用户名: 密码: 验证码:
提高频域OCT性能的若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学相干层析成像技术(Optical Coherence Tomography, OCT)作为一种全新的光学断层成像技术,以其无辐射、非侵入、高分辨及高探测灵敏度等特点,在临床医学领域具有巨大的发展潜力。传统的OCT技术为时域OCT,其特点是需要参考臂的深度扫描,对应样品的不同深度。深度扫描限制了时域OCT的采集速度,影响了其更广泛的应用,如活体在体测量。最近兴起的频域OCT技术用光谱仪替代了光电二极管进行检测,通过采集干涉光谱并作傅立叶变换就能得出样品内部一个深度方向的全部信息,实现了深度方向信息的并行采集,使系统更为简单和稳定,极大地提高了成像速度。为了有效地扩大频域OCT的应用范围,提高其应用价值,实现高速实时成像,本文对频域OCT图像质量、成像速度、信噪比和轴向分辨率等性能进行了分析,对提高频域OCT性能进行了若干关键技术的研究。
     论文主要研究内容包括:
     1.根据一阶Born近似理论和多次散射理论将背向散射光子分成两类;建立了频域OCT的蒙特卡罗仿真模型,由仿真结果可知,二类光子比一类光子有更广的空间和角度分布,正是由于该特点使得频域OCT成像成为可能;通过对比频域OCT和时域OCT的仿真结果可知,在相同的条件下,在满足相干条件的探测深度下时域OCT出射的光子数要大于频域OCT,但是其成像速度要小于频域OCT的成像速度,时域OCT在进行轴向扫描过程中,更多的扫描位置是在同层介质的区域中,因此提高扫描效率得到真正有意义的位置也是时域OCT所需要解决问题;为了解决样品每层析面的图像灰度随深度递减的问题,对于复杂的生物组织样品利用蒙特卡罗仿真法对图像灰度值进行了补偿,提高了频域OCT的图像质量。
     2.构建了频域OCT的数学模型,推出了频域OCT图像函数,分析了频域OCT成像机理及图像结构。采用相移谱频域OCT、相移差分谱频域OCT和复谱频域OCT来提高图像质量,实现全量程的有效探测。采用采用2帧相移算法来提高成像的速度,结果表明它比经典的5帧相移算法在速度上提高了一倍。
     3.为了改善图像质量和提高信噪比,采用了一种新的带有特殊镀膜分束器的干涉仪结构,并对该系统的性能进行了分析。该结构使参考光强衰减了25倍,减小了参考光与信号光之间的能量差距,图像干涉对比度大约提高了100倍,同时这种特殊结构的干涉仪可以使样品臂的出射光强提高4倍,并且使真实图像信号的信噪比提高了6dB。
     4.为了抑制相移器的线性相移误差,采用了频域和空域两种分析方法对利于OCT成像的定步长算法进行了分析,结果证明两种分析方法结论的一致性:相移步距为π/ 2的五帧算法性能最优,并且从空域分析方法中能更直观地看出:五帧相移算法对真实层析结构影响较小,对镜像尾迹有很好的抑制作用,能够真正地实现全量程的有效探测。
     5.为了提高频域OCT系统的轴向分辨率和信噪比,分析频域OCT图像的轴向分辨率理论,提出了光源的相干长度及频域OCT图像的轴向分辨率测量法。为了减小干涉谱的非线性相位对相干包络分辨率的影响,采用零补偿法补偿非线性相位引起的轴向分辨率的下降。建立了基于子光谱分析的白光频域OCT,该系统通过选择所需要的白光光源及其接收频段,这样既可以兼顾最大探测深度和高轴向分辨率,并且提高信噪比。
Optical coherence tomography (OCT), as a new imaging technique, has great potential in clinical medicine due to its non-invasion, non-radiation, high resolution and high sensitiveness. OCT is traditionally considered as Time-domain OCT (TDOCT). It needs depth scanning of reference arm. Different depth corresponds to different depth information of the sample. However, the collection time is limited by depth-scanning with no further application in vivo. Spectral-domain OCT (SDOCT) uses spectrometer instead of photoelectric cell, and it able to obtain the whole depth information through Fourier Transform of the collected interference spectrum. The system is more simple and steady under a higher speed. In order to apply high speed OCT in more fields, the imaging quality, the imaging speed, the signal to noise ratio, the axial resolution and several other key techniques are studied in this paper.
     The research mainly includes:
     1. Scattering signals are classified into two categories according to One Order Born Approximation and multiple scattering theory. The simulation results on the basic of SDOCT Monte-Carlo module indicate that the second category photons have wider spatial and angular distribution, and the phenomenon explains why SDOCT is likely to be implemented. The number of emitting photons of TDOCT are much lager than that of SDOCT under the coherent condition, however the imaging speed is much slower, for the axial scanning is carried out in the TDOCT, and the scanning point is located in the same layer of media, it is a problem needed to be solved by TDOCT to get an actual and meaningful position to improving scanning efficiency. In order to resolve the problem of gray scale’s degression of layers in the media, Monte-Carlo simulation is adopted.
     2. Mathematical model of SDOCT is set up to obtain image function and then the principals and image structures of SDOCT are analyzed. The Phase shift spectral domain OCT, the phase difference OCT and the complex spectral OCT all manage to enhance image quality, and make the full range measurement possible. Two step phase shift method is adopted to speed up the measurements and the result tells us that it is more efficient than conditional five step phase shift method.
     3. A new interferometer with special coating beam splitter is designed to manage to enhance the image quality. The design reduces the intensity in reference arm to 25 times less than before and lessens the energy gap between two arms. The image contrast goes up to 100 times more than before. Meanwhile, signal to noise ratio improves by 6dB.
     4. In order to restrict the linear phase shift error, two methods (spatial domain and time domain) are applied to study the phase shift method. They have the same result: five step phase shift method is the optimal image construction method. It has little influence on the image structures, restricts more for the mirror image and the full range measurement is implemented.
     5. To improve the axial resolution and signal to noise ratio of SDOCT image, a new measurement of coherent length and axial resolution is brought forward in the paper. Zero-padding technique is used to compensate the degression of axial resolution induced by nonlinear phase shift error. White spectral OCT is set up on partial spectrum analysis,the system chooses required white light source and receiving spectral. It would have more detection depth, higher resolution and improving signal to noise ratio.
引文
[1] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito,andJ. G. Fujimoto, Optical coherence tomography, Science[J], 1991, 254:1178-1181
    [2] J. M. Schmitt, Optical Coherence Tomography (OCT): A Review, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS[J], 1999, 5(4):1205-1214
    [3] R. C. Youngquist, S. Carr,andD. E. N. Davies, Optical Coherence-Domain Reflectometry - a New Optical Evaluation Technique, Optics Letters[J], 1987, 12(3):158-160
    [4] K. Takada, I. Yokohama, K. Chida,andJ. Noda, New Measurement System for Fault Location in Optical Wave-Guide Devices Based on an Interferometric-Technique, Applied Optics[J], 1987, 26(9):1603-1606
    [5] B. L. DanielsonC. D. Whittenberg, Guided-Wave Reflectometry with Micrometer Resolution, Applied Optics[J], 1987, 26(14):2836-2842
    [6] A. F. FercherE. Roth, Ophthalmic laser interferometry, Proceedings of SPIE[J], 1986, 658:48-51
    [7] C. K. Hitzenberger, Measurement of Corneal Thickness by Low-Coherence Interferometry, Applied Optics[J], 1992, 31(31):6637-6642
    [8]苏续清,数字化影像新技术的临床应用,北京:人民军医出版社, 2007.
    [9]余建明,医学影像技术学,北京:科学出版社, 2004.
    [10]唐镇生, CT原理和医学应用,上海:科学技术文献出版社, 1987.
    [11]赵喜平,磁共振成像系统的原理及其应用,北京:科学出版社, 2000.
    [12]周永昌,郭万学,超声医学,北京:科学技术文献出版社, 2003.
    [13] C. L. COLLINS, J. H. IDEKER,andK. E. KURTIS, Laser scanning confocal microscopy for in situ monitoring of alkali–silica reaction, Journal of Microscopy[J], 2004, 213:149-157
    [14] J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto,andE. A. Swanson, Optical coherence tomography: a new tool for glaucoma diagnosis, Curr Opin Ophthalmol[J], 1995, 6(2):89-95
    [15] J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedutkloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson,andJ. G. Fujimoto, Quantification of Nerve-Fiber Layer Thickness in Normal and Glaucomatous Eyes Using Optical Coherence Tomography - a Pilot-Study, Archives of Ophthalmology[J], 1995, 113(5):586-596
    [16] G. F. Schmid, Axial and peripheral eye length measured with optical low coherence reflectometry, Journal of Biomedical Optics[J], 2003, 8(4):655-662
    [17] A. F. Fercher, K. Mengedoht,andW. Werner, Eye-length measurement byinterferometry with partially coherent light, Optics Letters[J], 1988, 13(3):186-188
    [18] B. W. Colston.Jr, M. J. Everett, L. B. DaSilva,andL. L. Otis, OCT for diagnosis of periodontal disease, Proceedings of SPIE[J], 1998, 3251:52-58
    [19] J. A. Warren, G. V. G. Jr., V. M. Gelikonov, F. J. Feldchtein, N. M. Beach, M. D. Moores,andD. H. Reitze, Imaging and characterization of dental structure using optical coherence tomography, San Francisco, CA, USA[J], 1998
    [20] X. J. Wang, T. E. Milner, J. F. d. Boer, Y. Zhang, D. H. Pashley,andJ. S. Nelson, Characterization of dentin and enamel by use of optical coherence tomography, Applied Optics[J], 1999, 38(10):2092-2096
    [21] Z. P. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. vanGemert,andJ. S. Nelson, Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography, Optics Letters[J], 1997, 22(14):1119-1121
    [22] J. A. Izatt, M. D. Kulkami, S. Yazdanfar, J. K. Barton,andA. J. Welch, In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomograghy, Optics Letters[J], 1997, 22(18):1439-1441
    [23] S. Yazdanfer, M. D. Kulkarni,andJ. A. Izatt, High-resolution of in-vivo cardiac dynamics using color Doppler optical coherence tomography, Optics Express[J], 1997, 1(13):424-431
    [24] M. D. Kulkarni, T. G. v. Leeuwen, S. Yazdanfar,andJ. A. Izatt, Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography, Optics Letters[J], 1998, 23(13):1057-1059
    [25] G. Marquez, B. S. L. Wang, L. Shao-Pow, S. L. Jacques, F. K. Tittel, S. L. Thomsen,andJ. Schwartz, Measurement of absorption and scattering spectra of chicken breast with oblique incidence reflectometry, Proceedings of the SPIE[J], 1997, 2976:306-317
    [26] G. J. Tearney, M. E. Brezinski, S. A. Boppart, C. Pitris, B. E. Bouma, J. F. Southern,andJ. G. Fujimoto, High resolution imaging of pathologic gastrointestinal tissues using optical coherence tomography, Gastroenterology[J], 1997, 112(4):A667-A667
    [27] G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern,andJ. G. Fujimoto, In vivo endoscopic optical biopsy with optical coherence tomography, Science[J], 1997, 276(5321):2037-2039
    [28] G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, S. A. Boppart,andJ. G. Fujimoto, Optical biopsy in human gastrointestinal tissue using optical coherence tomography, American Journal of Gastroenterology[J], 1997, 92(10):1800-1804
    [29] M. E. Brezinski, G. J. Tearney, B. Bouma, S. A. Boppart, C. Pitris, J. F. Southern,andJ. G. Fujimoto, Optical biopsy with optical coherence tomography, Advances in Optical Biopsy and Optical Mammography[J], 1998, 838:68-74
    [30] C. Pitris, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. F. Southern,andJ. G. Fujimoto, High resolution imaging of the upper respiratory tract with opticalcoherence tomography - A feasibility study, American Journal of Respiratory and Critical Care Medicine[J], 1998, 157(5):1640-1644
    [31] J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris,andM. E. Brezinski, High resolution in vivo intra-arterial imaging with optical coherence tomography, Heart[J], 1999, 82(2):128-133
    [32] K. Schoenenberger, B. W. Colston, D. J. Maitland, L. B. D. Silva,andM. J. Everett, Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography, Applied Optics[J], 1998, 37(25):6026-6036
    [33] S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski,andJ. G. Fujimoto, Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography, Proceedings of the National Academy of Sciences of the United States of America[J], 1997, 94(9):4256-4261
    [34] S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney,andJ. G. Fujimoto, Investigation of developing embryonic morphology using optical coherence tomography, Dev. Biol[J], 1996, 177:54-63
    [35] E. A. Swanson, M. R. Hee, G. J. Tearney,andJ. G. Fujimoto, Application of optical coherence tomography in nondestructive evaluation of material microstructure, Anaheim, CA, USA[J], 1996
    [36] M. Bashkansky, M. D. Duncan, J. Reintjes,andRapid, High-resolution optical coherence tomography (OCT) for defect detection in materials, Baltimore, MD, USA[J], 1997
    [37] M. D. Duncan, M. Bashkansky,andJ. Reintjes, Subsurface defect detection in materials using optical coherence tomography, Optics Express[J], 1998, 2(13)
    [38] J. M. Schmitt, A. Knuttel,andR. F. Bonner, Measurement of optical properties of biological tissues by low-coherence reflectometry, Applied Optics[J], 1993, 32(30):6032-6042
    [39] Y. Pan, R. Birngruber, J. Rosperich,andR. Engelhardt, Low-coherence optical tomography in turbid tissue: theoretical analysis, Applied Optics[J], 1995, 34(28):6564-6574
    [40] J. M. Schmitt, A. Knuttel, M. Yadlowsky,andM. A. Eckhaus, Optical-Coherence Tomography of a Dense Tissue - Statistics of Attenuation and Backscattering, Physics in Medicine and Biology[J], 1994, 39(10):1705-1720
    [41] M. J. Yadlowsky, J. M. Schmitt,andR. F. Bonner, Multiple scattering in optical coherence microscopy, Applied Optics[J], 1995, 34(25):5699-5707
    [42] J. M. SchmittA. Knuttel, Model of optical coherence tomography of heterogeneous tissue,, Journal of the Optical Society of America a-Optics Image Science and Vision[J], 1997, 14(6):1231-1242
    [43] L. Thrane, H. T. Yura,andP. E. Andersen, Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle, Journal of the Optical Society of America a-Optics Image Science and Vision[J], 2000, 17(3):484-490
    [44] D. J. Smithies, T. Lindmo, Z. P. Chen, J. S. Nelson,andT. E. Milner, Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation, Physics in Medicine and Biology[J], 1998, 43(10):3025-3044
    [45] G. YaoL. H. V. Wang, Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media, Physics in Medicine and Biology[J], Sep 1999, 44(9):2307-2320
    [46] T. GJ, B. ME,andS. JF, Determination of the refractive-index of highly scattering human tissue by optical coherence tomography, Optics Letters[J], 1995, 20:2258-2260
    [47] J. Schmitt, A. Knuttel,andA. Gandjbakhche, Optical characterization of dense tissues using low-coherence interferometer, Proc SPIE[J], 1993, 1889:197-211
    [48] A. F. Fercher, W. Drexler, C. K. Hitzenberger,andT. Lasser, Optical coherence tomography—principles and applications, Rep. Prog. Phys[J], 2003, 66:239–303
    [49] T. Hellmuth, Contrast and resolution in optical coherence tomography, Proc.SPIE[J], 1997, 2926:228–237
    [50] J. M. Schmitt, M. Yadlowsky,andR. F. Bonner, Subsurface imaging if living skin with optical coherence tomography, Dermatol[J], 1995, 191:93–98
    [51] B. E. BoumaG. J. Tearney, Clinical imaging with optical coherence tomography, Acad. Radiol[J], 2002, 9:942-953
    [52] W. V. SorinD. M. Baney, A simple intensity noise reduction technique for optical low-coherence reflectometry, IEEE Photon. Technol. Lett[J], 1994, 4:1404-1406
    [53] N. Bankman, Handbook of mecical imaging, Academic Press, San Diego[J], 2000
    [54] A. M. Sergeev, V. M. Gelikonov,andG. V. Gelikonov, In Vivo Endoscopic OCT Imaging of Precancer and Cancer States of Human Mucosa, Optics Express[J], 1997, 2:432-440
    [55] C. B. Su, Achieving Variation of the Optical Path Length by a Few Millimeters at Millisecond Rates for Imaging of Turbid Media and Optical Interferometry: a New Technique, Optics Letters[J], 1997, 22:665-667
    [56] G. H?uslerM. W. Lindner, Coherence radar and spectral radar - new tools for dermatological diagnosis, Journal of Biomedical Optics[J], 1998, 3(1):21-31
    [57] Y.Yasuno, M. Nakama,andY. Sutoh, Optical coherence tomography by spectral interferometric joint transform correlator, Optics Communication[J], 2000, 186:51-56
    [58] C. Dorrer, N. Belabas, J. Likforman,andM. Joffre, Spectral resolution and sampling issues in fourier transform spectral interferometry, Journal of the Optical Society of America B[J], 2000, 17:1795-1802
    [59] Y. Teramura, M. Suekuni,andF. Kannari, Two-dimensional optical coherence tomography using spectral domain interferometry, J. Opt. A: Pure Appl. Opt[J], 2000, 2:21-26
    [60] L. Froehly, S. N. Martin,andT. Lasser, Multiplexed 3D imaging usingwavelength encoded spectral interferometry: a proof of principle, Optics Communication[J], 2003, 222:127-136
    [61] C. SR, S. EA,andF. JG, Optical coherence tomography using a frequency-tunable optical source, Optics Letters[J], 1996, 22(5):340-342
    [62] F. Lexer, C. K. Hitzenberger, A. F. Fercher,andM. Kulhavy, Wavelength-tuning interferometry of intraocular distances, Applied Optics[J], 1997, 36:6548-6553
    [63] S. H. Yun, C. Boudoux,andG. J. Tearney, High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter, Optics Letters[J], 2003, 28:1981-1983
    [64] B. Golubovic, B. E. B. J. Tearney,andJ. G. Fujimoto, Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser, Optics Letters[J], 1997, 22:1704-1706
    [65] D. Fried, J. Xie,andS. Shafi, Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography, Journal of Biomedical Optics[J], 2002, 9:618–627
    [66] J. M. SchmittS. H. Xiang, Cross-polarized backscatter in optical coherence tomography of biological tissue, Optics Letters[J], 1998, 23:1060–1062
    [67] J. F. d. Boer, T. E. Milner,andJ. S. Nelson, Determination of the depth resolved Stokes parameters of light backscattered from turbid media using polarization sensitive optical coherence tomography, Optics Letters[J], 1999, 24:300-302
    [68] C. K. Hitzenberger, E. G?tzinger,andM. Sticker, Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography, Optics Express[J], 2001, 9:780–790
    [69] J. E. Roth, J. A. Kozak,andS. Yazdanfar, Simplified method for polarization-sensitive optical coherence tomography, Optics Letters[J], 2001, 26:1069–1071
    [70] C. E. Saxer, J. F. d. Boer,andB. H. Park, High speed fiber based polarization sensitive optical coherence tomography of in vivo human skin, Optics Letters[J], 2000, 25:1355–1357
    [71] S. Jiao, W. Yu, G. Stoica,andL. V. Wang, Optical-fiber-based Mueller optical coherence tomography, Optics Letters[J], 2003, 28:1206–1208
    [72] S. JiaoL. V. Wang, Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherencetomography, Optics Letters[J], 2002, 27:101-103
    [73] H. CK, D. W,andF. AF, Measurement of corneal thickness by laser doppler interferometer, Invest Ophthalmol Vis Sci[J], 1992, 33:98-103
    [74] V. X. D. Yang, S.-j. Tang,andM. L. Gordon, Endoscopic Doppler optical coherence tomography in the human GI tract: initial experience, Gastrointestinal Endoscopy[J], 2005, 61(7):879-890
    [75] A. Vitkin, M. L. Gordon,andV. X. Yang, Doppler optical coherence tomography for monitoring subsurface micro-structural and micro-vascular effects of cancer therapies, International Journal of Radiation Oncology Biology Physics[J], 2004, 60(1,Supplement 1):585-586
    [76] L. Wang, W. Xu, M. Bachman, G. P. Li,andZ. Chen, Imaging and quantifyingof microflow by phase-resolved optical Doppler tomography, Optics Communication[J], 2004, 232(1-6):25-29
    [77] V. X. Yang, D. E. Goertz,andA. Needles, Structural and Doppler imaging of xenopus laevis embryos and murine skin tumors in vivo: a comparison of ultrasound biomicroscopy and optical coherence tomography, Ultrasound in Medicine & Biology[J], 2003, 29(5,Supplement):S72
    [78] R. Leitgeb, M. Wojtkowski, A. Kowalczyk,andA. F. Fercher, Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography, Optics Letters[J], 2000, 25(11):820-822
    [79] T. Fuji, M. Miyata,andS. Kawato, Linear propagation of light investigated with a white-light interferometer, Journal of the Optical Society of America B[J], 1997, 14:1074–1078
    [80] D. J. Faber, M. C. G. Aalders,andE. G. Mik, Oxygen Saturation-Dependent Absorption and Scattering of Blood, Physics Review Letters[J], 2004, 93(2):0028102
    [81] J. M. Schmitt, OCT elastography: Imaging microscopic deformation and strain of tissue, Optics Express[J], 1998, 3:199–211
    [82] A. P. Sarvazyan, A. R. Skovoroda,andS. Y. Emelianov, Biophysical bases of elasticity imaging, Acoust. Imaging[J], 1995, 21:223–240
    [83] A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp,andH. Sattman, In vivo optical coherence tomography, Am. J. Ophthalmology[J], 1993, 116:113 -114
    [84] W. Drexler, O. Findl, R. Menapace, G. Rainer, C. Vass, C. K. Hitzenberger,andA. F. Fercher, Partial coherence interferometry: a novel approach to biometry in cataract surgery, Am J Ophthalmol[J], 1998, 126:524-534
    [85] J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson,andJ. G. Fujimoto, Optical Coherence Microscopy in Scattering Media, Optics Letters[J], Apr 15 1994, 19(8):590-592
    [86] A. G. PodoleanuD. A. Jackson, Noise analysis of a combined optical coherence tomograph and a confocal scanning ophthalmoscope, Applied Optics[J], 1999, 38(10):2116-2127
    [87] A. G. Podoleanu, J. A. Rogers,andD. A. Jackson, Three dimensional OCT images from retina and skin, Optics Express[J], 2000, 7(9):292-298
    [88] A. G. Podoleanu, J. A. Rogers,andD. A. Jackson, OCT en-face images from the retina with adjustable depth resolution in real time, IEEE Journal of Selected Topics in Quantum Electronics[J], 1999, 5(4):1176-1184
    [89] G. J. Tearney, B. E. Bouma,andJ. G. Fujimoto, High-speed phase- and group-delay scanning with a grating-based phase control delay line, Optics Letters[J], 1997, 22(23):1811-1813
    [90] A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee,andJ. A. Izatt, In vivo video rate optical coherence tomography, Optics Express[J], 1998, 3(6):219-229
    [91] G. J. Tearney, B. E. Bouma,andS. A. Boppart, Rapid Acquisition of In VivoBiological Images by Use of Optical Coherence Tomography, Optics Letters[J], 1996, 21:1408-1410
    [92] K. F. Kwong, D. Yankelevich,andK. C. Chu, 400-Hz Mechanical Scanning Optical Delay Line, Optics Letters[J], 1993, 18:558-560
    [93] A. L. Oldenburg, J. J. Reynolds,andD. L. Marks, Fast-Fourier-domain delay line for in vivo optical coherence tomography with a polygonal scanner, Applied Optics[J], 2003, 42(22):4606-4611
    [94] E. W. M. Born, Principles of Optics, Cambridge: Cambridge University Press[J], 1999
    [95] M. Wojtkowski, R. Leitgeb, A. K. T. Bajraszewski,andA. F. Fercher, In vivo human retinal imaging by Fourier domain optical coherence tomography, Journal of Biomedical Optics[J], 2002, 7(3):457-463
    [96] B. R. White, M. C. Pierce, N. Nassif,andB. Cense, In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography, Optics Express[J], 2003, 11(25):3490-3497
    [97] J. ZhangZ. Chen, In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography, Optics Express[J], 2005, 13:7449–7457
    [98] E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot,andH. Saint-Jalmes, Full-field optical coherence microscopy, Optics Letters[J], 1998, 23(4):244-246
    [99] A. Dubois, L. Vabre, A. C. Boccara,andE. Beaurepaire, High-resolution full-field optical coherence tomography with a Linnik microscope, Applied Optics[J], 2002, 41(4):805-812
    [100] S. Bourquin, V. Monterosso, P. Seitz,andR. P. Salathe, Video-rate optical low-coherence reflectometry based on a linear smart detector array, Optics Letters[J], 2000, 25(2):102-104
    [101] R. A. Leitgeb, W. Drexler,andA. F. Fercher, Ultrahigh resolution Fourier domain optical coherence tomography, Optics Express[J], 2004, 12:2156–2165
    [102] A. F. Fercher, C. K. Hitzenberger, G. Kamp,andS. Y. Elzaiat, Measurement of intraocular distances by backscattering spectral interferometry, Optics Communication[J], 1995, 117:43-48
    [103] B. Povazay, K. Bizheva,andA. F. Fercher, Submicrometer axial resolution optical coherence tomography, Optics Letters[J], 2002, 27:1800–1802
    [104] R. Leitgeb, L. Schmetterer, W. Drexler,andA. F. Fercher, Real-time assessment of retinal blood flow with ultrafast acquisition by color doppler fourier domain optical coherence tomography, Optics Express[J], 2003, 11:3116-3121
    [105] Y. Zhao, Z. Chen, C. Saxer, S. Xiang,andJ. F. d. Boer, Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity, Optics Letters[J], 2000, 25:114-120
    [106] Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang,andJ. F. d. Boer, Doppler standard deviation imaging for clinical monitoring of in vivo human skinblood flow, Optics Letters[J], 2000, 25(18):1358-1361
    [107] M. C. Pierce, B. H. Park,andJ. F. d. Boer, Simultaneous intensity, birefringence, and flow measurements with high-speed fiber-based optical coherence tomography, Optics Letters[J], 2002, 27:1534-1540
    [108] R. Tripathi, N. Nassif,andJ. F. d. Boer, Spectral shaping for non-Gaussian source spectra in optical coherence tomography, Optics Letters[J], 2002, 27:406-408
    [109] B. Cense, N. Nassif,andJ. F. d. Boer, Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography, Optics Express[J], 2004, 12:2435–2447
    [110] J. G. Fujimoto, M. .E.Brezinski,andG. J.Tearney, Optical biopsy and imaging using optical coherence tomography, Nature Med[J], 1995, 1:970-972
    [111] M. WojtkowskiT. Bajraszewski, Real-time in vivo imaging by high-speed spectral optical coherence tomography, Optics Letters[J], 2003, 28:1745–1747
    [112] M. Wojtkowski, V. J. Srinivasan,andT. H. Ko, Ultrahigh-resolution,high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation, Optics Express[J], 2004, 12:2404–2422
    [113] C. Mason, J. F. Markusen, M. A. Town, P. Dunnill,andR. K. Wang, Doppler optical coherence tomography for measuring flow in engineered tissue, Biosensors and Bioelectronics[J], 2004, 20(3):414-423
    [114] Y. Yang, A. Dubois,andR. K. Wang, Investigation of optical coherence tomography as an imaging modality in tissue engineering, Phys. Med. Biol[J], 2006, 51:1649–1659
    [115] T. P. HW. R. K, Theory, developments and applications of optical coherence tomography,, J. Phys. D, Appl. Phys[J], 2005, 38(15):2519–2535
    [116]骆清铭,张益哲,曾绍群,光学弱相干层析成像进展, CT理论与应用研究[J], 2000, 9(4):1-6
    [117]吴开杰,李刚,林凌, OCT系统对单层散射组织的有效探测深度,天津大学学报[J], 2005, 38(8):706-710
    [118]马振鹤,王瑞康,快速高分辨率的频谱光学相干层析成像系统研究,纳米技术与精密工程[J], 2005, 3(3):232-235
    [119]薛玲玲,张春平,王新宇, OCT技术在生物组织中的应用,激光杂志[J], 2000, 21(1):6-9
    [120]黄丽娜,俞晓峰,丁志华,光学相干层析成像系统中双通快速扫描光学延迟线的数值分析,光子学报[J], 2005, 34(11):1663-1665
    [121]张泰石,李刚,郑羽,用线性补偿算法和CCD相应补偿来提高频域OCT图像质量,光学精密工程[J], 2006, 14(5):929-933
    [122]胡海峰,姚建铨,利用Monte Carlo模拟技术研究OCT图像对比度,光学精密工程[J], 2004, 12(1):94-99
    [123] Y. M. J, S. J. M,andB. R. F, Multiple scattering in optical coherencemicroscopy, Applied Optics[J], 1995, 34(25):5699—5707
    [124] S. J. MK. A, Model of optical coherence tomography of heterogeneous tissue, Journal of the Optical Society of America a-Optics Image Science and Vision[J], 1997, 14(6):1231—1242
    [125] T. L, Y. H. T,andA. P. E, Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle, Journal of the Optical Society of America a-Optics Image Science and Vision[J], 2000, 17(3):484—490
    [126] S. D. J, L. T, C. Z. P,andN. J. S, Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation, Physics in Medicine and Biology[J], 1998, 43(10):3025—3044
    [127] Y. GW. L. H, Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media, Physics in Medicine and Biology[J], 1999, 44(9):2307—2320
    [128] B. C. WilsonG. Adam, A Monte-Carlo Model for the Absorption and Flux Distributions of Light in Tissue, Medical Physics[J], 1983, 10(6):824-830
    [129] S. T. Flock, M. S. Patterson, B. C. Wilson,andD. R. Wyman, Monte Carlo modeling of light propagation in highly scattering tissues - I: Model predictions and comparison with diffusion theory, IEEE Transactions on Biomedical Engineering[J], 1989, 36(12):1162-1168
    [130] S. T. Flock, B. C. Wilson,andM. S. Patterson, Monte Carlo modeling of light propagation in highly scattering tissues - II: Comparison with measurements in phantoms, IEEE Transactions on Biomedical Engineering[J], 1989, 36(12):1169-1173
    [131] S. A. Prahl, M. Keijzer, S. L. Jacques,andA. J. Welch, A Monte Carlo model of light propagation in tissue, In Dosimetry of Laser Radiation in Medicine and Biology, SPIE Series Vol. IS[J], 1989, 5:102-111
    [132] W. Lihong, S. L. Jacques,andZ. Liqiong, MCML-Monte Carlo modeling of light transport in multi-layered tissues, Computer Methods and Programs in Biomedicine[J], 1995, 47(2):131-146
    [133] S. L. JacquesL. H. Wang, Monte carlo modeling of light transport in tissue,, in Optical Thermal Response of Laser Irradiated Tissue, A. J. Welch and M. J. C. Van Gemert, Eds. New York: Plenum Press[J], 1995
    [134] J. M. Schmitt, A. Knuettel, A. H. Gandjbakhche,andR. F. Bonner, Optical characterization of dense tissues using low-coherence interferometry, Proceedings of SPIE[J], 1993, 1889:197-211
    [135] M. J. Yadlowsky, J. M. Schmitt,andR. F. Bonner, Contrast and resolution in the optical coherence microscopy of dense biological tissue, Proceedings of SPIE[J], 1995, 2387:193-203
    [136] E. G?tzingerM. Pircher, High speed full range complex spectral domain optical coherence tomography, Optics Letters[J], 2005, 13:583-594
    [137] F. A. FL. R, Complex spectral interferometry OCT, Proc SPIE, Stockholm, Sweden[J], 1998, 3546:173-178
    [138] W. MK. A, Full range complex spectral optical coherence tomographytechnique in eye imaging, Optics Letters[J], 2002, 27(8):1415-1417
    [139]石顺祥,张海兴,物理光学与应用光学,西安电子科技大学出版社, 1999
    [140] B. R, The Fourier Transform and Its Applications, 3rd ed. New York: McGraw-Hill[J], 1999
    [141] P. H. TomlinsR. K.Wang, Theory, developments and applications of optical coherence tomography, Journal of Physics D: Applied Physics[J], 2005, 38(15):2519-2535
    [142]程佩青,数字信号处理教程,清华大学出版社, 2001
    [143] P. H. TomlinsW. M, Complex spectral OCT in human eye imaging in vivo, Proceedings of SPIE[J], 2003, 140(5):28-32
    [144] L. N. Kurbatov, A. I. Dirochka, A. D. Britov, A. N. Vlasov, N. N. Mochalkin,andN. V. Soroko-Novitskii, Stimulated emission of indium monoselenide subjected to electron bombardment, Sov. Phys.-Semicond[J], 1971, 5(3):494-496
    [145] K. Iwamoto, I. Hino, S. Matsumoto,andK. Inoue, Room temperature CW operated superluminescent diodes for optical pumping of Nd:YAG laser, Jpn. J. Appl. Phys[J], 1976, 15(11):2191-2194
    [146] C. B. Morrison, L. M. Zinkiewicz, J. Niesen,andL. Figueroa, High-Power Superluminescent Diode with Reduced Coherence Length, Electronics Letters[J], 1985, 21(19):840-841
    [147] G. A. Alphonse, D. B. Gilbert, M. G. Harvey,andM. Ettenberg, High-power superluminescent diodes, IEEE Journal of Quantum Electronics[J], 1988, 24(12):2454-2457
    [148]杨旭强,吴红星,内置译码器的步进电机微步进A3977,微电机[J], 2002, 35(4):47-50
    [149] S. M. PanditN. Jordache, Data-Dependent-Systems and Fourier-Transform Methods for Single-Interferogram Analysis, Applied Optics[J], 1995, 34(26):5945-5951
    [150] K. A. GoldbergJ. Bokor, Fourier-transform method of phase-shift determination, Applied Optics[J], 2001, 40(17):2886-2894
    [151] P. Carré, Installation et Utilisation du Comparateur Photoelectrique et Interferentiel du Bureau International des Poids de Mesures, Metrologia[J], 1966, 2:13-23
    [152] K. Creath, Phase-measurement interferometry techniques, In Progress in optics. Vol.XXVI: North-Holland[J], 1988):349-393
    [153] D. W. Phillion, General methods for generating phase-shifting interferometry algorithms, Applied Optics[J], 1997, 36(31):8098-8115
    [154] T. Shouhong, Generalized algorithm for phase shifting interferometry, Proceedings of the SPIE - The International Society for Optical Engineering[J], 1996, 2860:34-44
    [155] N. Ohyama, T. Shimano, J. Tsujiuchi,andT. Honda, An Analysis of Systematic Phase Errors Due to Nonlinearity in Fringe Scanning Systems, Optics Communications[J], 1986, 58(4):223-225
    [156] J. Vanwingerden, H. J. Frankena,andC. Smorenburg, Linear-Approximation for Measurement Errors in Phase-Shifting Interferometry, Applied Optics[J], 1991, 30(19):2718-2729
    [157]钱克矛,续伯钦,伍小平,光学干涉计量中的位相测量方法,实验力学[J], 2001, 16(3):239-249
    [158]侯立周,张锡富,孙晓明,几种任意布距步进相移算法的误差分析与对比,光学技术[J], 1999, 5:7-10
    [159] T. Mitsui, Dynamic range of optical reflectometry with spectral interferometry, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers[J], 1999, 38(10):6133-6137
    [160] J. F. Boer, B. Cense, B. H. Park,andM. C. Pierce, Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography, Optical Letters[J], 2003, 28(21):2067-2069
    [161] M.H.Frosz, M.Juhl,andM.H.Lang, Optical Coherence Tomography:System Design and Noise Analysis, Roskilde,Denmark:Riso National Laboratory[J], 2001
    [162] A. Patil, R. Langoju,andP. Rastogi, An integral approach to phase shifting interferometry using a super-resolution frequency estimation method, Applied Optics[J], 2004, 12:4681-4697
    [163]侯立周,强锡富,几种任意步距步进相移算法的误差分析与对比,光学技术[J], 1999, 25(5):7-10
    [164]钱克茅,光学干涉计量的位相测量方法的研究,中国科学技术大学博士学位论文[D], 2000
    [165] Y. Surrel, Design of algorithms for phase measurements by the use of phase stepping, Applied Optics[J], 1996, 35:51-60
    [166] G. StoilovT. Dragostinov, Phase-stepping interferometry: five-frame algorithm with an arbitrary step, Opt. and Lasers in Eng[J], 1997, 28:61-69
    [167] S.H.Yun, G.Tearney, B.Bouma, B.Park,andJ.deBoer, High-speed spectral-domain optical coherence tomography at 1.3μm wavelength, Optical Express[J], 2003, 11(26):3598 -3604
    [168] T. Ko, D. Adler, J. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski,andS. Yakubovich, Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source, Optical Express[J], 2004, 12(10):2112-2119
    [169]杨福生,随机信号分析,清华大学出版社, 1990):144-155
    [170] R.A.Leitgeb, W.Drexler,andA.Unterhuber, Ultrahigh resolution Fourier domain optical coherence tomography, Optical Express[J], 2004, 12(5):2156-2165
    [171] C. BN. A. Nassif, Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography, Optical Express[J], 2004, 12(5):2435-2447
    [172] F. A.F, C. K. Hitzenberger,andM. Sticker, Numerical dispersion compensationfor Partial Coherence Interferometry and Optical Coherence Tomography, Optical Express[J], 2001, 9(12): 610-615
    [173] A. F. Fercher, C. K. Hitzenberger,andM. Sticker, Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique, Optics Communications[J], 2002, 204:67-74
    [174] C. F. BohrenD. R. Huffman, Absorbtion and scattering of light by small particles, New York: John Wiley and Sons[J], 1998
    [175] S. L. JacquesS. A. Prahl, Modeling Optical and thermal distributions in tissue irradiation, Lasers Surg Med[J], 1987, 6:494-503
    [176]曾绍群,骆清铭,光学相干层析系统相干传递函数研究,光学学报[J], 1996, 16(3):340-344
    [177] C. Dorrer, N. Belabas,andJ.-P. Likforman, Spectral resolution and sampling issues in Fourier-transform spectral interferometry, Optical Society of America[J], 2000, 17(10):1795-1802
    [178] E. C. W. Lee, J. F. d. Boer,andM. Mujat, In vivo optical frequency domain imaging of human retina and choroid, Optical Express[J], 2006, 14(5):4403-4411
    [179] J. G. Fujimoto, T. H. Ko, D. C. Adler, D. Mamedov, V. Prokhorov, V. Shidlovski, S. Yakubovich, M. D. Wojtkowski, J. S. Duker,andJ. S. Schuman, New technology for ultrahigh resolution optical coherence tomography imaging using diode light sources, Investigative Ophthalmology & Visual Science[J], 2004, 2004:U49
    [180] W. Drexler, U. Morgner, F. X. Kartner, R. K. Ghanta, J. S. Schuman,andJ.G.Fujimoto, Ultrahigh resolution functional optical coherence tomography using state of the art femtosecond laser technology, Chiba[J], 2001
    [181] M. Bashkansky, M. D. Duncan, L. Goldberg, J. P. Koplow,andJ. Reintjes, Characteristics of a Yb-doped superfluorescent fiber source for use in optical coherence tomography, Optical Express[J], 1998, 3(8):305-310
    [182] I. Hartl, X. D. Li,andC. Chudoba, Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber, Optics Letters[J], 2001, 26(9):608-610

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700