用户名: 密码: 验证码:
时域多分辨方法研究及其在电磁散射中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着隐身技术、宽带和超宽带雷达技术的迅速发展,迫切需要开展雷达目标宽频带电磁散射特性的理论分析与研究。时域数值方法通过简单的时频变换就能得到目标宽频带范围内的信息,从而实现对物理量和物理现象更深刻、更直观的理解,受到了广泛关注。时域多分辨(Multiresolution Time-Domain, MRTD)方法作为一种新型的全波时域数值算法,具有良好的线性色散特性,可以在保持相对较小的相差情况下采用更低的空间采样率。其空间采样率在理论上可以达到奈奎斯特(Nyquist)采样极限,即每最短波长取两个采样点,因而可以极大地节省计算机资源,缩短计算时间,提高计算效率。尤其对于电大尺寸目标,MRTD方法的计算优势更为明显。
     本文主要研究工作与贡献如下:
     1.对基于Daubechies尺度函数的MRTD (Daubechies-MRTD)方法和基于双正交Cohen-Daubechies-Feauveau(CDF)尺度函数和小波函数的MRTD(CDF-MRTD)方法进行理论研究,详细推导了相应的电磁场计算的迭代公式。
     2.详细分析了基于尺度函数的MRTD(Scaling MRTD, S-MRTD)方法的时间稳定性和空间数值色散特性。分析结果表明,MRTD方法的数值色散特性明显优于传统的时域有限差分(Finite-Differnce Time-Domain, FDTD)方法,但是MRTD方法的时间稳定性条件(Courant条件)要比传统FDTD方法苛刻,这说明MRTD方法是用时间换取空间。
     3.研究了针对S-MRTD方法应用的连接边界条件。以Daubechies-S-MRTD方法为例,对二维TM极化和三维条件下的连接边界条件进行了详细地推导,首次给出了S-MRTD方法通用的完整的二维TM极化和三维条件下连接边界条件的“修正的迭代公式”。
     4.研究了MRTD方法在电磁散射中的应用。包括各向异性完全匹配层(Anisotropic PerfectlyMatched Layer, APML)吸收边界条件、时谐场和瞬态场情况下的近场—远场外推方法等。进行了Daubechies-S-MRTD和CDF-S-MRTD方法电磁散射计算的数值试验。数值结果表明,本文研究的连接边界条件和APML吸收边界条件是有效的,而且这两种方法的计算效率均比传统FDTD方法更高。
     5.根据Daubechies-S-MRTD方法的多区域分解技术,将Daubechies-S-MRTD方法与针对完全导电目标(Perfectly Electric Conductor, PEC)的局部共形FDTD(Conformal FDTD, CFDTD)算法结合,提出了一种针对PEC目标的基于Daubechies尺度函数的共形MRTD(Conformal MRTD,CMRTD)方法。PEC目标电磁散射计算的数值结果表明该方法能够有效降低Yee氏蛙跳式网格划分的台阶误差,明显提高计算的精度。该CMRTD方法也适用于CDF-S-MRTD方法。
     6.基于局部共形技术和有效介电常数(Effective Dielectric Constant, EDC)概念,先后提出和研究了两种针对介质目标的基于Daubechies尺度函数的CMRTD方法,即尺度函数积分CMRTD(Scaling Functions Integral CMRTD, SFI-CMRTD)方法和多区域CMRTD(Multi-regionCMRTD, MR-CMRTD)方法。介质目标电磁散射计算的数值结果表明这两种方法均能有效解决麦克斯韦旋度方程在介质参数突变面处失效的问题以及Yee氏蛙跳式网格划分造成的台阶误差问题,可以明显提高计算精度。另外MR-CMRTD方法比SFI-CMRTD方法的计算效率更高,在分析电大尺寸介质目标时更具有优越性。
With the rapid development of stealth technology, wideband and ultra-wideband radar, thetheoretical analysis and research on wideband electromagnetic scattering characteristics of radar targetsare demanded urgently. By means of simple time-frequency transformation, the time-domain numericalmethods can obtain wideband information of targets and then achieve more profound and intuitionisticcomprehension about physical quantity and phenomenon, therefore have aroused great attention. As anew full-wave time-domain numerical method, the multiresolution time-domain (MRTD) scheme canapply lower sampling rate in space under the circumstance of remaining relatively less phase error dueto a good linear dispersion property. Its sampling rate can reach Nyquist sampling limit theoretically, i.e.two sampling points per shortest wavelength. So the MRTD scheme can hugely save computerresources, reduce computational time and then enhance computational efficiency. For electrically largetargets, especially, the MRTD scheme has more obvious advantage in computation.
     The main researches and contributions of the thesis are summarized as follows:
     1. The MRTD schemes based on Daubechies scaling functions (Daubechies-MRTD) andbiorthogonal Cohen-Daubechies-Feauveau scaling and wavelet functions (CDF-MRTD) are studiedtheoretically. The iterative equations of the electromagnetic fields are derived in detail.
     2. The time stability and the space numerical dispersion property of the MRTD only based onscaling functions (S-MRTD) are dedailed analyzed. Analysis results show that the numerical dispersionproperties of the MRTD schemes are obvious better than those of the conventional finite-differncetime-domain (FDTD) method. But the time stability condition, i.e. Courant condition, of MRTDscheme is more rigorous than that of the conventional FDTD method, which explains that the MRTDscheme trades time for space in computing.
     3. The connecting boundary condition aiming at the application of S-MRTD is studied. TakingDaubechies-S-MRTD as the example, the connecting boundary conditions under the two-dimensional(2D) TM polarized and three-demensional (3D) conditions are deduced in detail. And the complete“modified iterative equations” of the connecting boundary conditions under the2D TM polarized and3D conditions, which is general for all of the S-MRTD schems, are presented first.
     4. The application of the MRTD scheme to electromagnetic scattering is investigated, whichincludes the anisotropic perfectly matched layer (APML) absorbing boundary condition andnear-to-far-field extrapolation method under the circumstances of time-harmonic and transient field, etc.
     And the numerical tests of electromagnetic scattering computed by the Daubechies-S-MRTD andCDF-S-MRTD schemes are carried out. Numerical results show that the connecting boundary conditionand the APML absorbing boundary condition investigated in this thesis are effective, and thecomputational efficiency of the two schemes are better than that of the conventional FDTD method.
     5. According to the multi-region decomposition technology of Daubechies-S-MRTD, a conformalMRTD (CMRTD) scheme based on Daubechies scaling functions used to the perfectly electricconductor (PEC) targets is proposed by combining the Daubechies-S-MRTD scheme with the locallyconformal FDTD (CFDTD) algorithm used to PEC targets. The numerical results of theelectromagnetic scattering computation of PEC targets demonstrate that the proposed CMRTD schemecan effectively reduce the staircase error of Yee’s leapfrog meshing and improve the computationalaccuracy obviously. The proposed CMRTD scheme can also be used in the CDF-S-MRTD scheme.
     6. Based on locally conformal technology and the concept of effective dielectric constant (EDC),two CMRTD schemes based on Daubechies scaling functions used to dielectric targets, namely, thescaling functions integral CMRTD (SFI-CMRTD) and multi-region CMRTD (MR-CMRTD) scheme,are proposed and studied. The numerical results of the electromagnetic scattering computation ofdielectric targets show that both of the two schemes can solve the ineffectivity caused by thediscontinuous surface in dielectric case and the staircase error of Yee’s leapfrog meshing, and also canimprove computational accuracy obviously. Moreover, the MR-CMRTD scheme has bettercomputational efficiency than the SFI-CMRTD scheme, and has more advantage when analyzingelectrically large dielectric targets.
引文
[1]阮颖铮.雷达截面与隐身技术[M].北京:国防工业出版社,1998.
    [2]黄培康,殷红成,许小剑.雷达目标特性[M].北京:电子工业出版社,2005.
    [3]聂在平,方大纲.目标与环境电磁散射特性建模(基础篇)[M].北京:国防工业出版社,2009.
    [4]聂在平,方大纲.目标与环境电磁散射特性建模(应用篇)[M].北京:国防工业出版社,2009.
    [5]庄钊文,袁乃昌,莫锦军,刘少斌.军用目标雷达散射截面预估与测量[M].北京:科学出版社,2007.
    [6] Wiscombe W J. Improved Mie scattering algorithm [J]. Applied Optics,1980,19(9):1505-1509.
    [7] Suzuki H, Lee I S. Calculation of the Mie scattering field inside and outside a coated sphericalparticle [J]. International Journal of Physical Sciences,2008,3(1):38-41.
    [8] Du H. Mie-scattering calculation [J]. Applied Optics,2004,43(9):1951-1956.
    [9]王秉中.计算电磁学[M].北京:科学出版社,2003.
    [10]盛新庆.计算电磁学要论[M].北京:科学出版社,2004.
    [11]吕英华.计算电磁学的数值方法[M].北京:清华大学出版社,2006.
    [12] Harrington R F. Field Computation by Moment Method (2nd edition)[M]. New York: IEEE Press,1993.
    [13] Jin J M. The Finite Element Method in Electromagnetics [M]. New York: John Wiley&Sons,1993.
    [14]金建铭.电磁场有限元方法[M].西安:西安电子科技大学出版社,1997.
    [15] Taflove A, Hagness S C. Computational Electrodynamics—The Finite-Difference Time-DomainMethod (Third Edition)[M]. MA: Artech House,2005.
    [16] Sullivan D M. Electromagnetic Simulation Using the FDTD Method [M]. New York, MA: IEEEPress,2000.
    [17] Kunz K, Luebbers R. The Finite Difference Time Domain Method for Electromagnetics [M]. BocaRaton: CRC,1993.
    [18]葛德彪,闫玉波.电磁波时域有限差分方法[M].西安:西安电子科技大学出版社,2005.
    [19]高本庆.时域有限差分法[M].北京:国防工业出版社,1995.
    [20]余文华,苏涛, Mittra R,刘永峻.并行时域有限差分[M].北京:中国传媒大学出版社,2005.
    [21] Sarris C D. Adaptive Mesh Refinement for Time-Domain Numerical Electromagnetics [M]. SanRafael, CA: Morgan&Claypool,2007.
    [22] Chen Y, Cao Q, Mittra R. Multiresolution Time Domain Scheme for Electromagnetic Engineering[M]. NJ: Wiley,2005.
    [23] Bushyager N A, Tentzeris M M. MRTD (Multiresolution Time Domain) Method inElectromagnetics [M]. San Rafael, CA: Morgan&Claypool,2005.
    [24] Yee K S. Numerical solution of initial boundary value problems involving Maxwell's equations inisotropic media [J]. IEEE Transactions on Antennas and Propagation,1966, AP-14(3):302-307.
    [25] Krumpholz M, Katehi L P B. MRTD: new time-domain schemes based on multiresolution analysis[J]. IEEE Transactions on Microwave Theory and Techniques,1996,44(4):555-571.
    [26] Krumpholz M, Katehi L P B. New prospects for time domain analysis [J]. IEEE Microwave andGuided Wave Letters,1995,5(11):382-384.
    [27] Liu Q. The PSTD algorithm: a time-domain method requiring only two cells per wavelength [J].Microwave and Optical Technology Letters,1997,15(3):158-165.
    [28] Liu Q. PML and PSTD algorithm for arbitrary lossy anisotropic media [J]. IEEE Microwave andGuided Wave Letters,1999,9(2):48-50.
    [29] Namiki T. A new FDTD algorithm based on alternating-direction implicit method [J]. IEEETransactions on Microwave Theory and Techniques,1999,47(10):2003-2007.
    [30] Namiki T.3-D ADI-FDTD method-unconditionally stable time-domain algorithm for solving fullvector Maxwell's equations [J]. IEEE Transactions on Microwave Theory and Techniques,2000,48(10):1743-1748.
    [31]张玉.电磁场并行计算[M].西安:西安电子科技大学出版社,2006.
    [32]郭汉伟,梁甸农,刘培国,尹家贤.电磁场计算中FDTD与MRTD [J].国防科技大学学报,2001,23(5):84-88.
    [33]高本庆,刘波.电磁场时域数值技术新进展[J].北京理工大学学报,2002,22(4):401-406.
    [34] Taylor C D, Lam D H, Shumpert T H. EM pulse scattering in time varying inhomogeneousmedia [J]. IEEE Transactions on Antennas and Propagation,1969, AP-17(5):585-589.
    [35] Taflove A, Brodwin M E. Numerical solution of steady-state EM scattering problems using thetime-dependent Maxwell's equations [J]. IEEE Transactions on Microwave Theory and Techniques,1975, MTT-23:623-630.
    [36] Mur G. Absorbing boundary conditions for the finite-difference approximation of the time-domainelectromagnetic field equations [J]. IEEE Transactions on Electromagnetic Compatibility,1981,EMC-23(4):377-382.
    [37] Umashankar K, Taflove A. A novel method to analyze electromagnetic scattering of complexobjects [J]. IEEE Transactions on Electromagnetic Compatibility,1982, EMC-24(4):397-405.
    [38] Mei K K, Cangellaris A C, Angelakos D J. Conformal time domain finite difference method [J].Radio Science,1984,19(5):1145-1147.
    [39] Kasher J C, Yee K S. A numerical example of a two dimensional scattering problem using asubgrid [J]. Applied Computational Electromagnetic Society Journal and Nessletter,1987,2(2):75-102.
    [40] Britt C L. Solution of EM scattering problems using time domain techniques [J]. IEEE Antennasand Propagation Magazine,1989, AP-37(9):1181-1192.
    [41] Yee K S, Ingham D, Shlager K. Time-domain extrapolation to the far field based on FDTDcalculations [J]. IEEE Transactions on Antennas and Propagation,1991,39(3):410-413.
    [42] Luebbers R J, Kunz K S, Schneider M, Hunsberger F. A finite-difference time-domain near zone tofar zone transformation [J]. IEEE Transactions on Antennas and Propagation,1991,39(4):429-433.
    [43] Luebbers R, Ryan D, Beggs J. A two-dimensional time-domain near-zone to far-zonetransformation [J]. IEEE Transactions on Antennas and Propagation,1992,40(7):848-851.
    [44] Luebbers R J, Hunsberger F, Kunz K S, Standler R B, Schneider M. A frequency dependentfinite difference time domain formulation for dispersive materials [J]. IEEE Transactions onElectromagnetic Compatibility,1990, EMC-32(3):222-227.
    [45] Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves [J]. Journal ofComputational Physics,1994,114:185-200.
    [46] Berenger J P. Three-dimensional perfectly matched layer for the absorption of electromagneticwaves [J]. Journal of Computational Physics,1996,127:363-379.
    [47] Sacks Z S, Kingsland D M, Lee R, Lee J F. A perfectly matched anisotropic absorber for use as anabsorbing boundary condition [J]. IEEE Transactions on Antennas and Propagation,1995,43:1460-1463.
    [48] Gedney S D. An anisotropic perfectly matched layer-absorbing medium for the truncation ofFDTD lattices [J]. IEEE Transactions on Antennas and Propagation,1996,44(12):1630-1639.
    [49] Kaneda N, Houshmand B, Itoh T. FDTD analysis of dielectric resonators with curved surfaces [J].IEEE Transactions on Microwave Theory and Techniques,1997,45(9):1645-1649.
    [50] Dey S, Mittra R. A conformal finite-difference time-domain technique for modeling cylindricaldielectric resonators [J]. IEEE Transactions on Microwave Theory and Techniques,1999,47(9):1737-1739.
    [51] Tentzeris E M, Robertson R, Krumpholz M, Katehi L P B. Application of the PML absorber tothe MRTD technique [C]. IEEE AP-S Microwave Conference,1996:634-637.
    [52] Sullivan D S. An unsplit step3-D PML for use with the FDTD method [J]. IEEE Microwave andGuided Wave Letters,1997,7(7):184-186.
    [53] Sullivan D M. A simplified PML for use with the FDTD method [J]. IEEE Microwave and GuidedWave Letters,1996,6(2):97-99.
    [54] Fujii M, Hoefer W J R. A three-dimensional Haar-wavelet-based multiresolution analysis similarto the FDTD method-derivation and application [J]. IEEE Transactions on Microwave Theory andTechniques,1998,46(12):2463-2475.
    [55] Tentzeris E M, Robertson R L, Harvey J F, Katehi L P B. Stability and dispersion analysis ofBattle-Lemarie-based MRTD schemes [J]. IEEE Transactions on Microwave Theory and Techniques,1999,47(7):1004-1012.
    [56] Cheong Y W, Lee Y M, Ra K H, Kang J G, Shin C C. Wavelet-Galerkin scheme of time-dependentinhomogeneous electromagnetic problems [J]. IEEE Microwave and Guided Wave Letters,1999,9(8):297-299.
    [57] Fujii M, Hoefer W J R. Dispersion of time domain wavelet Galerkin method based on Daubechies’compactly supported scaling functions with three and four vanishing moments [J]. IEEE Microwaveand Guided Wave Letters,2000,10(4):125-127.
    [58] Fujii M, Hoefer W J R. Time-domain wavelet Galerkin modeling of two-dimensional electricallylarge dielectric waveguides [J]. IEEE Transactions on Microwave Theory and Techniques,2001,49(5):886-892.
    [59] Fujii M, Hoefer W J R. Application of biorthogonal interpolating wavelets to the Galerkin Schemeof time dependent Maxwell's equations [J]. IEEE Microwave and Wireless Components Letters,2001,11(1):22-24.
    [60] Grivet-Talocia S. On the accuracy of Haar-based multiresolution time-domain schemes [J]. IEEEMicrowave and Guided Wave Letters,2000,10(10):397-399.
    [61] Zhu X, Carin L. Multiresolution time-domain analysis of plane-wave scattering from generalthree-dimensional surface and subsurface dielectric targets [J]. IEEE Transactions on Antennas andPropagation,2001,49(11):1568-1578.
    [62] Dogaru T, Carin L. Multiresolution time-domain using CDF biorthogonal wavelets [J]. IEEETransactions on Microwave Theory and Techniques,2001,49(5):902-912.
    [63] Chen Z, Zhang J. An unconditionally stable3-D ADI-MRTD method free of the CFL stabilitycondition [J]. IEEE Microwave and Wireless Components Letters,2001,11(8):349-351.
    [64] Sarris C D, Katehi L P B. An efficient numerical interface between FDTD and Haar MRTD-formulation and applications [J]. IEEE Transactions on Microwave Theory and Techniques,2003,51(4):1146-1156.
    [65] Sarris C D, Katehi L P B. Development and application of an efficient FDTD/Haar MRTDnumerical interface [C]. IEEE MTT-S Digest,2001,2:753-756.
    [66] Dogaru T, Carin L. Application of Haar-wavelet-based mutiresolution time-domain schemes toelectromagnetic scattering problems [J]. IEEE Transactions on Antennas and Propagation,2002,50(6):774-784.
    [67] Wei X, Li E, Liang C. A new MRTD scheme based on Coifman scaling functions for the solutionof scattering problems [J]. IEEE Microwave and Wireless Components Letters,2002,12(10):392-394.
    [68] Cao Q, Chen Y, Mittra R. Multiple image technique (MIT) and anistropic perfectly matchedlayer (APML) in implementation of MRTD scheme for boundary truncations of microwave structures[J]. IEEE Transactions on Microwave Theory and Techniques,2002,50(6):1578-1589.
    [69] Cao Q, Chen Y. Application of an anisotropic perfectly matched layer absorber for open boundarytruncation in the multiresolution time domain scheme [J]. IEEE Transactions on Antennas andPropagation,2003,51(2):350-357.
    [70] Zhu X, Dogaru T, Carin L. Three-dimensional biorthogonal multiresolution time-domain methodand its application to electromagnetic scattering problems [J]. IEEE Transactions on Antennas andPropagation,2003,51(5):1085-1092.
    [71] Zhu X, Dogaru T, Carin L. Analysis of the CDF biorthogonal MRTD method with application toPEC targets [J]. IEEE Transactions on Microwave Theory and Techniques,2003,51(9):2015-2022.
    [72] Shlager K L, Schneider J B. Comparison of the dispersion properties of Higher order FDTDschemes and equivalent-sized MRTD schemes [J]. IEEE Transactions on Antennas and Propagation,2004,52(4):1095-1104.
    [73] Bushyager N, Papapolymerou J, Tentzeris M M. A composite cell-multiresolution time-domaintechnique for the design of antenna systems including electromagnetic band gap and via-arraystructures [J]. IEEE Transactions on Antennas and Propagation,2005,53(8):2700-2710.
    [74] Alighanbari A, Sarris C D. Dispersion properties and applications of the Coifman scaling functionbased S-MRTD [J]. IEEE Transactions on Antennas and Propagation,2006,54(8):2316-2325.
    [75] Cao Q, Kanapady R, Reitich F. High-order Runge-Kutta multiresolution time-domain methods forcomputational electromagnetics [J]. IEEE Transactions on Microwave Theory and Techniques,2006,54(8):3316-3326.
    [76] Chen Z, Luo S. Generalization of the finite-difference-based time-domain methods using themethod of moments [J]. IEEE Transactions on Antennas and Propagation,2006,54(9):2515-2524.
    [77] Letizia R, Obayya S S A. Efficient multiresolution time-domain analysis of arbitrarily shapedphotonic devices [J]. IET Optoelectronics,2008,2(6):241-253.
    [78]蓝朝晖,胡希伟,江中和,李建胜.基于Haar小波包的时域多分辨分析法[J].电波科学学报,2008,23(1):79-84.
    [79] Ryu J, Lee W, Lee J, Moon Y, Kim H, Choi H. Reduction of numerical dispersion error in3-DADI-MRTD method with the coarse mesh [J]. IEEE Microwave and Wireless Components Letters,2009,19(8):485-487.
    [80] Alighanbari A. A3D conformal S-MRTD foumulation for electromagnetic scattering problemscontaining curved perfectly conducting objects [C]. IEEE AP-S,2010:1-4.
    [81] Obayya S S A. Novel auxiliary differential equation-multiresolution time domain scheme fordispersive nonlinear photonic devices [J]. IEEE Journal of Quantum Electronics,2010,46(5):837-845.
    [82]魏兴昌,梁昌洪.用基于Coifman尺度函数的多分辨时域分析计算电磁散射[J].电子学报,2001,29(11):1668-1670.
    [83]余文革,钟先信,李小毅,陈帅.双频微型贴片天线的H-MRTD模拟[J].光学精密工程,2004,12(3):292-297.
    [84]尹玉,吴先良.基于时域多分辨分析方法的散射场计算[J].安徽大学学报(自然科学版),2005,29(3):54-57.
    [85]王丽华,吴先良. MRTD算法在目标电磁散射特性分析中的应用[J].合肥工业大学学报(自然科学版),2007,30(1):108-111.
    [86]马良,吴伟,周辉,程引会,冯柯.电磁脉冲对细线耦合的时域多分辨分析[J].强激光与粒子束,2006,18(8):1387-1390.
    [87]孔繁敏,郭毅峰,李康,刘新. MRTD算法在集成平面光波导组件分析中的应用[J].光子学报,2004,33(9):1068-1071.
    [88]姜宇,于少鹏,高红友.基于Daubechies小波的MRTD在电磁散射中的应用[J].光学精密工程,2008,16(10):2014-2019.
    [89]郭毅峰,孔繁敏,李康,刘艳,凌洁. MRTD算法的APML实现及其在光波导仿真中的应用[J].光电子激光,2004,15(2):238-241.
    [90]郭汉伟,梁甸农.电磁场数值计算中的多分辨分析[J].系统工程和电子技术,2002,24(8):53-55.
    [91]高强业,周建江,曹群生.基于Daubechies尺度函数的共形MRTD方法研究及其电磁散射应用[J].电子与信息学报,2011,33(1):136-141.
    [92]高强业,周建江,曹群生.双正交时域多分辨方法及其电磁散射应用[J].应用科学学报,2010,28(5):527-532.
    [93]高强业,周建江,曹群生. MRTD方法的色散特性分析和电磁散射应用[J].南京航空航天大学学报,2010,42(2):191-197.
    [94]冯德山,戴前伟.探地雷达时域多分辨法(MRTD)三维正演模拟[J].地球物理学进展,2008,23(5):1621-1625.
    [95]代少玉,吴振森,徐仰彬.用基于Daubechies尺度函数的时域多分辨分析计算电磁散射[J].物理学报,2007,56(2):787-790.
    [96]代少玉,吴振森.时域小波Galerkin法在有耗地面与任意目标复合散射中的应用[J].物理学报,2008,57(12):7635-7640.
    [97]代少玉,吴振森. MRTD算法在一维PBG结构中的应用[J].电波科学学报,2006,21(5):712-716.
    [98]曹群生.任意形状目标的多分辨时域(MRTD)散射特性分析[J].南京航空航天大学学报,2006,38(6):655-659.
    [99]包秀龙,章文勋.时域多分辨法分析二维光子带隙结构的色散特性[J].东南大学学报(自然科学版),2003,33(2):123-126.
    [100]陈新蕾.高阶龙格库塔多分辨时域(RK-MRTD)方法及其应用研究,硕士学位论文[D].南京:南京航空航天大学,2010.
    [101]李康,孔凡敏,郭毅峰,王俊泉,梅良模. MRTD和高阶FDTD算法的数值色散特性的分析[J].系统仿真学报,2005,17(9):2089-2091.
    [102]马良,程引会,周辉,冯柯.有耗介质完全匹配层在时域多分辨分析中的应用[J].强激光与粒子束,2006,18(3):435-438.
    [103]李弼程,罗建书.小波分析及其应用[M].北京:电子工业出版社,2003.
    [104]孙延奎.小波分析及其应用[M].北京:机械工业出版社,2005.
    [105]高成,董长虹,郭磊等. Matlab小波分析与应用[M].北京:国防工业出版社,2007.
    [106]樊启斌.小波分析[M].武汉:武汉大学出版社,2008.
    [107] Daubechies I. Ten Lectures on Wavelets [M]. PA: SIAM,1992.
    [108] Dai S, Zhang C, Wu Z. Electromagnetic scattering of objects above ground using MRTD/FDTDhybrid method [J]. Journal of Electromagnetic Waves and Applications,2009,23(16):2187-2196.
    [109] Dai S, Wu Z. A new hybrid technique of FDTD/MRTD for electromagnetic scattering problems[J]. Chinese Journal of Electronics,2006,15(4):754-757.
    [110] Engquist B, Majda A. Absorbing boundary conditions for the numerical simulation of waves [J].Mathematics of Computation,1977,31(139):629-651.
    [111] Mei K, Fang J. Superabsorption-a method to improve absorbing boundary conditions [J]. IEEEAntennas and Propagation Magazine,1992,40(9):1001-1010.
    [112] Liao Z P, Wong H L, B P Yang e a. A transmitting boundary for transient wave analysis [J].Scientia Sinica (series A),1984,27(4):1063-1076.
    [113] Chew W C, Weedon W H. A3-D perfectly matched medium from modified Maxwell's equationswith stretched coordinates [J]. Microwave and Optical Technology Letters,1994,7:599-604.
    [114] Chew W, Jin J, Michielssen E. Complex coordinate stretching as a generalized absorbingboundary condition [J]. Microwave and Optical Technology Letters,1997,15(6):363-369.
    [115] Knockaert L, Olyslager F. PML-PEC and PML-PMC grounded Green's functions [C]. IEEEAP-S,2005,4B:360-363.
    [116] Chen Y, Sun K, Beker B, Mittra R. Unified matrix presentation of Maxwell's and wave equationsusing generalized differential matrix operator [J]. IEEE Transactions on Edu.,1998,41(1):61-69.
    [117] Dey S, Mittra R, Chebolu S. A technique for implementing the FDTD algorithm on anonorthogonal grid [J]. Microwave and Optical Technology Letters,1997,14(4):213-215.
    [118] Dey S, Mittra R. A locally conformal finite-difference time-domain (FDTD) algorithm formodeling three-dimensional perfectly conducting objects [J]. IEEE Microwave and Guided WaveLetters,1997,7(9):273-275.
    [119] Lee J F, Palandech R R, Mittra R. Modeling three-demensional discontinuities in waveguidesusing nonorthogonal FDTD algorithm [J]. IEEE Transactions on Microwave Theory and Techniques,1992,40:346-352.
    [120] Fusco M. FDTD algorithm in curvilinear coordinates [J]. IEEE Transactions on Antennas andPropagation,1990,38:76-89.
    [121] Harms P H, Lee J F, Mittra R. A study of the nonorthogonal FDTD method versus theconventional FDTD technique for computing resonant frequencies of cylindrical cavities [J]. IEEETransactions on Microwave Theory and Techniques,1992,40:741-746.
    [122] Mezzanotte P, Roselli L, Sorrentino R. A simple way to model curved surfaces in FDTDalgorithm avoiding staircase approximation [J]. IEEE Microwave and Guided Wave Letters,1995,MGM-5(8):267-269.
    [123] Jurgens T G, Taflove A, Umashankar K, Moore T G. Finite-difference time-domain modeling ofcurved surfaces [J]. IEEE Transactions on Antennas and Propagation,1992, AP-40(4):357-366.
    [124] Jurgens T G, Taflove A. Three-dimensional contour FDTD modeling of scattering from single andmultiple bodies [J]. IEEE Transactions on Antennas and Propagation,1993,41:1703-1708.
    [125] Xiao T, Liu Q. Enlarged cells for the conformal FDTD method to avoid the time step reduction[J]. IEEE Microwave and Wireless Components Letters,2004,14(12):551-553.
    [126] Dey S, Mittra R. A modified locally conformal finite-difference time-domain algorithm formodeling three-dimensional perfectly conductiong objects [J]. Microwave and Optical TechnologyLetters,1998,17(6):349-352.
    [127] Yu W, Mittra R. A conformal FDTD algorithm for modeling perfectly conducting objects withcurve-shaped surfaces and edges [J]. Microwave and Optical Technology Letters,2000,27(2):136-138.
    [128] Zhang Y, Li L, Liang C. A modified locally conformal FDTD for broadwall radiating slot in afinite wall thickness waveguide [J]. Microwave and Optical Technology Letters,2002,35(3):198-201.
    [129] Xiao T, Liu Q. A staggered upwind embedded boundary (SUEB) method to eliminate the FDTDstaircasing error [J]. IEEE Transactions on Antennas and Propagation,2004,52(4):730-741.
    [130] Sha W, Wu X, Huang Z, Chen M. A new conformal FDTD(2,4) scheme for modelingthree-dimensional curved perfectly conducting objects [J]. IEEE Microwave and Wireless ComponentsLetters,2008,18(3):149-151.
    [131] Li Q, Dong H, Tang W. A simplified CFDTD algorithm for scattering analysis [C].20036thInternational Symposium on Antennas and propagation and EM Proceedings, Beijing,2003:404-407.
    [132] Yu W, Mittra R. A conformal finite difference time domain technique for modeling curveddielectric surfaces [J]. IEEE Microwave and Wireless Components Letters,2001,11(1):25-27.
    [133] Liang X, Zakim K. Modeling of cylindrical dielectric resonators in rectangular waveguides andcavity [J]. IEEE Transactions on Microwave Theory and Techniques,1993,41(12):2174-2181.
    [134]胡晓娟.复杂目标电磁散射的FDTD及FDTD算法研究,博士学位论文[D].西安:西安电子科技大学,2007.
    [135] Wang Y, Cao Q. Treatment technology for dielectric media interfaces using multiresolutiontime-domain scheme [C].2008International Conference on Microwave and Millimeter WaveTechnology, Nanjing, China,2008,2:953-955.
    [136] Wang J, Yin W, Liu Q. FDTD(2,4)-compatible conformal technique for treatment of dielectricsurfaces [J]. Electronics Letters,2009,45(3):146-147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700