journal of Chemometrics,2007,21(7):376~384.
    [127] Westman E, Wahlund L O, Foy C, et al, Combining MRI and MRS todistinguish between Alzheimer's disease and healthy controls, Journal of Alzheimer'sDisease,2012,22(1):171~181.
    [128]陈敏,贺益君,王靖岱等,基于小波包分析和KOPLS的集成方法在颗粒粒径分布检测中的应用,化工学报,2010,61(6):1349~1356.
    [129] Mehdi J H, Heshmatollah E N, Akram K, Use of kernel orthogonal projection tolatent structure in modeling of retention indices of pesticides, QSAR CombinatorialScience,2009,28(11-12):1432~1441.
    [130] Bylesj M, Rantalainen M, and Jeremy K N, et al, K-OPLS package:Kernel-based orthogonal projections to latent structures for prediction andinterpretation in feature space, BMC Bioinformatics,2008,9:106.
    [131]杜树新,沈进昌,袁之报,三维荧光光谱的多维偏最小二乘建模方法,激光杂志,2012,33(1):36~37.
    [132] Bro R, Multiway calibration: multilinear PLS. Journal of Chemometrics,1996,10:47~61.
    [133]彭丹,徐可欣,宋扬,用多维校正法提高近红外牛奶成分校正模型稳健性的研究,光谱学与光谱分析,2009,29(4):913~917.
    [134]王韬,张录达,劳彩莲等,三维高光谱NPLS模型用于冬小麦估产的初步研究,光谱学与光谱分析,2006,26(10):1915~1917.
    [135]褚小立,田高友,袁洪福等,小波变换结合多维偏最小二乘方法用于近红外光谱定量分析,分析化学,2006,34(9):175~178.
    [136] Clow K E, Natural water fingerprinting and bioaerosol detection by multi-dimensional fluorescence spectroscopy, Doctor of Philosophy in Chemistry, TuftsUniversity,2006.
    [137]吴元清,基于三维荧光光谱的水体有机污染物浓度检测方法,[硕士学位论文],杭州,浙江大学,2011.
    [138]杨忠,任海清,江泽慧,PLS-DA法判别分析木材生物腐朽的研究,光谱学与光谱分析,2008,28(4):793~796.
    [139] Hall G J, Clow K E, Kenny J E, Estuarial fingerprinting throughmultidimensional fluorescence and multivariate analysis, Environmental Science andTechnollgy,2005,39(19),7560~7567.
    [140] Trevisan M G, Poppi R J, Determination of doxorubicin in human plasma byexcitation-emission matrix fluorescence and multi-way analysis, Anaytical ChimicaActa,493(1):69~81.
    [141] Divya O, Mishra A K, Chemometric study of excitation-emission matrixfluorescence data: quantitative analysis of petrol-kerosene mixtures, AppliedSpectroscopy,2008,62(7):753~758.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700