用户名: 密码: 验证码:
斑马鱼Slitl2基因的克隆,表达及初步功能研究和斑马鱼Dec1,Dec2基因对心脏发育影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
(1)
     神经和血管的发生通常在一个平行网络中进行,这就表明两者的形成共用一些类似的信号传导靶基因。我们克隆了斑马鱼的新基因Slit-like 2(Slitl2),该基因可能参与斑马鱼中枢神经和血管的发生。通过整胚原位杂交手段,我们发现斑马鱼Slitl2基因在胚胎中枢神经系统诸如脑,脊椎,中线等结构中表达,这与已经报道的斑马鱼Slit2,Slit3在胚胎阶段的表达谱很相似。同时,在斑马鱼的血管发生中也发现了Slitl2基因的表达。这与人类Slitl2(vasorin)基因的表达谱类似。斑马鱼Slitl2和人类Slitl2(vasorin)基因,以及小鼠Slitl2的同源度分别为41%,与斑马鱼Danio rerio Slit2,Slit3的同源度分别为35%和33%。对斑马鱼Slitl2基因的功能域分析发现,其具有cripto growth factor结构域,extracellular matrixprotein Slit结构域和信号肽位置。这表明斑马鱼Slitl2可能是一个分泌性细胞表面蛋白,在中枢神经轴向生长和血管发生等方面起到重要作用。我们进一步构建了Slitl2的siRNA表达载体和pcDNA3过表达载体,显微注射到斑马鱼胚胎中,对Slitl2基因的表达下调和过度表达实验发现,该基因的不正常表达均会造成胚胎早期致死,以及体轴发育畸形,心血管发育畸形。所以斑马鱼Slitl2可能在胚胎早期中枢神经和血管的发生中起重要作用。
     (2)
     Dec基因是bHLH(basic helix-loop-helix)class B转录因子的一种,分为两个亚型,Decl/Stral3/Sharp2和Dec2/Sharp1。Dec基因在细胞增殖,分化和生物钟调控的机制已经被广泛研究,但是这两个基因在胚胎发育过程中的作用还没有被阐明。我们克隆了斑马鱼Dec2基因,序列分析表明,该基因和我们已经克隆的斑马鱼Dec1基因同源度很高,推测它们有相关的功能,同时Dec1和Dec2基因在C末端结构域有所不同,提示两者的生物学作用可能不仅是冗余。整胚原位杂交显示Dec2在斑马鱼胚胎早期发育中,在松果体,眼后连合神经束,脊索,体节,前肾管,肠,鳔,总主静脉,以及心脏中有表达。Dec2的表达谱和Dec1的有部分重叠,但也各不相同。Dec2的早期表达比Dec1的弱。两者的亚细胞定位也各不相同,Dec1主要定位在细胞核,而Dec2定位在细胞质。通过在斑马鱼胚胎中注射Dec1特异的吗啉修饰反义寡聚核苷酸抑制Dec1基因的表达,并用心脏特异的标记基因原位杂交,结果显示斑马鱼胚胎心脏产生畸形,心房扩大。注射过表达Dec1质粒,造成斑马鱼胚胎心脏产生心房、心室左右轴改变的畸形症状。而抑制Dec2表达,斑马鱼胚胎心脏产生房室左右轴改变的畸形症状。过量表达Dec2基因,斑马鱼心脏产生心房扩大的畸形。定量PCR和Dec探针原位杂交显示,Dec1,Dec2基因对于斑马鱼胚胎早期心脏发育具有相互抑制的调控作用。所以,Dec1和Dec2作为同一基因家族的成员,可能通过相反的作用来调控斑马鱼心脏的发生,两者表达水平的动态平衡参与调控斑马鱼心脏的房室分化和左右轴向规划,并且Dec1的作用比Dec2的作用更为主导和重要。
(1)Nervous and vascular systems grow as parallel networks, indicating common cues in distal targets. We have identified a novel zebrafish gene Slit-like 2 (Slitl2) that might involve in zebrafish central neural and vascular morphogenesis. Whole-mount in situ hybridization of zebrafish embryo detected distinct signals of Slitl2 transcripts in zebrafish midline structure of central nervous system similar to that of Slits. Strong expression is also observed in zebrafish vasculature. Zebrafish Slitl2 shares amino acid sequence identity of 41% with Homo sapiens Slitl2 (vasorin) and Mus musculus Slitl2, and 35%, 33% with Danio rerio Slit3, Slit2. Analysis of zebrafish Slitl2 cripto growth factor domain, extracellular matrix protein Slit domain, and putative signal peptide confirms that as a secreted and cell-surface protein Slitl2 may be essential in axon guidance, vessel development, and axis patterning. Micro-injection of either Slitl2 siRNA vector or pcDNA3-Slitl2 cause lethal embryos, malformations in central neural midline and cardiovascular system, which implies that knock-down and over-expression of Slitl2 will disturb the normal formation of zebrafish central neural and cardiovascular system, as well as axial patterning. These results provide evidence that Slitl2 may play important roles in zebrafish central nervous system and vascular morphogenesis.
     (2)Dec1 and Dec2 have been investigated in cellular poliferation, differentiation and circadian regulation, however, the developmental roles of the two genes in embryogenesis are not clarified. We have cloned the zebrafish Dec2 gene that might involve in zebrafish heart morphogenesis, together with zebrafish Dec1. Sequence analysis shows that the two genes are evolutionally conserved and may have related functions. Whole-mount in situ hybridization reveals that Dec2 expresses dynamicly in central neural system, early somite and cardiovascular system, partially overlap, but distinct from that of zebrafish Dec1, and Dec2 expression is much weaker than that of Dec1 in early zebrafish embryogensis. The two genes have mutual exclusive intracellular localiztion with Dec1 in the nucleus and Dec2 presents predominantly in the cytoplasm. Down regulation of Dec1 results in zebrafish cardiac atrium expansion, while excess Dec1 causes disturbance in heart asymmetry patterning. Dec2 deficient embryos fail to undergo proper heart looping, and Dec2 over-expressed embryos show enlarged cardiac atrium. Quantitative PCR and whole mount in situ hybridization confirmed that Dec1 and Dec2 reciprocally cooperate to maintain the equilibrium in normal cardiogenesis, with Dec1 as a dominant factor. Our findings also provided an example of a pair of highly homologous genes regulate embryonic development in a reciprocal fashion.
引文
[1] Park, Kye Won, Crouse, et al., The axonal attractant Netrin-1 is an angiogenic factor, Proceedings of the National Academy of Sciences of the United States of America, 101(46) 2004,16210-16216.
    [2] K. Brose, K.S. Bland, K.H. Wang, et al., Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance, Cell 96 (1999)795-806.
    [3] J.M. Rothberg, J.R. Jacob, C.S. Goodman, et al., Slit: an extracellular protein necessary for development of midline glia and commissural axon pathways contains both EGF and LRR domains, Genes and Dev. 4 (1990) 2169-2187.
    [4] Akira Itoh, Tomoyuki Miyabayashi, Mitsuharu Ohno, et al., Cloning and expressions of three mammalian homologues of Drosophila slit suggest possible roles for Slit in the formation and maintenance of the nervous system, Mol. Brain Res. 62(1998)175-186.
    [5] W. Yuan, L. Zhou, J.H. Chen, et al., The mouse SLIT family: secreted ligands for ROBO expressed in patterns that suggest a role in morphogenesis and axon guidance,Dev. Biol. 212 (1999) 290-306.
    [6] Sang-Yeob Yeo, Toshio Miyashita, Cornelia Fricke, et al., Involvement of Islet-2 in the Slit signaling for axonal branching and defasciculation of the sensory neurons in embryonic zebrafish, Mech. Dev. 121 (2004) 315-324.
    [7] J.M. Rothberg, S. Artavanis-Tsakonas, Modularity of the Slit protein. Characterization of a conserved carboxyterminal sequence in secreted proteins and a motif implicated in extracellular protein interactions, J. Mol. Biol. 227 (1992)367-370.
    [8] T. Kidd, K.S. Bland, C.S. Goodman, Slit is the midline repellent for the robo receptor in Drosophila, Cell 96 (1999) 785-794.
    [9] Sang-Yeob Yeo, Melissa, Little, ToshiyaYamada, et al., Overexpression of a Slit homologue impairs convergent extension of the mesoderm and causes cyclopia in embryonic zebrafish, Dev. Biol. 230 (2001) 1-17.
    [10] Miyashita, Toshio, Sang-Yeob Yeo, Hirate, Yoshikazu, PlexinA4 is necessary as a downstream target of Islet2 to mediate Slit signaling for promotion of sensory axon branching. Development (Cambridge), 131 (15) (2004) 3705-3716.
    [11] H.S. Li, J.H. Chen, W. Wu, et al., Vertebrate slit, a secreted ligand for the transmembrane protein roundabout, is a repellent for olfactory bulb axons, Cell 96 (1999) 807-818.
    [12] Park, KyeWon, Morrison, Clayton M., Sorensen, Lise K., et al., Robo4 is a vascular-specific receptor that inhibits endothelial migration. Dev. Biol. 261(1) (2003)251-268.
    [13] Bedell, M. Victoria, Sang-YeobYeo, KyeWonPark, et al., Roundabout4 is essential for angiogenesis in vivo, Proc. Natl. Acad. Sci. USA, 102 (18) 2005.6373-6379.
    [14] Agrotis, Alex, Kalinina, Natalia, Bobik, Alex, et al., Transforming growth factor-b, cell signaling and cardiovascular gisorders. Curr. Vasc. Pharmacol. 3 (1)(2005) 55-62.
    [15] Sinha, Sanjay, Hoofnagle, H. Mark, Kingston, et al., Transforming growth factor-b1 signaling contributes to development of smooth muscle cells from embryonic stem cells, Am. J. Physiol. Cell Physiol. 56 (6) (2004) 1560-1568.
    [16] Yuichi Ikeda, Yasushi Imai, Hidetoshi Kumagai, et al., Vasorin, a transforming growth factor-binding protein expressed in vascular smooth muscle cells, modulates the arterial response to injury in vivo. Proc. Natl. Acad. Sci. USA 101 (29) (2004)10732-10737.
    [17] M. Westerfield, The Zebrafish Book, Eugene Press, 1995.
    [18] C.B. Kimmel, W.W. Ballard, S.R. Kimmel, et al., Stages of embryonic development of the zebrafish, Dev. Dyn. 203 (1995) 253-310.
    [19] H.D. Song, X.Y. Wu, X.J. Sun, et al., Gene Expression Profiling in the Zebrafish Kidney Marrow Tissue, Unpublished
    [20] Jannick Dyrl0v Bendtsen, Henrik Nielsen, Gunnar von Heijne, et al., Improved prediction of signal peptides: SignalP 3.0, J. Mol. Biol. 340 (2004) 783-795.
    [21] Dongwang Wei, Jihua Yao, Xueyan Yang, et al., Molecular cloning and expression of two closely related GTP-binding proteins from zebrafish. DNA sequence, DNA Seq. 15 (4) (2004) 246-250.
    [22] N. Richard, Bamford, Erich Roessler, D. Rebecca, Burdine, et al.,Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left-right laterality defects, Nature 26 (3) (2000) 365-369.
    [23] Minchiotti, Gabriella, Parisi, et al., Role of the EGF-CFC gene cripto in cell differentiation and embryo development, Gene. 287 (1/2) (2002) 33-38.
    [24] A.V. Kajava, Structural diversity of leucine-rich repeat proteins, J. Mol. Biol. 277 (1998) 519-527. L. Chen et al. / Biochemical and Biophysical Research Communications 336 (2005) 364-371 371
    [25] Fire A ,Xu S ,Montgomery MK,et al. 1998. Potent and specific genetic interference by double - stranded RNA in Caenorhabditis elegans. Nature ,391(6669) :806-811
    [26] Nykanen A ,Haley B ,Zamore PD. 2001,. ATP requirements and small interference RNA structure in the RNA interference pathway. Cell ,107 (3) :309-321
    [27] Svoboda, P Stein, H Hayashi, and RM Schultz 2000,Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference, Development 127: 4147-4156.
    [28] Carthew R W. 2001, Gene silencing by double stranded RNA. Curr Opin Cell Biol ,13(2) :244-248
    [1] M. Shen, T. Kawamoto, W. Yan, K. Nakamasu, M. Tamagami, Y. Koyano, M.Noshiro, and Y. Kato, Molecular characterization of the novel basic helix-loop-helix protein DEC1 expressed in differentiated human embryo chondrocytes. Biochemical and Biophysical Research Communications 236(1997) 294-298.
    [2] K. Fujimoto, M. Shen, M. Noshiro, K. Matsubara, S. Shingu, K. Honda, E.Yoshida, K. Suardita, Y. Matsuda, and Y. Kato, Molecular cloning and characterization of DEC2, a new member of basic helix-loop-helix proteins. Biochemical and Biophysical Research Communications 280 (2001) 164-171.
    [3] M.J. Rossner, J. Dorr, P. Gass, M.H. Schwab, and K.A. Nave, SHARPs: mammalian enhancer-of-split- and hairy-related proteins coupled to neuronal stimulation. Molecular and Cellular Neuroscience 10 (1997) 460-475.
    [4] A.V. Kukekova, GD. Aguirre, and GM. Acland, Cloning and characterization of canine SHARP1 and its evaluation as a positional candidate for canine early retinal degeneration (erd). Gene 312 (2003) 335-343.
    [5] M. Boudjelal, R. Taneja, S. Matsubara, P. Bouillet, P. Dolle(?), and P. Chambon,Overexpression of Stral3, a novel retinoic acid-inducible gene of the basic helix-loop-helix family, inhibits mesodermal and promotes neuronal differentiation of P19 cells. Genes and Development 11 (1997) 2052-2065.
    [6] J. Yao, L. Wang, L. Chen, S. Zhang, Q. Zhao, W. Jia, and J. Xue, Cloning and developmental expression of the DEC1 ortholog gene in zebrafish. Gene Expression Patterns 6 (2006) 919-927.
    [7] K. Yamada, and K. Miyamoto, Basic helix-loop-helix transcription factors, bhlhb2 and bhlhb3; their gene expressions are regulated by multiple extracellular stimuli. Frontiers in Bioscience 10 (2005) 3151-3171.
    [8] Y. Li, M. Xie, X. Song, S. Gragen, K. Sachdeva, Y. Wan, and B. Yan, DEC1 negatively regulates the expression of DEC2 through binding to the E-box in the proximal promoter. The Journal of Biological Chemistry 19 (2003)16899-16907.
    [9] S. Azmi, A. Ozog, and R. Taneja, Sharp-1/DEC2 inhibits skeletal muscle differentiation through repression of myogenic transcription factors. The Journal of Biological Chemistry 279 (2004) 52643-52652.
    [10] B.S. Pierre, M. Cooper, Z. Jiang, E. Zacksenhaus, and S.E. Egan, Dynamic regulation of the Stral3/Sharp/Dec bHLH repressors in mammary epithelium.Development Dynamic 230 (2004) 124-130.
    [11] S. Azmi, H. Sun, A. Ozog, and R. Taneja, mSharp-1/DEC2, a basic helix-loop-helix protein functions as a transcriptional repressor of E box activity and Stral3 expression. The Journal of Biological Chemistry 278 (2003)20098-20109.
    [12] S. Azmi, and R. Taneja, Embryonic expression of mSharp-1/ mDEC2, which encodes a basic helix-loop-helix transcription factor. Mechanisms of Development 114 (2002) 181-185.
    [13] H. Sun, B. Lu, R. Li, R.A. Flavel, and R. Taneja, Defective T cell activation and autoimmune disorder in Stral3-deficient mice. Nature Immunology 2 (2001)1040-1047.
    [14] T.D. Littlewood, and GI. Evan, Helix-Loop-Helix Transcription Factors. Oxford University Press (1998) 1-49.
    [15] S.R. Dawson, D.L. Turner, H. Weintraub, and S.M. Parkhurst, Specificity for the hairy/enhancer of split basic helix-loop-helix (bHLH) proteins maps outside the bHLH domain and suggests two separable modes of transcriptional repression. Molecular and Cellular Biology 15 (1995) 6923-6931.
    [16] E. Berdougo, H. Coleman, D.H. Lee, D.Y.R. Stainier, and D. Yelon, Mutation of weak atrium/atrial myosin heavy chain disrupts atrial function and influences ventricular morphogenesis in zebrafish. Development 130 (2003) 6121-6130.
    [17] Katti Mukund V, Sami-Subbu R, Ranjekar Prabhakar K, and V.S. Guptu, Amino acid repeat patterns in protein sequences:their diversity and structural-functional implications. Protein Science 9 (2000) 6.
    [18] J.H. Meijer, and W.J. Rietveld, Neurophysiology of the suprachiasmatic circadian pacemaker in rodents. Physiological Reviews 69 (1989) 671-708.
    [19] S. Honma, T. Kawamoto, Y. Takagi, K. Fujimoto, F. Sato, M. Noshiro, Y. Kato,and K.-i. Honma, Decl and Dec2 are regulators of the mammalian molecular clock. Nature 419 (2002) 841-844.
    [20] M. Westerfield, (Ed.), The Zebrafish Book, Eugene Press, 1995.
    [21] T. Abe, T. Ishikawa, T. Masuda, K. Mizusawa, T. Tsukamoto, H. Mitani, T.Yanagisawa, T. Todo, and M. Ligo, Molecular analysis of Decl and Dec2 in the peripheral circadian clock of zebrafish photosensitive cells. Biochemical and Biophysical Research Communications 351 (2006) 1072-1078.
    [22] H. Turley, C.C. Wykoff, S. Troup, P.H. Watson, K.C. Gatter, and A.L. Harris, The hypoxia-regulated transcription factor DEC1 (Stral3, SHARP-2) and its expression in human tissues and tumors. Journal of Pathology 203 (2004)808-814.
    [23] S. Chocron, M.C. Verhoeven, F. Rentzsch, M. Hammerschmidt, and J. Bakkers,Zebrafish Bmp4 regulates left-right asymmetry at two distinct developmental time points. Developmental Biology 305 (2007) 577-588.
    [24] L. Saude, R. Lourenco, A. Goncalves, and I. Palmeirim, terra is a left-right asymmetry gene required for left-right synchronization of the segmentation clock. Nature Cell Biology 7 (2005) 918-920.
    [25] K. Echeverri, and A.C. Oates, Coordination of symmetric cyclic gene expression during somitogenesis by Suppressor of Hairless involves regulation of retinoic acid catabolism. Developmental Biology 301 (2007) 388-403.
    [26] Y. Kawakami, A. Raya, R.M. Raya, C. Rodriguez-Esteban, and J.C.I. Belmonte,Retinoic acid signalling links left-right asymmetric patterning and bilaterally symmetric somitogenesis in the zebrafish embryo. Nature 435 (2005) 165-171.
    Abe,T.,et al.,2006.Molecular analysis of Dec1 and Dec2 in the peripheral circadian clock of zebrafish photosensitive cells.Biochemical and Biophysical Research Communications.351,1072-1078.
    Antonevich,T.,Taneja,R.,1999.Assignment of the human Stra13 gene(STRA13) to chromosome 3p26 by in situ hybridization..Cytogenetics and Cell Genetics.85,254-255.
    Azmi,S.,et al.,2004.Sharp-1/DEC2 inhibits skeletal muscle differentiation through repression of myogenic transcription factors.The Journal of Biological Chemistry.279,52643-52652.
    Azmi,S.,et al.,2003.mSharp-1/DEC2,a basic helix-loop-helix protein functions as a transcriptional repressor of E box activity and Stra13 expression.The Journal of Biological Chemistry.278,20098-20109.
    Becker-Weimann,S.,et al.,The rhythem of life:molecular mechanism of circadian clocks,Modeling feedback loops in the mammalian circadian core oscillator.Proceedings(poster or lecture-abstract) of the annual spring meeting.German Society for Biochemistry and Molecular Biology(GBM),Mosbach(Baden),Germany,2003,pp.2.
    Bei,H.,1994.The effects of Retinoic Acid on zebrafish embryo.Journal of An Hui University National Science Edition.4,86-95.
    Boudjelal,M.,et al.,1997.Overexpression of Stra13,.a novel retinoic acid-inducible gene of the basic helix-loop-helix family,inhibits mesodermal and promotes neuronal differentiation of P19 cells.Genes and Development.11,2052-2065.
    Butler, et al., 2004. Decl and Dec2 expression is disrupted in the suprachiasmatic nuclei of clock mutant mice.. Journal of Biological Rhythms. 19,126-135.
    Chakrabarti, J., et al., 2004. The transcription factor DEC1 (stra13, SHARP2) is associated with the hypoxic response and high tumour grade in human breast cancers. British Journal of Cancer. 91,954-959.
    Dahr, M., Taneja, R., 2001. Cross-regulatory interaction between Stral3 and USF results in functional antagonism. Oncogene. 20,4750-4756.
    Dawson, S. R., et al., 1995. Specificity for the hairy/enhancer of split basic helix-loop-helix (bHLH) proteins maps outside the bHLH domain and suggests two separable modes of transcriptional repression. Molecular and Cellular Biology. 15, 6923-6931.
    Dear, T. N., et al., 1997. Identification of interaction partners for the basic-helix-loop-helix protein E47. Oncogene. 14, 891-898. Dekens, M. P., et al., 2003. Light Regulates the Cell Cycle in Zebrafish. Current Biology. 13, 2051-2057.
    Engel, L., et al., 2005. The photoperiod entrains the molecular clock of the rat pineal. European Journal of Neuroscience 21,2297-2303.
    Fujimoto, K., et al., 2007. Transcriptional repression by the basic helix-loop-helix protein Dec2: multiple mechanisms through E-box elements. International Journal of Molecular Medicine. 19,925-957.
    Fujimoto, K., et al., 2001. Molecular cloning and characterization of DEC2, a new member of basic helix-loop-helix proteins. Biochemical and Biophysical Research Communications. 280,164-171.
    Gre(?)chez-Cassiau, A., et al., 2004. The Transcriptional Repressor STRA13 Regulates a Subset of Peripheral Circadian Outputs. The Journal of Biological Chemistry.279,1141-1151.
    Hamaguchi, H., et al., 2004. Expression of Dec2 - a basic helix-loop-helix transcription factor- gene is regulated by a molecular clock system. Biochemical Journal 382,43-50.
    Hirano, S., et al., 2004. The rat enhancer of split- and hairy-related protein-2 gene: hepatic expression, genomic structure, and promoter analysis. Archives of Biochemistry and Biophysics. 422,81-90.
    Honma, S., et al., 2002. Decl and Dec2 are regulators of the mammalian molecular clock. Nature. 419, 841-844.
    Inuzuka, H., et al., 2002. Differential Regulation of Immediate Early Gene Expression in Preadipocyte Cells through Multiple Signaling Pathways Biochemical and Biophysical Research Communications. 265, 664-668.
    Ishida, H., et al., 2000. Insulin is a dominant supressor for sterol 12ahydroxylase P450 (CYP8B) expression in rat liver: possible role of insulin for circadian rhythm of CYP8B.. The Journal of Biochemistry. 127,57-64.
    Ivanova, A. V., et al., 2001. Regulation of STRA13 by the von Hippel-Lindau tumor supressor protein, hypoxia, and the UBC9/ubiquitin proteasome degradation pathway.. The Journal of Biological Chemistry. 276,15306-15315.
    Ivanova, A. V., et al., 2005. Association, mutual stabilization, and transcriptional activity of the STRA13 and MSP58 proteins. Cellular and Molecular Life Sciences. 62,471-485.
    Ivanova, A. V., et al., 2004. STRA13 interacts with STAT3 and modulates transcription of STAT3-dependent targets. Journal of Molecular Biology. 340,641-653.
    Kabos, P., et al., 2002. Neuronal injury affects expression of helix-looprhelix transcription factors. Neuroreport 13, 2385-2388.
    Kasahara, T, et al., 2000. Rod type transducin a subunit mediates a photo transduction pathway in the chicken pineal gland. Journal of Neurochemistry.75,217-224.
    Katti Mukund V, et al., 2000. Amino acid repeat patterns in protein sequences:their diversity and structural-functional implications. Protein Science. 9, 6.
    Kawamoto, T., et al., 2004. A novel autofeedback loop of Decl transcription involved in circadian rhythm regulation. . Biochemical & Biophysical Research Communications. 313,117-125.
    Kharlap, M. S., et al., 2006. Atrial appendage transcriptional profile in patients with atrial fibrillation with structural heart diseases. Annals of the New York Academy of Sciences. 1091,205-222.
    Kondo, J., et al., 2006. 57Arg in the bHLH transcription factor DEC2 is essential for the suppression of CLOCK/BMAL2-mediated transactivation. International Journal of Molecular Medicine. 17,1053-1059.
    Kukekova, A. V., et al., 2003. Cloning and characterization of canine SHARP1 and its evaluation as a positional candidate for canine early retinal degeneration (erd).Gene 312,335-343.
    Leigh, Z., et al., 2002. DEC1 is a downstream target of TGF-B with sequence-specific transcnptional repressor activities. . Proceedings of the National Academy of Sciences of the United States of America. 99, 2848-2854.
    Li, Y., et al., 2004. DNA binding but not interaction with Bmall is responsible for DECl-mediated transcription regulation of the circadian gene mPerl. Biochemical Journal. 382, 895-904.
    Li, Y., et al., 2003. DEC1 negatively regulates the expression of DEC2 through binding to the E-box in the proximal promoter. The Journal of Biological Chemistry. 19,16899-16907.
    Li, Y., et al., 2006. The expression of antiapoptotic protein survivin is transcriptionally upregulated by DEC1 primarily through multiple spl binding sites in the proximal promoter. Oncogene. 25,3296-3306.
    Lifeng, Z., et al., 2007. The effect of retinoic acid on the cardiac ventricle2atria diversification in zebrafish Journal of Fudan University (Medicine Science). 34, 88-92.
    Lin, D. Y, Shih, H. M., 2002. Essential role of the 58-kDa microspherule protein in the modulation of daxx-dependent transcnptional repression as revealed by nucleolar sequestration. The Journal of Biological Chemistry. 277,25446-25456.
    MacLean, H. E., Kronenberg, H. M., 2004. Expression of Stral3 during mouse endochondral bone development. Gene Expression Patterns. 4, 633-637.
    Majercak, J., et al., 2004. Splicing of the period gene 3'-terminal intron is regulated by light, circadian clock factors, and phospholipase C. Molecular and Cellular Biology. 24,3359-3372.
    Meijer, J. H., Rietveld, W. J., 1989. Neurophysiology of the suprachiasmatic circadian pacemaker in rodents. Physiological Reviews. 69, 671-708.
    Miyazaki, K., et al., 2002. Identification of functional hypoxia response elements in the promoter region of the DECl and DEC2 genes.. The Journal of biological chemistry. 277,47014-47022.
    Noshiro, M., et al., 2005. Tissue-specific disruption of rhythmic expression of Dec1 and Dec2 in clock mutant mice. Journal of Biological Rhythms. 20,404-422.
    Noshiro, M., et al., 2004. Rhythmic expression of DECl and DEC2 in peripheral tissues: DEC2 is a potent suppressor for hepatic cytochrome P450s opposing DBP. Genes Cells. 9,317-330.
    Noshiro, M., et al., 2007. Multiple mechanisms regulate circadian expression of the gene for cholesterol 7alpha-hydroxylase (Cyp7a), a key enzyme in hepatic bile acid biosynthesis. Journal of Biological Rhythms. 22, 299-311.
    Pierre, B. S., et al., 2004. Dynamic regulation of the Stral3/Sharp/Dec bHLH repressors in mammary epithelium. Development Dynamic. 230,124-130.
    Pierre, B. S., et al., 2002. Stral3 Homodimers Repress Transcription through Class B E-box Elements. Thc Journal of Biological Chemistry. 277,46544-46551.
    Rossner, M. J,, et al., 1997. SHARPs: mammalian enhancer-of-split- and hairy-related proteins coupled to neuronal stimulation. Molecular and Cellular Neuroscience. 10,460-475.
    Sato, F., et al., 2008. Basic-helix-loop-helix (bHLH) transcription factor DEC2 negatively regulates vascular endothelial growth factor expression. Genes Cells. 13,131-175.
    Sato, E, et al., 2004. Functional analysis of the basic helix-loop-helix transcription factor DECl in circadian regulation. European journal of biochemistry. 271,4409-4419.
    Seimiya, M., et al., 2002. Clast5/ Stral3 is a negative regulator of B lymphocyte activation. Biochem. Biophys. Res. Comm. 292,121-127.
    Shearman, L., et al., 2000. Interacting molecular loops in the mammalian circadian clock. Science. 288,1013-1019.
    Shen, M., et al., 2001. Induction of basic helix-loop-helix protein DEC1 (BHLHB2)/Stral3/Sharp2 in response to the cyclic adenosine monophosphate pathway. European Journal of Cell Biology. 80,329-334.
    Shen, M., et al., 1997. Molecular characterization of the novel basic helix-loop-helix protein DEC1 expressed in differentiated human embryo chondrocytes. Biochemical and Biophysical Research Communications. 236,294-298.
    Silver, R., et al., 1996. A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature. 382,810-813.
    Starkey, S. J., 1996. Melatonin and 5-hydroxytryptamine phase-advance the rat circadian clock by activation of nitric oxide synthesis. Neuroscience Letters.211,199-202.
    Sun, H., et al., 2001. Defective T cell activation and autoimmune disorder in Stra13-deficient mice. Nature Immunology. 2,1040-1047.
    Sun, H., et al., 1999. Assignment of stral3 to the sub-telomeric region of mouse chromosome 6 by in situ hybridization. . Cytogenetics and Cell Genetics. 87,211-212.
    Sun, H., Taneja, R., 2000. Stra13 expression is associated with growth arrest and repress transcription through histone deacetylase (HDAC)-dependent and HDAC-independent mechanisms. Proceedings of the National Academy of Sciences. 97,4058-4063.
    Yamada, K., et al., 2004. Gene expression of basic helix-loop-helix transcription factor, SHARP-2, is regulated by gonadotropins in the rat ovary and MA-10 cells. Biology of Reproduction. 70,76-82.
    Yamada, K., et al., 2003. Insulin induces the expression of the SHARP-2/Stral3/DECl gene via a phosphoinositide 3-kinase pathway. The Journal of Biological Chemistry. 278,30719-30724.
    Yamada, K., Miyamoto, K., 2005. Basic helix-loop-helix transcription factors, bhlhb2 and bhlhb3; their gene expressions are regulated by multiple extracellular stimuli. Frontiers in Bioscience. 10,3151-3171.
    Yamada, K., et al., 2005. SHARP-2/Stral3/DECl as a potential repressor of phosphoenolpyruvate carboxykinase gene expression. Febs Letters. 579,1509-1515.
    Yang, L, et al., 2005. Tumor suppressive role of a 2.4 Mb 9q33-q34 critical region and DECl in esophageal squamous cell carcinoma.. Oncogene. 24,697-706.
    Yao, J., et al., 2006. Cloning and developmental expression of the DECl ortholog gene in zebrafish. Gene Expression Patterns. 6,919-927.
    Yunokawa, M., et al., 2007. Differential regulation of DEC2 among hypoxia-inducible genes in endometrial carcinomas. Oncology Reports. 17, 871-878.
    Zhang, L., Li, Q. Q., 2007. Embryo-chondrocyte expressed gene 1, down regulating hypoxia-inducible factor lalpha, is another marker of lung tumor hypoxia.. Acta Pharmacologica Sinica. 28,549-607.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700